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Multiphoton-ionization transition amplitudes and the Keldysh approximation
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The Keldysh approximation to treat the multiphoton ionization of atoms is reconsidered. It is
shown that, if one consistently uses the hypothesis under which the approximation should be valid

(essentially, that of a weak, short-range binding potential), a Keldysh-like term results as an approx-
imation to the first term of a uniformly convergent series in powers of the binding potential. No
cancellation occurs when higher-order terms are taken into account. This result allows one to con-
sider the Keldysh approximation as a well-defined theoretical model, without implying, however,
that it is adequate to describe multiphoton ionization of real atoms.

The advent of very powerful lasers has made the exper-
imental phenomenology of multiphoton ionization of
atoms much richer. At the same time, it has become ap-
parent that the lowest-order perturbation theory is un-
able, as a rule, to account satisfactorily for the latest ex-
perimental observations. The consequence is that at
present there is no working theory ab1e to account
rigorously for the many features characteristic of multi-
photon ionization of atoms, although several partially
successful theoretical treatments have been devised and
are available in the literature. '

In this context, a significant revival of interest has been
enjoyed lately also by the treatment originally devised by
Keldysh in 1964 to treat the ionization of an electron by
a strong electromagnetic field, bound by a short-range po-
tential. The Keldysh approximation (KA) was originally
proposed as an ansatz rather than as a first term of some
rigorously constructed expansion, and at the time raised
considerable interest. In particular, an effort was made
by several authors, especially in the Soviet Union, to clar-
ify the physical contents of the model and to improve it.
As a rule, the outcome of such other investigations was
that, within the same physical assumptions (first of all,
that of a short-range potential), but following different
approaches, largely the same results were found. In
more recent years, there has been the effort to justify the
KA as the first-order term of an expansion in the binding
potential in the presence of a strong radiation field.

The KA misses the information on the discrete atomic
spectrum as well as of the final-state interaction between
the ejected electron and the residual ion. Intuitively, a
justification to it may be based on the Fermi golden rule;
besides, it may be thought of as the strong-field generali-
zation of the well-known plane-wave treatment of the
conventional photoelectric effect, which for ionization far
from threshold is known to perform satisfactorily. Thus
the KA appears to be a model of immediate physical in-
terpretation. Appealing features of the KA are its simple
structure and easy handling; moreover, it has been found
to reproduce in a qualitatively satisfactory way a number

of features of the measured strong-field ionization.
On the other hand, serious limits of the KA as well

have been pointed out too. In short, according to many
different contributions and statements, the most likely
conclusion on the KA might be that it is hardly adequate
to describe multiphoton ionization of real atoms, but that
at the same time it is of some use in getting preliminary
information on some aspects of the process.

However, recently the reliability of the KA as a physi-
cally well-defined theoretical model has been seriously
questioned by different authors. ' These authors per-
form a perturbation expansion of the transition ampli-
tude in the binding potential, and name after Keldysh the
first term of the expansion. Considering higher-order
terms of such an expansion, they show that the "Kel-
dysh" term cancels. Thus, according to these analyses
the KA appears to be merely a kind of artifact, in spite of
its simple physical interpretation and of its satisfactory
performance in a number of cases. While there is little
doubt that the KA is generally inadequate, it is diScult
to consider it simply as an artifact. Below, we show in
fact that it is not the case, if one adheres to the original
meaning of the Keldysh model. Our goal is obtained in
the framework of the expansion suggested in Refs. 8 and
9. Nevertheless, we would like to point to the arbitrari-
ness of ca11ing after Keldysh the first term of an expan-
sion in the binding potential V as done in Refs. 8 and 9.

We show first when the cancellation of the Keldysh
term occurs and why; then, we show that the term named
after Keldysh in the Refs. 8 and 9 is not fully consistent
with the assumption of treating a weak, short-range bind-
ing potential; finally, we derive a transition amplitude
consistent with such an assumption. The expansion of
this latter transition amplitude in powers of the binding
potential and a further weak-potential approximation
produces a new transition amplitude having just the
Keldysh-like structure. The next terms of the exact ex-
pansion do not cancel the first one and reproduce the uni-
formly convergent expansion suggested in Refs. 8 and 9.

