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A single diode resonator system is a nonlinear circuit consisting of a series combination of a resis-
tance, an inductance, and a p-n junction diode. Driven single diode resonator systems experimental-

ly show the period-doubling route to chaos, while driven coupled diode resonator systems show the
quasiperiodic route to chaos. We present a direct comparison of numerical simulations with experi-
mental measurements on driven diode resonator systems. The numerical simulations are based on
an extension of the Rollins and Hunt model [Phys. Rev. Lett. 49, 1295 (1982)] of the diode (ideal
diode modified to include a fixed reverse capacitance and a finite reverse recovery time). The ex-
tended model allows the reverse recovery time to depend on the forward current of several previous
cycles. The model is applied to both the single diode resonator system and a coupled system con-
sisting of two parallel single diode resonators coupled through a series resistance to a sinusoidal
generator. In both cases, the numerical simulations show remarkable global agreement with the ex-
perimental measurements. The universal scaling behavior of the simulated coupled diode system at
the critical line for the quasiperiodic route to chaos is tested by calculating the spectrum of general-
ized dimensions characterized by the f (a) spectrum. The results show the same f (a) spectrum as
obtained for the sine-circle map at the critical line.

I. INTRODUCTION

The response of a driven anharmonic p-n-junction
diode resonator, composed of a resistance, inductance,
and a diode in series with an oscillator, has been found to
exhibit several universal scaling behaviors representing
particular routes to chaos. For example, the system has
been found to exhibit period doubling, ' tangent-
bifurcation intermittency, and interior crises. The resis-
tively coupled diode resonator system shows the quasi-
periodic route to chaos. Early work attributed the
period-doubling and chaotic behavior to the nonlinearity
introduced by the voltage-dependent capacitance of the
varactor. Van Buskirk and Jeffries used a voltage-
dependent differential capacitance which included not
only a reverse bias term but also a large effective storage
capacitance term in forward bias. They show that this
model gives reasonable qualitative agreement with experi-
ments.

Hunt reported the results of experiments which clear-
ly showed that, at least for the vast majority of diodes,
the nonlinear reverse bias capacitance of the junction is
not responsible for the chaotic behavior observed in the
diode resonator system. When the current passing
through a varactor, or power diode, is driven through
zero, the diode does not shut off immediately, but contin-
ues to conduct for a time called the reverse recovery
time. This effect is well known because it is what limits
the useful frequency response of these devices. Hunt
showed that the rather large reverse recovery time of
such diodes was essential for the observed chaotic behav-
ior.

Rollins and Hunt used this result to form a mathemat-
ical model of the diode which was very successful in

describing the behavior of the single diode resonator.
Their model modified the ideal diode by including a for-
ward bias voltage, a constant (voltage-independent) ca-
pacitance when in reverse bias, and a reverse recovery
time which is proportional to the maximum forward
current on the previous cycle. This results in a
piecewise-linear model' that is exactly solvable in terms
of simple analytic functions fit together by appropriate
boundary conditions as time proceeds. Rollins and
Hunt showed analytically that, over a broad range of
typical operating conditions, this solution gave a rigorous
one-dimensional map for the sequence of peak forward
currents, and numerical calculation showed that the map
was unimodal. Hence, the diode resonator system would
be expected to follow a patterned route to chaos, in
agreement with the universal behavior found in iterated,
unimodal, one-dimensional maps. "

The large effective storage capacitance suggested by
Van Buskirk and Jeffries and the forward-current-
dependent reverse recovery time are two ways of attempt-
ing to model the same physical characteristics of the
diode. However, because a minority carrier diffusion
process is responsible for the reverse recovery time of a
p-n junction, the behavior can be modeled very well by
the delay-equation-type description provided by the re-
verse recovery time model. Furthermore, as pointed out
by Hunt and Rollins, ' the reverse recovery time can be
experimentally observed to depend on the forward
current of at least two previous conducting cycles. For
such diodes, the diffusion process can have a sufficiently
long time constant so that the reverse recovery time may
depend on the maximum forward currents in several pre-
vious cycles.

We describe below an extended reverse recovery time
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model of the p-n junction diode, and compare the model
calculations with experimental measurements for both a
single diode resonator and resistively coupled diode reso-
nator circuits. We show that, for the experimental situa-
tion studied, excellent detailed global agreement with ex-
periment is obtained when the maximum forward current
of several previous cycles is used to determine the reverse
recovery time.

