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Laser-noise-induced intensity Auctuations in resonance fluorescence

Kazimierz Rzyiewski* and Bryan Stone
The Institute of Optics, University of Rochester, Rochester, New York 14627

Martin Wilkens
Institute for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland

(Received 27 February 1989)

We present a simple method allowing computation of the intensity-intensity correlation function
for the resonance fIuorescence emitted by a two-level atom driven by a weak, noisy laser. The
method is then applied to the two most commonly used models of the noisy laser light: phase
diffusion and chaotic colored noise.

A study of the impact of laser noise on laser-atom in-
teractions has been developed considerably over the past
decade. Continuing these investigations, in a recent pa-
per, its authors looked at the laser-noise-induced popula-
tion fluctuations in a strongly and nearly resonantly
driven two-level atom. By looking at the family of mod-
els with phase fluctuations they note that the precise
value of the population's second moment depends on the
fourth-order correlation function of the laser field and
therefore may discriminate between different detailed
models of the noise. This is of considerable theoretical
importance, though any nonlinear-optical process is sen-
sitive to higher-order correlation functions.

A possible experimental verification of the above re-
sults would involve a study of the intensity-intensity
correlation function of the resonance fluorescence. In
fact, such an experiment is underway by R. Jones.

The purpose of this Brief Report is to present a simple
method of computation of the intensity-intensity correla-
tion function for arbitrary model of the noise, including
an important case of chaotic light. The method, valid for
weak field, expresses the intensity-intensity correlation
function directly in terms of the fourth-order correlation
function of the noise.

Our starting point is the following set of semiclassical
Bloch equations for the quantum-mechanical expectation

o. =( i 6 y—/2)—cr +i cr, ,
. Q*(t)

o, = —y(o, + l )
—i 0,"(t)o++iQ(t.)o.

They are solved perturbatively up to a second order with
respect to the Rabi frequency Q(t) with the natural initial
conditions for the atom which is initially in its ground
state:

o+(0)=o (0)=0, cr, (0) = —l . (2)

The mean (in the sense of quantum mechanics) intensity
of the fluorescence I(t) is proportional to the population
of the upper state:

0., +1
I(t) ~

2

The perturbative expression for I (t) reads

(3)

values of the dipole moment operators o.+ and the
inversion o., describing a two-level atom with the
spontaneous-emission linewidth y, subject to a time-
dependent laser light, detuned by 6 from the atomic reso-
nance, producing the instantaneous Rabi frequency Sl(t):

. Q(t)o+ =(i 6 y/2—)o+ —i o, ,

0 0
(4)

As explained in Ref. 2, the resonance fluorescence experi-
ment done with a large number of independently radiat-
ing atoms will not exhibit intrinsically quantum fluctua-
tions leading to the phenomenon of antibunching. In
fact, all the statistical properties of the time-dependent
fluorescence intensity I(t) are determined by the proper-
ties of the noisy driving signal A(t) In our R.eport, we
shall study two most commonly used models of the noisy
laser light: The phase diffusion model, in which only the
phase of the light changes stochastically with time, and
the chaotic colored model, in which both intensity and

the phase undergo random changes. The phase diffusion
model describes an idealized single mode, well-stabilized
laser operating far above threshold, while the chaotic
colored noise model is appropriate for multimode laser
operation.

It is easy to understand that the two models may give
different predictions for the intensity fluctuations of the
fluorescence signal. Phase diffusing light has its instan-
taneous frequency changing in time. Hence, during in-
teraction with the two-level atom, the light randomly
goes on and off resonance with the atomic transition.
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Since the fluorescence cross section exhibits the resonant
behavior, the fluorescence must also fluctuate. Note,
however, that the phase diffusing light does not have the
intensity fluctuations.

In the chaotic, colored light, not only the frequency of
the light undergoes random changes but also the intensity
fiuctuates. In fact, such a light exhibits 100%%uo intensity
fluctuations. Therefore on top of the mechanism men-
tioned above there is also the simple (in a perturbative re-
gime, far from saturation) proportionality of the fiuores-
cence to the changing intensity.

Both above-mentioned models have the same second-
order correlation function of the Rabi frequency:

(Q(t)Q'(t') ) =0,'e (5)

where I is the width of the Lorentzian laser spectral line.

Therefore they lead to exactly the same mean intensity of
the fluorescence. Its long-time steady-state value (I) is
given by

Ao( y /2+ I )(I ) = lim (I(t)) =
2y[(y/2+I ) +b, ]

(6)

Our next task is to compute the mean value of the long-
time normalized intensity-intensity correlation function
S(T) defined as

(I(t)I(t + T) ) —(I)'
S T=lim

t~ ao (I )'
It is obvious that it depends on the fourth-order correla-
tion functions of the field. The two models considered
differ here. In the phase difFusion model we have

(fl(t )Q(t )Q*(t )Q*(t ))=Be ' 'e ' '(e ''''+e '''')

where the function d (t, , t3; t2, t4) is defined as

d(t„t3;t2, t4)= fdry[t, , t3]y[t, , t4]
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and

1 if er[t„t, ]
0 if rE[t t1]3' (10)

The fourfold integration that is necessary to compute
correlation function S ( T) is straightforward but tedious.
We carried out the integrals using the algebraic computa-
tion package MATHEMATICA on Apple Macintosh II.