As usual in ionization processes, ' we use the advanced
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form of the transition amplitude

af;(r) = (f I
U'(r) li &,

where If & is a field-free plane wave and ~i & the initial
bound state. U(t) lets

If & evolve from t =0 [with
U(0)=1] to t, where it is a fully interacting (with both
the field and the binding potential) state. As in the con-
ventional approaches, we use two partitions of the full

Hamiltonian H (t) =p /2m + HF(t)+ V, namely,

The full evolution operator U(t) obeys
isa U/at =H(t) U(t); looking for a solution of the form

U(r) = U„(r)uF(r),

where ifidU„/r)t =H„U„(t) with U„(0)=1, one finds
the integral equation

U(r)=U„(r) 1 ——f dr'U„(r')HF(r')U(r')

and

H (t) =H„+HF(t)

H(r)=HO(r)+ V,

(2a}

(2b)

Alternatively we may look for a solution as

U(r) = UF(t) u ~ (r),
where i ABU~/r}t =Ho UF(t) and UF(0) =1, obtaining

where H„=p /2m + V drives the field-free electron-
binding potential system and Ho(t) the field-interacting
otherwise free electron. HF(t) is the electron-field in-

teraction.

U(r)=U~(r) 1 ——f dt'UF(r')VU(r')

Using now the form (4) in (1) we have

(6)

Af, =(jlU„(r)li &+ —f dt'( f I
Ut(t')HF(r')U„(r')U„(r)Ii & . (7)

0

Iterative use of (4) will now reproduce the conventional perturbative expansion in the electron-field interaction HF.
Using instead Eq. (6) in (1) we have

Af;=(f IUF(t)Ii &+ —f dt'( fl U (t')VUF(t')UF(t)Ii &

0

and the iterative use of (6) will yield the perturbative expansion in the binding potential V. This is the expansion pro-
posed in Ref. 8.

Without approximations, we may use the form (6) of U(t) in (7), obtaining

AI, =(f I U„(r)li &+ —f dr'( f I
UF(r')H~(r')U„(r')U„(r)li &

0

+ — f dr' f dr" ( fl Ut(r")VUF(r")UFt(r')H~(r'}U„(r')U~t(r)li & .
0 0

According to Refs. 8 and 9 the Keldysh approximation
corresponds to retaining only the first row of the ampli-
tude (9), namely, in describing the ionization as a single-
step process from a bound state (undressed by the field) to
a Volkov wave (i.e., a free electron interacting only with
the field); thus, this approximation amounts to neglect
the binding potential V which appears in the second row;
the difhculty with this procedure and its interpretation is
probably that the binding potential V is present to all or-
ders in the atomic evolution operator U„(t') entering the

I

j

Keldysh term, and there left unchanged; things are not
improved attempting an expansion 'in V by approximat-
ing U(t') by UF(t') in the second row of (9); again, this
procedure would be incomplete, because U„(t') is left
unchanged elsewhere. This feature leads to what follows.
Using

UF(t)H~(t)= —ifidUFIdt —U~(p /2m) (10)

by means of an integration by parts the Keldysh term
transforms as

&flU,'(r)li &+
' f '«'(flU, '(r —)H, (r )U„(i )U„'(t)Ii &=(flUF(t)Ii &+ —f dt'(fIUF(t')VU„(t')Ut„(t)li &

o o

and

2

f dr' f dr" (f I
Ut(r") VUF(r") UFt(r')HF(t') U„(r') U~t(r)li &

0 0

dt' U t'VU„ t'Uq t & + dt' U t'VUFt'UFt
0

2

+ — f dr' f dr" (fl U (r"}VUF(r")U~(r')VU„(r')U„(r)Ii &

0 0
(12)
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so that if one now approximates U(t) by UF(t) here, the first term cancels the time integral of the Keldysh term (11).
In (8), as no U„(t) appears, a perturbative procedure with respect to the binding potential may actually be done, just

replacing U(t) by UF(t). The up-to-first-order term in V of that expansion

AI,"=(f ~
UF(t)~i )+—f dt'( f ~

UF(t') VUF(t')UF(t)~i)
0

(13)

reads as a bound state dressed by the field that, interacting with the binding potential, ionizes to a Volkov state. This is
the procedure suggested in Refs. 8 and 9 for weak binding potentials and strong fields.

Let us look for the following form of the full evolution operator:

U(t)= U, (t)u, (t), (14)

where Uo(t) is the plane-wave evolution operator, obeying i AdU~/Bt =(p /2m) Uo(t). We find in this case the integral
equation

U(t)=U, (t) 1 ——f dt'U, (t')[HF(t')+V]U(t')
0

(15)

yielding for the transition amplitude (1)

2&, = (f ~
Uot(t) ~i )+—f dt'( f ~

Ut(t)[HF(t')+ V]U, (t') Uot(t) ~i ) .
0

The zeroth order in V of the amplitude (16), using (6), is

(16)

2&,"=(f ~ U, (t)~i)+ —f dt'( f ~

UFt(t')HF(t')U, (t')U, (t)~i) . (17)

Equation (17) is exact, as long as the zeroth-order in V is concerned. If the initial state is very weakly bound, one can
make the simplification Uo(t) ~i ) = exp(iIot /fi) ~i ), Io being the ionization energy of the bound state, obtaining

2&,
'= (f ~ Uo(t) ~i ) + —f dt'( f ~

UF(t')HF(t') Uo(t) exp(iIot'/A) ~i ), (18)

which has the structure of the Keldysh term. For weak radiation fields, UF(t) = Uo(t) and —Eq. (18) reproduces the tran-
sition amplitude for the plane-wave photoelectric efFect. Of course, as Eq. (18) is an approximation to the gauge-
invariant expression (17), ' some gauge dependence is generally to be expected.

