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Dimensional study of some singular potentials
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Dimensional analysis is proposed as a technique for studying the functional dependence of energy
on coupling constants for a class of singular potentials. Some exact consequences are derived. In
conjunction with WKB a useful approximation to the x anharmonic oscillator energies is pro-
posed.

We have a strictly bound-state problem here with one
quantum number n and two distinct bound-state limits.
There are two characteristic energy scales involved. The
energy E is a function of the type E (n, co, A, ). If small pa-
rameter expansion exists, then it must be true that

lim E~EO lim E E6
A, ~O Q) —+ p

(2)

where Eo and E6 represent the energy levels of the pure
Vo and V6 problems, respectively.

Crucially important for the present work is the fact
that Ep is a linear function of co, while E6 varies as A,

'

Hence near the oscillator limit the energy E should scale
as co, while near the V6 limit it should scale as A,

'

We now construct the most general dimensionally per-
missible structure of E consistent with Eq. (2) and its
reality and dimensionality. An example of a simple set of
permissible candidates is

E~ +E~ 1/(P —q)
0 6

where p and q are real. Because of the limiting con-

Bound-state-generating combined potentials are of
great interest in many branches of physics. Because of
the difficulties associated with their analytic solutions,
perturbative techniques are commonly employed instead.
These techniques assume the existence of suitable small
parameter expansions. This rather strong assumption is
usually hard to verify.

In this work we point out that for a useful class of
singular potentials, dimensional considerations, based on
some rudimentary knowledge of the compound poten-
tials, can provide invaluable insight into the functional
dependence of energy on coupling constants. This some-
what unorthodox approach to nonrelativistic quantum
mechanics is derived from the ideology of constructing
suitable covariants in the theory of relativity and in the
domain of elementary particle physics. We shall develop
the procedure through examples of combined potentials
that are mixtures of power-law potentials that individual-
ly support bound states, irrespective of their strength.

We first co'nsider anharmonic oscillators in one dimen-
sion. ' As a typical representative, we take

V= Vo+ V6= —,'V~'x'+«' .

straints imposed by Eq. (2), logarithmic, trigonometric,
and exponential functions need not be considered. In
fact, it is easy to see that the required structure of E can
be written, in general, as

E(n)=f(S,—Sp, . . . ),
where

(3)

S,=a„(n)EO(n)+b (n)E6(n)+c, ,

v=a, /3, . . . . (4)

The functions a and b are dimensionless. They may
depend on the quantum number n and the index v and
obey the constraints imposed by Eq. (2). The arbitrary
functions c must vanish in both limits co~0 and X~O.
The function S has the dimension of E . The definition
of the function S can, in fact, be refined further. This,
however, will not be required, as we shall see. The func-
tion f has the dimension of energy and the unique choice
is dictated by the Schrodinger equation. In the present
case this choice is not known.

Equations (2) —(4), which represent the entire limiting
and dimensional requirements, are the basis of the
present study. Their straightforward consequence is this:
If the energy E is to have a power-series expansion
around the oscillator limit in powers of A, , then the
power-series expansion around the V6 potential limit can-
not be an expansion in powers of co . However, an expan-
sion in powers of ~ can be constructed. On the other
hand, if we insist upon a small co expansion, as a conven-
tional approach would require, then E becomes a neces-
sarily nonanalytic function of k. The type of expansion
envisaged around one limit has a nontrivial bearing on
the would be expansion around the other limit. We em-
phasize that this conclusion is an exact consequence of
dimensional consistency and the existence of the limits.

However, given our present state of knowledge, no ra-
tionale can be provided to reject a small co expansion
around the V6 limit. As long as co is small enough, the
oscillator does indeed represent a perturbation. On the
other hand, the qualifications of the parameter A. as an ex-
pansion parameter seem questionable. For example, by
going to the momentum representation, we see that it
multiplies the highest-derivative term in the momentum-
space Schrodinger equation. Under such conditions the
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small parameter expansion in A, is doubtful. With this in
mind, it them seems natural to infer that E should be
nonanalytic in k, whereas a small parameter expansion in
powers of ~ should be permissible.

