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We derive the Scott correction to the atomic electron density in momentum space. The implied
corrections to expectation values of powers of the momentum, as well as to the Compton profile, are
then obtained.

The well-known failure of the Thomas-Fermi (TF)
model in the vicinity of the atomic nucleus requires a spe-
cial treatment of the strongly bound electrons. This is
generally called the Scott correction. ' It can be incor-
porated consistently into the TF model, provided the
language of potential functionals is employed. Thus one
arrives at the Thomas-Fermi-Scott (TFS) model. All
physical quantities, for which the contribution from the
innermost electrons is dominating or at least substantial,
are treated much more realistically in the TFS model
than in the TF model. For example, whereas the TF den-
sity at the site of the nucleus is infinite, the corresponding
TFS prediction is both finite and numerically accurate.
In this Brief Report we derive the Scott correction to the
density in momentum space and show that it significantly
improves the TF result for large momenta. As an im-
mediate application we then find the Scott correction to
expectation values of some momentum functions, includ-
ing in particular the Compton profile.

We take the TFS model in the formulation of Ref. 3
and use the notation and conventions introduced there.
The spatial density of an isolated TFS atom,

n TF$(r) =nTF(r)+b, n (r),

t:~, ]

h, n (r)= g 2v'~g, ~,'„(r)+Q, ~g„~,'„(r)

X I
—2[V(r)+g, ]I

3772 SP

(2)

where ETFs(Z, N) is the energy of a TFS atom with nu-
clear charge Z and N electrons. In A, n (r) it suffices to
use the small-r form of V(r),

Here, V(r) is the spherically symmetric effective poten-
tial; g is the minimal single-particle binding energy;
~g, ~,„(r) is the average density of one electron in the vth
shell; v, plays the role of a continuous principal quantum
number; and for the present purpose the parameters g,
and Q, are well approximated by

=z' a+ ET„s(Z,N),
2vs Z

2v,'
Q, =(g, —g)

is the sum of the TF density,
z aV(r)= ——— E (Z, N) .
r gZ TFs (4)

nT„(r) =
[
—2[V(r)+g]]1

(square roots of negative numbers are understood to be
zero), and its Scott correction,

The large square brackets [f(v, )]sp in Eq. (2) symbolize
the injunction to evaluate the smooth part of this function
of v„ thereby discarding all oscillatory contributions that
arise because the summation over v terminates at the in-
teger part [v, ] of v, . For later reference, we report that
the density at the site of the nucleus is given by
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no =—n&&s(r =0)
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E

(5)

where gz(z) is Riemann's zeta function, and the relation
g= —BErzs(Z, N)/BN has entered.

Upon recalling that (1) originates in

ni.„(r)=2f (dp)(2m) 'i)[ —
—,'p —V(r) —g],

where

1 for x)0
0 for x&0

is Heaviside's unit step function, the corresponding TF
momentum-space density is immediately found:

ni-z(p) =2f (dr)(2m ) i)[ —
—,'p —V(r) —g]

This is quite irrelevant compared to nr„(p), which for
neutral atoms is

nr„(p) =9/(8mp )'~ for p ~0 . (10)

Of course, the TF and TFS predictions for p ~0 are not
to be taken seriously because here one is outside the
range of validity of these models. A realistic treatment
would have to include quantum corrections to the kinetic
energy, and the exchange interaction. These develop-
ments, however, are not the subject of this Brief Report.

Naturally the Scott correction (9) is most important for
large momenta. There one has

1 2Z
nrF(p)=

3K p

4 Z+ — + E~„s(Z&N)+
7T p Z

'3 '2
1 2Z + 4 Z

37T p ~ p

with R (p) determined by

—,'p + V(R)+(=0 .

(6) so that the p terms compensate for each other, with
the consequence

8 Z
nr„s(p) =n~„(p)+b, ,n (p) = no —+

7T p
Further, the analog of lg l,„(r) in momentum space is

3

Iq. l'.,(p)=, — [1+(vp/Z)']-' .

This, combined with using (6) also for the TF structure in
(2), together with (3) and (4), yields

4Z ' ' (v/Z)
„=i [1+(vp/Z) ]

(v, /Z)

1+(v,p/Z)
The general statement

fv, ]

g f(v)= g f(v) —f dvf(v)+0
v=1 v=1

3

SP

(8)

b, n (p)= 4Z
2

( v/Z)
„=, [1+(vp/Z) ]

1 2Z
3' p

'3

(9)

(where 0 represents oscillatory terms), which holds if
both the series and the integral exist, enables us to evalu-
ate the smooth part in (8), as required. The outcome is

where we make use of (5), and the ellipsis indicates terms
of order p

' . This connection between the spatial densi-
ty at the nucleus and the large-p form of the momentum
density, here predicted by the TFS model, can also be de-
rived with the aid of Hartree-Fock arguments.

As a first application of nr„s(p), we consider neutral-
atom expectation values of powers ofp,

(p "&,„s4~f "dp p
"+ nr„s(p) .