II. P-N- JUNCTION MODEL

Rollins and Hunt proposed a simple model for the sin-
gle diode resonator system containing the minimal prop-
erties of the p-n-junction diode responsible for the ob-
served period-doubling bifurcations and chaos, and ig-
nored the other, largely irrelevant, nonlinear properties.
This model treats a p-n-junction diode as an ideal diode
with the following three additional characteristics.

(i) There is a finite forward bias voltage V~. The diode
will not conduct until the forward voltage drop reaches
VF, and the voltage drop remains at Vz as long as the
diode is conducting.

(ii) When the voltage drop is less than VF, the diode
does not conduct but acts as a capacitor with fixed capac-
itance C.

(iii) When the current is driven through zero, the diode
does not shut off immediately, but continues to conduct
for a time equal to the reverse recovery time ~„.The re-
verse recovery time was taken to depend on the max-
imum forward current as follows:

where

f (I) =r [ l —exp( I /I, )], —

~I ~
is the maximum forward current during the con-

ducting cycle, and r and I, are parameters which de-
scribe the particular diode resonator system.

Note that f(I) is proportional to I for I ((I„otherwise
the functional dependency of f on I is not critical. Rol-
lins and Hunt showed that this model gave a rigorous
one-dimensional, unimodal map for the sequence of peak
forward currents exhibiting the universal period-doubling
route to chaos expected of systems described by such
maps.

Hunt and Rollins' noted that measurements of the se-
quence of peak forward currents do not result in a
rigorous one-dimensional map. Their measurements also
indicated that the reverse recovery time actually depends
on the maximum forward current during at least the last
two cycles. An extension of the reverse recovery time
model to include a dependence on the peak forward
current in the two previous cycles showed much better
detailed agreement with the experimental measure-
ments. ' The model described and used in this paper is a
further extension to include the effects of three, or more,
previous cycles.

We briefly review the transient properties of a p-n-

junction diode' ' in order to point out the physical pro-
cesses which are the basis for the extended model. We
assume for this discussion that the forward current is car-
ried predominantly by holes, as would be the case if the n
region were lightly doped and the p region heavily doped.
Under forward bias, a large excess hole concentration is
injected into the n region, where the holes are minority
carriers. The injected holes diffuse away from the junc-
tion because of a concentration gradient. As they diffuse
they combine with the majority carriers, the electrons, so
that far from the junction the hole concentration is that
normally found in the n region. The average time that an
excess minority carrier exists in the diffusion process is
called the lifetime ~ of the minority carriers. When the
bias of the junction is reversed, some of the excess minor-
ity carriers diffuse back through the junction and supply
a reverse current.

The transient behavior of the junction, as the diode
shuts off, can be roughly divided into two steps. In the
first step, called the recovery phase, the excess hole con-
centration at the junction surface in the n region is large
enough to supply a reverse current determined by the ap-
plied voltage and the external resistance in series with the
diode. The voltage across the junction during this phase
remains roughly the same as under forward bias. The
duration of the recovery phase is modeled by our reverse
recovery time. It must be noted that the recovery time,
as defined here, not only depends on the junction charac-
teristics, but also depends on external circuit parameters
such as the series resistance in the circuit. Under steady-
state conditions, it can be shown' that both the density
of excess minority carriers at the junction surface and the
net excess minority charge in the n region are proportion-
al to the forward current. This is a partial justification
for the form of our function f ( ~I ~ ), defined in Eq. (2),
with its linear dependence on ~I

~
for small ~I ~. In the

second step, called the reverse phase, the concentration
of excess holes at the junction surface has dropped to
zero. The reverse current is supplied by the diffusion of
the excess holes deeper in the n region. Thus the reverse
current decays rapidly, the resistance of the junction in-
creases greatly, and the voltage across the junction drops
abruptly through zero and reverses. As the junction volt-
age increases in the reverse direction, a space-charge lay-
er is built up in which the free carriers are depleted.
Hence under reverse bias the junction behaves as a capac-
itance whose value depends on the junction voltage.