Let us now come back to the exact amplitude (16), to establish its relationship with the expansion in V already pro-
posed in Refs. 8 and 9. From (16) and (6) the first-order term in V reads

'2

f dt f dt (f~UF(t' )VUF(t )UF(t )HF(t )Uo(t )Uo(t)~i )+ f dt'(f ~UF(t )VUO(t )Uo(t)~i ) . (19)
0 0

F F F F 0 0

Using now Eq. (10), an integration by parts on the
double-time integral in (19) yields

f'
0

(20)

which is exactly the time integral entering Eq. (13), name-
ly, the first-order term of the expansion procedure in V
already found in Refs. 8 and 9; of course, this should
have been expected, because of the uniqueness of the ex-
pansion in power series. Analogously, use of (10) in (17)
transforms this latter one in (f ~ UF(t) ~i ), namely, in the
zeroth-order term in V of Eq. (13): as in Ref. 8 this term
has been shown to be the leading one for strong fields, the
meaning and purpose of the Keldysh ansatz is recovered.
The way of getting Eq. (18) clarifies through which steps
the Keldysh model arises and how the cancellation is re-
moved; as discussed below an expansion in V is probably
not particularly suited for ionization; nevertheless, accu-
rate comparisons with diff'erent kinds of expansion (or
models) based on real atom situations could prove very
useful.

In summarizing, the Keldysh ansatz for treating the
multiphoton ionization of atoms may be understood
within the assumption of a weak short-range binding po-
tential. Probably, the origin of the present controversy
on the rating of the Keldysh approximation may be
traced back to the choice by some authors to obtain the
Keldysh amplitude by a formal derivation, based on a
series expansion in which the binding potential is the per-
turbation. To see the difficulty of such a program, con-
sider the case of an electron in the presence of a binding
potential V and a radiation field A(t). If one is interested
in the ionization process, the most natural way of
proceeding is to consider the radiation field as the pertur-
bation. The physical picture is then that of an initially
bound electron evolving towards a free state under the
inhuence of two fields. In an ionization process one has
the peculiar situation that the binding potential is neces-
sarily dominating over the radiation field in the initial
state, while the reverse may be true in the final state.
Thus, for ionization, a formal and consistent expansion in
terms of V is expected to be not particularly transparent
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(as it is instead for scattering processes), although of
course it can be done. In fact, one has the problem of the
identification of the true first term. In particular, as
clearly realized by Geltman and Teague, " who first
adopted such an approach, care must be exercised in
choosing the appropriate transition amplitudes.

When the expansion in V is done, one is in practice
adopting a scattering theory picture, where a free elec-
tron embedded initially in the radiation field is scattered
(multiply) by the binding potential V again into a free-
state embedded in the field. No wonder then that one ar-
rives at a series which has the formal structure of the
charged particle scattering by V in the presence of a
strong radiation field. To account for the fact that initial-
ly the electron is bound instead of being free one has to
provide the free electron in the initial state with the dis-
tribution of momenta it has in the bound state. The orig-
inal Keldysh amplitude is instead physically simple,
transparent, and direct, and may be accepted on the as-
sumption of a weak, short-range binding potential. Of
course it puts obvious limitations on the range of validity
of the KA, and on its ability to serve as a tool for inter-
preting the experimental phenomenology of real atoms.

It could be the end of the story. Further, if one wants to
put the Ka on a more formal basis, one can refer to the
above derivation showing that the Keldysh term actually
results as a weak, short-range potential approximation to
the first term of a gauge-invariant and convergent expan-
sion in series of the binding potential, whose next terms
not only do not cancel the first one but reproduce the
series usually reported in literature when treating the re-
gime of strong radiation fields and weak binding poten-
tials.

We believe that the above discussion should remove
the suspicion that the time-honored Keldysh approxima-
tion is a physically ungrounded ansatz; instead, using the
words of Ref. 9, it "remains a valuable benchmark in the
theory of strong-field interactions"; at the same time, we
maintain that it is generally inadequate to describe multi-
photon ionization of real atoms, because of the many
simplifications inherent in it.

A work has appeared recently' in which the analysis
of the Keldysh approximation is carried on in detail with
the conclusion to regard it as an ansatz rather than as the
leading term in a perturbation series, in substantial agree-
rnent with our standpoint.
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