0

In view of (10) and (11) the permissible values of k are
limited by —

—,
' & k & 5. For neutral atoms one has /=0,

and the difference between the TFS potential and the TF
potential is negligible, so that it is quite sufhcient to in-
sert

ZVz„(r)= ——F(x), x =Z' r/a,

with a =
—,'(3n/4) =0.8853 into (6). This F(x) is the

well-known Thomas-Fermi function. %e thus find
k/3

( g) 3Z 2" 4Z ITFS 3 k 3 k

+ ! !g„(k—2)Z", (12)
3m 2 2

which must not and does not depend on v, . This is our
central result. As is typical for a Scott correction, it is
the same for a11 degrees of ionization.

The v summation in (9) converges for all pAO. For
p =0 the limiting value is

where

'[A: +1]/2
0 dx

4 1
b, , n (p =0)=-

63m Z

Equation (12) is valid for the whole range ——', &k & 5,
containing the k =3 result as a limit. It is explicitly
given by
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( ~) = Z ln Z +3C+p TFS ~J( )
16 P~ v/Z

1+(vq /Z)

3
4 Z

37K q

3 d [F(x)]dx lnx
2 0 dx

where C =0.5772. . . is Euler's constant and the integral
has the numerical value 1.080 1017.

The numerical computation of Ik poses no particular
problem. In addition, for integer k, the values can be
found in the existing literature (for instance, in Ref. 3).
For the sake of completeness, here they are again:

I ]
= 18.3885 I0= 1 I] =0.307 717

I2 = —— (0)=0.226 867, Iq =—, I~ = 1.084 32 .
1 dF 1

7 dx

This establishes

(p ' )TFs= 9. 1759Z ' +0.0283Z.Fs
——Z,

(p )TFs=0. 693 75Z 0. 141 47Z

(p )TFs= 1.5375Z Z = 2ETFs(Z&Z)

(p ~ )TFs= l. 1318Z ln(Z/0. 5725),

(p ) TFs
= 1 6.449Z 16.600Z

Let us remark that (p ) is twice the kinetic energy and
equals twice the binding energy (virial theorem), and
(p ) is needed when evaluating the leading relativistic
energy correction.

The expectation values (13) agree, to the extent to
which they can be compared, with those obtained by
Dmitrieva and Plindov. These authors point out, quite
correctly, that the inclusion of exchange energy and other
corrections supplies additional terms to (p ") of the order
Z' "+''~ . Therefore the Scott term (-Z") is the leading
correction to (p")TF only for k ) 1. (As a matter of fact,
(p")TF does not even exist for k ~ 3.) This is an illustra-
tion of the general observation that the TFS model can-
not make reliable predictions about momentum expecta-
tion values (f (p) ) that are sensitive to the contributions
from small p values.

Another application of n T„s(p) concerns the Compton
profile

J(q)= g(p —
q ) =2m f dp pn (p) .

2p /q)

In the TFS model one finds

JTFs(q) =JTF(q)+b, ,J(q)

with the TF contribution

JTF(q)= —f dr r [ —
—,'q —V(r) —g]

Analogous to (11), the large-q form is

JTFs(q)= —no +0 (q )
8 Z

q6
(14)

Again, this is identical with the corresponding Hartree-
Fock result. Unfortunately, in the large-q range there
are no measured Compton profiles, as far as we know,
with suScient precision to either confirm or refute the
power law (14). If it indeed holds, it offers —certainly in
principle and possibly in practice —a way of measuring
the electron density at the site of the nucleus, which
quantity is of importance for various physical processes
like K capture, to name one.

For q &Z, one can expand b,,J(q) in powers of
Z2/q2

Xg (2k —1)(Z /q )"+' (15)

with an identical structure except that now negative k
values are summed (and an overall minus sign appears).
Equation (15) looks more conventional after using the re-
lation

( —1)'B
gz( —1)=

&+1 BI+i, 1=0,1,2, . . .

between Riemann's zeta function and the Bernoulli num-
bers:

4 Qo

&&J(q)= g ( 1) + (1 +1)B
~ 2g(q+/Z )

I —0

2 1+10 q'+
45m Z 7 Z2

This is, of course, quite insignificant compared to the TF
contribution, which for small q is given by

JTF(q) = —,'(p ')TF 9&2vr~q~—
=4.59Z' —22. 56&~q~;

again, at these small q values we are outside the range of
validity of the TFS model.

8 oo

A, J(q)= g ( —1)"k(k —1)3''Z
k =1

X P (2k 1 )(Z2/q 2)k +1

where one uses (k —1)gz(2k —1)=—,
' for k =1. It is

amusing that for q (Z there is an asymptotic expan-
sion

8
—1

b,,J(q) = — g (
—1)"k (k —1)

37TZ k =—

[where, as in (7), the upper limit is the distance at which
the integrand changes sign] and the Scott correction

We would like to thank F. Bell for stimulating discus-
sions.
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