Consider such a junction driven by a periodic voltage.
If the lifetime of the minority carriers is much longer
than the period of the drive voltage, and the reverse
current is not very large, then the concentration of excess
minority carriers may not totally vanish throughout the n

region during the reverse phase. This residual concentra-
tion of excess minority carriers will reduce the diffusion
rate for next forward injection and a cause a higher con-
centration of excess minority carriers near the junction
surface, thus causing a slightly longer reverse recovery
time. Several previous cycles may make contributions to
the residual concentration of the excess minority carriers
if the total time is less than, or comparable to, the life-
time of the minority carriers. The reverse recovery time



2700 Z. SU, R. W. ROLLINS, AND E. R. HUNT

model used here is a gross simplification of the actual p-n
junction, but it captu. res the essence of the transient be-
havior expected.

Thus, following Hunt and Rollins, ' we extend the
model by replacing Eq. (1) with an expression for the
recovery time ~,

„

in the nth cycle:

(3)

where ~I ~
„

is the magnitude of the peak forward current
during the nth cycle, f( ) is the function defined by Eq.
(2), and a„is a parameter for a particular diode resonator
system, describing the influence of the kth previous cycle
on the reverse recovery time.

The particular diodes used in the work reported here
were a 1N1221 for the single diode resonator and two
1N2858s for the double resonator circuit. These Si p-n-
junction rectifiers have a measured minority-carrier life-
time of about 100 psec, ' awhile the driving period is only
10—20 psec. In fact, we found it necessary to include up
to three previous cycles and to adjust the weight factors
a„a2,and a3. This procedure allowed us to obtain cal-
culated return maps yielding remarkable detailed agree-
ment with the experimental measurements on the diode
resonator systems described below.

was necessary to include small, nonzero, values for a2
and A'3.

Figure 1 shows the corresponding calculated (left) and
experimental (right) return maps I ( n + 1 ) versus I( n )

where I(n)—:~I ~„.The experimental data were taken
directly from an oscilloscope, as described in Ref. 12.
The weight values used in the simulations were a& =0.40,
+2=0.12, and 0.'3=0.02. The amplitude of the drive volt-
age for Fig. 1(a) placed the system in the chaotic state
below the period-three window. For the simulation,
Vo/VF =6.2 and the corresponding drive voltage for the
experiment was V=2.4 V, , The other parameters for
the simulation model and the real circuit were the same
as defined and used in Ref. 12. The simulation in both
Fig. 1(a) and 1(b) contains 1500 calculated points.

Figure 1(b) shows a similar pair of calculated and mea-
sured return maps ~here the drive voltage placed the sys-
tem in a chaotic state above the period-three window.
The parameters for Fig. 1(b) are the same as for Fig. 1(a),
except that the drive voltage is larger. For the calculated
map Vo/V+ =9.4 and for the measured map V= 3.6 V, ,

The agreement between the calculated and measured
return maps is very good and the ak values seem reason-
able in magnitude and decline as k increases, as expected.
Increasing the relative contributions from n2 and n3 has

III. RESULTS AND DISCUSSION

A. Single p-n-junction diode resonator (a)

I. Implementation of the model

The single p-n-junction diode resonator is composed of
a resistance, inductance, and a diode in series with an os-
cillator. The model described above leads to piecewise-
linear equations as described in Ref. 3. The analytic solu-
tions are fit together with appropriate boundary condi-
tions using the step-by-step procedure described in Ref.
3, with the one modification that the reverse recovery
time is determined by Eq. (3) instead of Eq. (1). The se-
quence of maximum forward-current values were calcu-
lated from the model and the weight factors e„az,and

a3 were adjusted to give good qualitative agreement with
experimental measurements over a broad range of the
drive voltage amplitude. Adjusting the values of a&, a2,
and a3 changes the detailed structure of the calculated re-

turn maps, ~
I

~ „+,versus
~

I
~„,while leaving the gen-

eral behavior unchanged. This is consistent with our ex-
perimental observations that any diode selected from a
box of 1N1221s will give the same general experimental
behavior but the details differ from one diode to the next.