The intensity-intensity correlation function S ( T) for
the phase diffusion model is

The function d is simply a length of the overlap of inter-
vals [ti, t3] and [tz, t4].

For the chaotic, colored light, for which the complex
field amplitude is a Gaussian process, we have

S(T)= R (A +8),
(y/2+I )

where

(12)

e
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(13)

and satellites of width I +y/2 symmetrically displaced by
the detuning A. On resonance the formula simplifies:

(y/2+ I )e

y(3y/2+ I i b,)—e —(y/2+ r+i 4) T

3y/2+I +id
(14)

d= r
[(y/2+I ) +b, ](y+41 )(y/2 —I —ib, )

Note that our result reproduces the value S(0) computed
in Ref. 1.

It is clear that the Fourier transform of this function,
which gives the spectrum of intensity fluctuations, con-
sists of three peaks: The central one of width y and two

4IS(T)=
(y/2 —I )(3y+I )(y+41 )

X [ye ~r&2+&~& (y/2+ 1 )e r r]

The resulting spectrum W(co), defined as

~(~)= f S(T)e' dT&2~

at resonance is given by

(15)

(16)
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Note that the spectrum falls off in the wings as the square
of a Lorentzian. This last property is a consequence of
the vanishing of the linear term in the power-series ex-
pansion of S( T) given by (15) near T =0.

For the chaotic colored model, the correlation function
S ( T) is given by

/2+ 1 +b,T)= [(y/2)2e
—2I T+I-2e YT yl e——(T/2+1 )T(Q co+ST bsi—ntIIT)]

(y/2+I ) [(y/2 —I ) +b, ]
(18)

where

(y/2+I )
—6a=

(y/2+I ) +6
and

2b, (y/2+ I )

(y/2+I ) +b,

We obviously have another three-peak spectrum in this
case. The main difference is that the central peak now
has two components: one of width y, and another of
width 2I. Note that always S(0)=1. This fact refiects
the Gaussian character of our fluctuating signal and
should be contrasted with the size of the fluctuations in
the phase diffusion model, where S(0) has a nontrivial
dependence on the detuning and goes to zero as the laser
bandwidth I goes to zero.

Again, at resonance, the formula (15) simplifies and we

get

where each of the components is characterized by its
strength and its width:

(f1*(t)fl, (t')) =0 exp( —I ~t
—t'~),

(A,*(t)A, (t') ) =xQoexp( —I, ~t t'~ ), —
(22)

S (t) =S„(t)+S,(t)+S„(t), (23)

where the parameter x denotes the relative strength of
the components.

We quote only the result for the correlation function at
resonance:

S(T)= [(y/2) e +I e r1

(y/2 —I')'
—IT j2+I )T]

The Fourier transform gives the spectrum of intensity
fluctuations at resonance:

3.5—
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frequency (inunits of y)

1/2

W(co) =
7T

yr(y/2+ r)
0.5—

X
co +y +6yr+4r

(co'+4I ')(co'+ y')[co'+ (y /2+ I )']
(20)

A(t)=Q, (t)+Q (t), (21)

We see that again the spectrum falls off in the wings as
the square of a Lorentzian. As in the previous case, the
correlation function S(T) has a parabolic maximum at
T =0.

We compare the spectra of intensity fluctuations of the
phase diffusing versus chaotic light in Fig. l.

Finally, for completeness, let us consider light which
has two independent components: phase diffusing com-
ponent 0 (t) and chaotic one Q, (t):

0-5
frequency (in units of f)

FIG. 1. Spectrum of intensity fluctuations of the resonance
fluorescence of a two-level atom driven by the noisy resonant
laser light. Comparison of the chaotic light (upper figure) with
the phase diffusing light (lower figure) for three different widths
of the light measured in the spontaneous width y. Note the
constant amount of fluctuations (area under the spectrum) in the
chaotic case and the reduced fluctuations with the decreasing
width for the phase diffusing light. Note different vertical scale
in the two cases.



BRIEF REPORTS 2791

where the three components are given by

—(y /2+1 )TSp(t)= A[ye ' —(y/2+I )e r ], (24)

S~,(T)=C[(y/2) e

S,(T)=B[(y/2) e ' —yI, e ' +I,e r ],
(25)

4r, (y/2+ r, )'
D (y/2 —I p )(3y/2+ I )(y+41 „)
x (y/2+1 )

D(y/2+ I, )

2x(y/2+I )(y/2+I, )C=
D ( y /2 1p—)( y /2 —I, )

D =[y/2+r, +x (y /2+I;)]' .

(27)

(28)

(29)

(30)
—(y/2)e r (I,e ' +I e '

)

+I,I e r ],
with constants A, B, and C:

(26)
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