Unfortunately, the potentials V and V6 cannot be
solved analytically. Hence, to explore this situation fur-
ther, we devise a dimensionally inspired empirical ap-
proach. We compute the energy levels of the pure V6
problem numerically. Using these, we compare the per-
formance of several dimensional candidates such as
Eo+E6, (Ez+E6)'/, . . . against the numerically ob-
tainable energies of the x anharrnonic oscillator, for a
large number of levels and a wide range of couplings. In
this way, we find that the combination

Level

No,

0
2
4
6
8

10

c,6 (numerical j
1.144
9.06

21.70
37.59
56.17
77.10

P=0. 1

1.017
1.019
1.0095
0.9993
0.9928
0.9890

E
E„

P=1

0.977
0.985
0.990
0.993
0.994
0.995

P=10

0.994
0.998
0.999
0.9995
0.9996
0.9996

TABLE I. Comparison of the energy predicted by Eq. (5)
=—E~ and the energy computed numerically =—E„ for the first six
even levels of the x anharmonic oscillator [e6—= (Sp /AR )' E6,
P ( Qgg2/p3co4)1/2 a —b —i ]

with

( E2 +E2
)

1 /2 +b ( E4 +E4
)
1/4 (5)

quantum numbers (k, m) and two well-defined bound-
state limits with energies E, and Eo, respectively, where

a+b =1, (6)

provides a remarkably accurate description of the anhar-
monic oscillator of Eq. (I). Notice that Eq. (6) is dictated
by Eq. (2). As mentioned earlier, a and b can be varied
from level to level. However, with our present goal in
view, a relevant indication of the agreements obtainable
is already provided by simply setting a = b =

—,
' for alh lev-

els and couplings. With this choice, we present in Table I
a sample comparison for the first six even levels for vari-
ous couplings. The dimensionless parameter P used in
Table I is defined through the relation p —= 2''t A. /p co .
For p values outside the range indicated, the fits are even
better. A similar result holds for the missing odd levels.
For higher states the fits actually improve, as is to be ex-
pected. As noted above, the small departures can be
rectified by allowing a very minor variation in a and b
consistent with Eq. (6). Equation (5), in essence,
represents a one-parameter fit for all levels and for all p.

I.et us recall that the WKB result for the V6 problem is
good to well within 1% for all levels n )2. Hence Eq.
(5), with E6 replaced by the known WKB result, provides
a good description of the problem at hand for all n ) 2
and for all P.

Now Eq. (5) explicitly indicates that E has an essential
singularity at A, =O but a small co expansion is permissi-
ble. Given its proximity to rea1ity, it seems reasonable to
infer that the true energy is indeed nonanalytic in A, .

The study of other anharmonic oscillators can be car-
ried out along the same lines. If we assume that small co

expansions exist, then an essential singularity of E in A, at
A, =O follows in each case as a strict consequence. These
results are in accord with several previous studies of these
potentials that directly studied the analytic properties of
the energy in the complex coupling constant plane.

Next, we briefly consider a second class of potentials
which consist of a combination of the Coulombic and
power-law potentials. Specifically, consider a two-
dimensional problem with

e 1
V = V, + Vo = — +—pc@ p

P

This is again a purely bound-state problem with two

E, = —A /(k +
~
m

~

+ —,
' ), Eo = fico(2k +

~
m

~
+ 1 ),

where % is the Rydberg constant.
In general, E =E ( k, m, co, e) such that E~EO as e ~0

and E~E, as ~~0. As before, we write

E =f(S,Sp. . . ), (9)

where

S =a,(k, m)~E, ~
+b„(k,m)Eo+c

&=cc~pr

Remembering that E, is negative, and following the pro-
cedure of the previous example, we arrive at a similar
conclusion. No combination of any finite number of di-
mensional terms can permit a power-series expansion in
co around the Coulomb limit. A power-series expansion
in e around the oscillator limit is possible, but then E be-
cornes nonanalytic in cu. However, suitable small param-
eter expansions around both limits are constructible. We
stress that the exact form of f is not required for this
deduction but the limiting constraints play a decisive
role.

To investigate the nature of possible expansions one
can proceed as earlier. This time the numerical computa-
tion of the levels of the full potential alone is required,
the limiting solutions being known. One then examines
the performance of various dimensional possibilities, such
as Eo+E„(Ez+E,)/(Eo+E, ), . . . . Finally, one has
to look for a suitable combination of these terms that
would reproduce the numerical data.

Fortunately, however, this elaborate procedure can be
circumvented, since the problem at hand has an analytic
so1ution. This deceptively simple result corresponds to
an elementary dimensional term E =Eo+E, that at once
confirms the claims made on the basis of the dimensional
considerations above.

To sum our findings, we have shown that dimensional
consideration, together with the limiting constraints pro-
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vide a very powerful approach for the investigation of the
functional dependence of energy on coupling constants
for a combination of power-law potentials. Furthermore,
if the problem happens to have a simple combination of

dimensional terms as the actual solution, then it can be
traced quite easily. Finally, the very procedure of con-
structing dimensional terms ensures that the resulting en-

ergy cannot diverge.
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