(b)

2. Comparison with experiment

Hunt and Rollins' used a similar model but set ak =0
for k & 1. When carefully comparing the calculated map
shown in Ref. 12 with the measured map shown in the
same reference, one finds that the subbranch on the cal-
culated map is on the wrong side of the main branch. We
found that to put the subbranch in the correct position it

FIG. 1. Corresponding calculated and measured return maps
of the peak forward currents of the single resonator in arbitrary
units. The simulation data are on the left and the corresponding
measurements from the real system are the oscilloscope photo-
graphs on the right. (a) The drive voltage used places the sys-

tem in a chaotic state below the period-three window. Note
that the subbranch on the calculated map is in the correct posi-
tion. (b) A higher drive voltage places the system in a chaotic
state above the period-three window.
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the effect of widening the spacing between the branches
of the map. Furthermore, we found a nonzero value for
a3 was necessary. If a3 was set to zero, then the sub-
branch of the calculated map could not be made to fall on
the correct side of the main branch by adjusting a& and
a2. The success of the extended reverse recovery time
model suggests that chaos in the diode resonator system
is due to a delayed feedback mechanism provided by the
slow diffusion and long lifetime of the excess minority
carriers near the junction.

B. Coupled p-n-junction diode resonator

l. Implementation of the model

The coupled diode resonator system consists of two
parallel, single diode resonators coupled through a series
resistance, driven by a sinusoidal voltage, as shown in
Fig. 2. This system has been observed experimentally to
exhibit a quasiperiodic transition to chaos. We ap-
plied the extended reverse recovery time model to this
system, as described below.

The coupled diode resonator system shown in Fig. 2
was described by the following set of differential equa-
tions:

l)
L = Vpcos8 V~ R(i~ +ip)

dt

Gl 2L = VpcosO V2 R(i, +i2 )
dt

dV)

dt

dV2

dO

dt

0, when diode 1 is conducting

i, /C„when diode l is nonconducting

0, when diode 2 is conducting

iz/C2, when diode 2 is nonconducting

(a) A diode will not enter the conducting state until the
forward voltage drop reaches VF from below.

Ip

/4

FIG. 2. Circuit diagram used to model the resistively coupled
diode resonator system.

where the drive voltage E(t)= Vpcos(cot ), and i, , V, , C,
and i 2, Vz, C2 are the current through, voltage across,
and reverse capacitance of diodes 1 and 2, respectively. L
and R are the inductances and resistance shown in Fig. 2.

The rules for deciding when the diodes are in the con-
ducting state were obtained from the model described in
Sec. II and are briefly listed below.

(b) A diode will continue in the conducting state for a
time w„after the current is driven through zero from the
forward to the reverse direction. The delay time r„„in
the nth cycle is determined by Eqs. (2) and (3) with k =2.
The same parameter values of a„a2,~, and I, were
chosen for each diode. The only difference in the diodes
was reflected by the difference in the capacitances C, and
C2 for the diodes in the nonconducting state.

The system of equations are piecewise linear and can
be solved analytically, but matching the boundary condi-
tions at the switching time for each diode is algebraically
very diScult. Instead, we found it more convenient to
solve them by numerical integration. We used a com-
bination of a fourth-order Runge-Kutta method and a
Hamming predictor-corrector method. The method was
checked by solving the single diode resonator problem
and comparing the results with those obtained by fitting
together the exact analytic solutions, as described in Ref.
3. We also did numerical checks on the method by using
only the slower Runge-Kutta method and comparing the
results.

As the numerical integration proceeds, the current and
voltage of each diode is monitored to determine when the
conducting state of each diode is to be changed. Each
time the state of a diode changes, the set of equations
used are changed accordingly and the integration process
restarted using the current and voltage values at the
switching time as initial conditions. The Runge-Kutta
method is used to start and stop the Hamming predictor
method, which is used between switching times. The pro-
cedure is straightforward, although tedious. The pro-
cedure was speeded up greatly by using a technique intro-
duced by Henon' to find quickly an accurate estimate of
the time at which the current goes through zero, and to
find the maximum forward current during each conduc-
tion cycle. For example, to get a precise estimate of the
time when the current i, goes through zero on the way to
shutting off, we first determine the time step t; where i,
first goes through zero. Then, the roles of i, and t are in-
terchanged, making i, the independent variable and t(i, )

a dependent variable, and the integration is then stepped
back in a single step b,i, =i, (t, )to the exact point .where
i j

=0 and the value of t at this point is determined. A
similar technique is used to obtain the peak forward
current during each conducting cycle for each diode.
The sequence of peak forward currents is saved for each
diode. Having found the time at which the forward
current reached zero for a particular diode, as described
above, the delay time r„is calculated using Eq. (3) and
the saved values of the peak forward currents. That
diode will shut off (and the equations will change) at time
~„after the forward current reaches zero, and the equa-
tions are integrated until the known shutoff time is
reached. If at shutoff time the current is still in the re-
vese direction, the integration is stopped and the equa-
tions are changed to reflect the fact that the diode has
shut off. The integration is restarted using the values of
all variables at shutoff time as the starting values. Once a
diode is off; its voltage drop is monitored until it reaches
the forward bias voltage VF. The Henon method is used
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again to obtain an estimate, in essentially one integration
step, of the time at which the voltage reached the for-
ward bias value. At this time the equations are changed
to reflect the fact that the diode has turned back on and
the integration restarted. And so the process proceeds
for each diode.

The values given the system parameters are discussed
in terms of reduced quantities defined as in Ref. 3 for the
single diode resonator. We define C=max(C„Cz),
co~= 1 /VLC, v=cu/coo, and Q =aioL/R. The value of Q
for the experimental system can be roughly measured. In
the case reported here, the coupling resistance A is about
3 kQ. For each diode resonator the inductance L used is
about 100 mH, and the measured resonant frequency is
around 50 kHz when the diodes are not conducting.
Thus the Q value is estimated to be about 11. We set
Q=10 for the simulation. The parameters used to deter-
mine the delay time r„were r =0 45(2i.r/coo)=0. 45To,
and I, =1.0V+/A. The weighting factors a& =0.25 and
a2=0.08 were used. The values of ak were smaller than
those used for the single diode resonator system because
larger values of L, R, and T (where T is the period of the

drive voltage) were used for the coupled diode resonator
system. We found that if we chose C, =C2 the simula-
tion had more symmetry than the measured system. We
found that C, /C2=1. 15 gave better agreement with the
results from the measured system.

The simulation of the resistively coupled diode resona-
tor system was carried out using the parameter values
given above and the sequences of peak forward currents
I, (n) and I2(n) were recorded for various values of the
reduced drive voltage Vo/VF. A comparison of the re-
sults with experimental measurements is given in Sec.
III 2.

2. Comparison with experiment

Over a range of drive frequencies, the response of the
rea1 and model resistively coupled diode resonator sys-
tems were found to show the same global behavior. As
the amplitude of the drive voltage is increased, at fixed
drive frequency, the response of the system is observed to
progress through a series of bifurcations. At low drive
voltage, the system starts with a periodic response at the

(a)

(b)

O

FIG. 3. Corresponding simulated (left) and measured (oscilloscope photographs on the right) Poincare sections formed by the peak
forward currents I2 vs I& {plotted in arbitrary units) for the coupled diode resonator system. The simulations contain 500 calculated
points. The drive voltages for the simulation, Vo/VF, and experimental systems, respectively, were (a) 4.65 and 2.078 V, „(b)5.25
and 3.082 V, „(c)5.55 and 3.296 V, „(d)5.95 and 3.747 V, „and(e) 6.50 and 4.833 V, , For (a) —(e), simulation: m/duo=1. 30; mea-
surements: drive frequency, f=56 kHZ and R =2940 fl. For {f)simulation: co/coo=1. 27, Vo/VF=5. 29, and measurements: f=524.
kHz, R =2964 0, and V=4.34 V, , All other parameters are constant and given in Sec. III 8 1.
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drive period. The response of the system is observed to
period double as the drive voltage is increased and then
undergo a Hopf bifurcation where a second frequency
spontaneously appears. Mode-locked states, where the
ratio of the two frequencies is rational, and quasiperiodic
states, where the ratio of the two frequencies is approxi-
mately irrational, are observed. As the drive voltage is
increased further, a transition to chaos occurs. Chaotic
bands, periodic windows, and, finally, reverse bifurca-
tions are all observed in both the real and simulated sys-
tems.

Figure 3 shows several Poincare sections formed by
plotting the peak forward currents I, (n) versus I2(n) at
several values of the drive voltage; all other parameters
remain fixed. The results obtained from the simulated
and real systems are displayed side by side. The parame-
ter values used for the simulation are those listed in Sec.
III 1. The drive frequency in the simulation was fixed at
co/coo=1. 30 for Fig. 3(a)—3(e), while the simulation drive
voltage ranged from Vo / VF =4.65 in Fig. 3(a) to
Vo/VF =6.50 for Fig. 3(e). Each plot of data calculated
from the simulation contains 500 points.

The corresponding measured Poincare sections in Fig.
3 are photographs taken directly from an oscilloscope
displaying the peak forward currents I, (n) versus I2(n),
using measurement techniques described in Ref. 8. The
measured Poincare sections shown in Fig. 3(a)—3(e) were
taken from a resistively coupled system with the coupling
resistance equal to 2940 0, drive frequency fixed at 56
kHz and drive voltage ranging from 2.078 V, , for Fig.
3(a) to 4.833 V, , for Fig. 3(e). The resemblance of the
Poincare sections obtained from the simulation to those
measured from the real system is striking, including
much of the detailed structure.

At a drive voltage much lower than that used for Fig.
3(a), the Poincare section is a single point. As the voltage
is increased the period doubles and the Poincare section
becomes two points. Then a Hopf bifurcation occurs
where the two points open into two circles. Figure 3(a)
was obtained at this point with the ratio of the spontane-
ous frequency to the drive frequency very close to a ra-
tional number, so that the Poincare section is a set of
points. Figure 3(b) was obtained when the system is near
the critical line for the quasiperiodic transition to chaos,
where the real system has been shown to display univer-
sal scaling for which the circle map is the paradigm. '

For drive voltages above the critical line, the Poincare
sections of the toroidal attractor break up. Mode locking
(periodicity) is observed and the mode-locked states are
observed to undergo a second Hopf bifurcation where
each point opens into a small circle. Figure 3(c) shows a
set of these cross sections of a torus which has just bro-
ken into chaos. Figure 3(d) is a chaotic state and Fig. 3(e)
a quasiperiodic state which occurs at high drive voltage.
Note that the relative position of the two cross sections of
the toroidal attractor shift in going from Figs. 3(d) to
3(e). This shift occurs suddenly as the drive voltage is
continuously increased. It should be noted that the sys-
tem is strongly hysteretic once the drive voltage exceeds
the critical value for the quasiperiodic transition to
chaos. For example, once the system jumps into the at-

tractor shown in Fig. 3(e), it remains in that state, if the
drive voltage is reduced, until the system finally jumps
back into the period-two attractor observed at low drive
voltage before the (first) Hopf bifurcation.

Finally, Fig. 3(f) demonstrates the particularly good
correspondence between the simulation and the real sys-
tem. Here the system was in a mode-locked period-14
(doubled period-7) state which has undergone a (second)
Hopf bifurcation, i.e., in the 3/14 region of the phase dia-
gram shown in Fig. 3 of Ref. 8. The size, shape, and po-
sition of the small circles are in remarkable agreement.

The rather detailed global agreement demonstrated
above leaves little doubt that the simulation model repro-
duces the main features of the dynamics of the real cou-
pled diode resonator system.

3. Calculation off(a) at the critical line

The spectrum of singularities of strength a, f(a), gives
a detailed description of the fractal nature of the entire
attractor and is expected theoretically to be a universal
function for the quasiperiodic route to chaos. ' We have
reported measurements of the f(a) spectrum for the real
coupled diode resonator system at the critical quasi-
periodic orbit. ' It is usual to test universal scaling by
using the quasiperiodic orbit with an irrational winding
number equal to the golden mean [in continued fraction
notation: (1111.. . ) =(&5—1)/2]. However, our sys-
tem does not respond at the golden-mean winding num-
ber, ' so instead we choose a closely related irrational
number (4111.. . ) =2/(7+&5) =0.216 542. . . at
which both the real and simulated coupled diode resona-
tor systems will respond. The critical quasiperiodic orbit
with the system's winding number 8'=0.216542 was lo-
cated by carefully adjusting the simulated drive voltage
Vo/VF and drive frequency cu/coo using methods similar
to those described in detail in Ref. 8. The values of the
other simulation parameters were the same as those used
to obtain the results reported in Sec. III B 2.

At the critical orbit the Poincare section formed by the
peak forward currents (I„I2), as described in Sec.
III B2, was obtained. Because the Hopf bifurcation and
quasiperiodicity is preceded by a period doubling, the
Poincare sections show two cross sections of a torus, i.e.,
two circlelike structures, as shown in Fig. 3. Points are
visited alternately on the two cross sections. The f(a)
spectrum was calculated from data collected from the
larger of these two cross sections, and in the discussion
which follows we are considering only the sequence of
peak currents (I, , I2 ) which lie on this distorted circle.

Figure 4 shows the Poincare section data from the
simulation and the oscilloscope photograph of the corre-
sponding real system. In calculating the simulated orbits,
the system of equations were first integrated for 800 drive
cycles, to assure transients have disappeared, then the
peak forward currents I, and I2 in the next 5634 drive
cycles were saved. This allowed us to collect a data set
for (I&,I2) on the large distorted circle consisting of 2817
points. The peak currents were determined by requiring
the derivative dI/dt=0 to within 10 " and, including
integration errors, we believe the accuracy in I, and Iz to
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FICx. 4. Corresponding simulated (top) and measured (oscil-
loscope photograph at the bottom) Poincare sections at the best
approximation to the critical orbit at the transition from quasi-
periodicity to chaos with winding number %=0.216 5424.

be of the order of a part in 10 or better.
The winding numbers on the simulated orbit were ob-

tained using the same method which we used for the real
system. ' The sequence of peak currents from one of
the diodes, say I, , is plotted versus 0 generated by the
simple twist map; 8„+,=(0„+Q)mod l. The value of 0
is adjusted until a thin line is obtained (for example, see
Fig. 5, Ref. 8). The winding number for the simulated or-
bit could be determined to an accuracy of 2X 10 . By
carefully adjusting the simulated drive voltage and drive
frequency, the best approximation of the critical orbit
with winding number 8'=0.216542 was obtained when

Vo / VF =5.228 52 and co/roc = 1.297 92. The resulting
Poincare section shown at the top of Fig. 4 1ooks very
similar to the corresponding Poincare section obtained
for the real system shown in Fig. 4 of Ref. 8. It is possi-
ble to adjust the simulation parameter values Q, C, /C2,

, a&, az, and I, to obtain an orbit with a shape more
similar to the measured orbit. However, adjusting these
parameters and then finding the critical orbit requires a
large amount of computer time. Instead, we adjusted the
coupling resistance, drive frequency, and voltage of the
real system and located the critical orbit with winding
number 8'=0.216 542, which gave a better match to the
shape of the simulated Poincare section. The oscillo-
scope photograph showing the corresponding Poincare
section obtained with R=3600 0, f=67.6 kHz, and
V=2.98 V, , is the bottom half of Fig. 4. The shape of
the simulated and real orbits are very similar.

FIG. 5. Calculated f(a) spectrum for the simulated orbit
shown at the top of Fig. 4. The solid curve is obtained from the
sine-circle map using the same winding number. The endpoints,
denoted by solid triangles, are determined theoretically and are
the same as found for the golden mean winding number. The
error bars are estimates of the accuracy of the f(a) calculation
as described in Ref. 8.

The f(a) spectrum was calculated using the same
methods used for the real system described in detail in
Ref. 8. The results are shown in Fig. 5. The solid curve
is obtained from the sine-circle map. The f(a) spectrum
strongly supports the experimental results ' and is in
good agreement with the theoretical conjecture. '

IV. SUMMARY

We have presented a detailed comparison of results ob-
tained from a simulation and those obtained from the
corresponding real system for both a driven single diode
resonator and for a driven coupled diode resonator sys-
tem. The excellent detailed global agreement obtained in
all cases suggests the extended reverse recovery time
model of the p-n junction, which was used in the simula-
tions, provides a good description of the essential physi-
cal mechanism responsible for the observed chaotic be-
havior in driven diode resonator systems. In particular,
we obtained the excellent agreement by letting the reverse
recovery time of the p-n-junction diode depend on the
peak forward current of several previous conducting cy-
cles. The success of this model suggests that driven diode
resonator systems exhibit chaotic behavior because of a
delay feedback effect related to the slow diffusion and
long lifetime of the excess minority carriers near the p-n
junction of the diode.
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