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We present a general formalism for the description of gas-kinetic effects of light in a single-

component gas, by elimination of rapid variables in the evolution equations. These equations con-

tain both Boltzmann terms describing velocity-changing collisions and radiative transitions. The

general result is a set of generalized Navier-Stokes equations for the density, the temperature, and

the hydrodynamic velocity. The effects of the incident radiation on the transport properties of the

gas are illustrated by deriving explicit transport equations in a simple model case. This shows that
both the intensity and the intensity gradient serve as a thermodynamic force.

I. INTRODUCTION

Nearly resonant light scattering can modify the veloci-
ty distribution of gas particles. This modification arises
provided that the excitation rate depends on the particle
velocity, and that the gas-kinetic cross sections are
different for the two internal states involved in the reso-
nance transition. The modified velocity distribution may
cause a substantial change in the macroscopic state of the
gas and its transport properties.

The most studied manifestation of light-induced
modification of the velocity distribution is light-induced
drift. This effect may occur when a vapor, immersed in a
buffer gas, is radiatively excited in a velocity-selective
way. ' Since usually excited particles have larger cross
sections, leading to a lo~er mobility in the buffer gas, the
net result of velocity-selective excitation is a lower mobil-
ity of the selected velocity group. The optically active
particles may then obtain a nonvanishing average veloci-
ty. For appreciable optical thickness, this effect of light-
induced drift may cause a very steep variation of the par-
ticle density in the region where the intensity decreases
along the propagation direction of the light. For a drift
velocity in the propagation direction, the light can
effectively sweep the particles towards the dark end of the
cell. This effect of the optical piston has been observed
and analyzed in detail.

When the density of the buffer gas is much higher than
the density of active particles, the equations of motion for
the velocity distributions of the states of the active parti-
cles are linear, and the description of light-induced drift
is relatively simple. ' The buffer gas is then a heat bath,
which may be considered in thermal equilibrium at all
times. During the rapid local evolution of the velocity
distribution due to collisions and radiative transitions,
the active-particle density is the only conserved quantity.
Momentum and kinetic energy of these particles is rapid-
ly exchanged with the buffer gas.

The situation is considerably more complex for a pure
(single-component) gas irradiated by nearly resonant
light. The combined action of velocity-dependent radia-

tive excitation and state-dependent collision rates can
again lead to strong deviation of the velocity distribution
from a Maxwellian. However, due to momentum conser-
vation, the average velocity cannot be modified. In the
absence of inelastic collisions, also the kinetic energy is
conserved, and the effective translational temperature
remains unchanged. Nevertheless, the modified velocity
distribution can yield a nonvanishing heat flow and pres-
sure anisotropy, so that the radiation field can induce
changes in the thermodynamic and hydrodynamic state
of the system.

These types of changes in the macroscopic state of a
pure gas have been discussed in a few papers. " The
derivations were based upon a special model description
for the collisions. It was demonstrated that the incident
light can induce stationary temperature inhomogeneities
and particle fluxes, even though no temperature or densi-
ty gradients were externally imposed.

The radiation field not only modifies the steady state of
the gas, but also the decay of fluctuations around this
steady state. Therefore we may expect a change in the
transport properties of the gas. For a given propagation
direction of the light, the usual spherical symmetry of the
microscopic evolution is reduced to a cylindrical symme-
try. Hence we may expect a difference in transverse and
longitudinal components of the transport coefficients.
Furthermore the general rule that the response to a ther-
modynamic force must have the same symmetry charac-
ter as the force is now much less restrictive than in stan-
dard gas-kinetic theory. For instance, the response to an
imposed temperature gradient can be a heat flow, a parti-
cle flow, and a contribution to the pressure anisotropy.

The first goal of the present paper is to present a gen-
eral derivation of macroscopic equations of motion for a
pure gas in a nearly resonant radiation field. We start
from the microscopic equations for the velocity-
dependent density matrix for the internal state of the par-
ticles. These equations add radiative transitions to the
Boltzmann equation. No restrictive assumptions are
made for the Bo1tzmann operator at this point. We dis-
tinguish the rapid evolution, due to collisions and radia-
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tive transitions and the slow evolution resulting from
macroscopic gradients. By eliminating the rapid vari-
ables, we arrive at equations for the quantities that do not
vary on the rapid time scale. These quantities, the local
density, the hydrodynamic velocity, and the gas-kinetic
temperature correspond to the conservation of the parti-
cle number, the momentum, and the kinetic energy. The
method is a generalization of gas-kinetic methods for
deriving the Navier-Stokes equations from the Boltzmann
equation. The original gas-kinetic treatment, which is
generally known as the Chapman-Enskog method, ' is in
fact a prototype of a general scheme for elimination of
fast variables. ' ' In the present case of an irradiated
system the steady state with respect to the rapid time
scale is not a local Maxwell distribution. In fact, the
steady-state distribution cannot be described exactly, ex-
cept in special model cases. Nevertheless, the general
solution scheme gives new insight in the structure of the
macroscopic equations, and in the classification of possi-
ble light-induced gas-kinetic effects. For illustrative pur-
poses we shall discuss several cases explicitly.

II. STRUCTURE OF EVOLUTION EQUATIONS

We consider a pure gas irradiated by nearly resonant
light. The formalism we are presenting does not require
any specific assumption as to the number of degenerate
substates or the coherence of the radiation. However, for
notational simplicity we shall give explicit equations for
the case that the radiation field with a bandwidth that is
larger than the homogeneous linewidth couples the non-
degenerate ground state ~g ) to a nondegenerate excited
state ~e ). Then the stimulated radiative transitions may
be described by a velocity-dependent transition rate
B(c,r), which is proportional to the local field intensity
I(r) at position r. Coherence between the two internal
states may then be ignored. The microscopic state of the
gas is described by the two distribution function f, (c, r, t)

and f (c, r, t ), defined by requiring that f (c,r, t)dc dr is
the number of particles at time t in the ground state with
position in d r and velocity within d c. The evolution
equations for f, and fs are Boltzmann-type equations
with radiative transitions added, and we write

where a and b are functions of velocity. [The dependence
on position r and time t has been suppressed in (2.2) for
simplicity. ] An elastic collision is fully specified by the
velocities c and c, of the two colliding particles before the
collision, and the direction u'=u'/u' of the relative ve-
locity

ll =C C] (2.3)

(2.4)

Obviously, the radiative terms in (2.1) are linear in F, and
the collisional terms are bilinear. We formally express
(2.1) in the form

F= —c.VF—+ —(R [F]+C [F,F]),a 1

Bt E
(2.5)

where the radiation operator R and the collisional opera-
tor C are defined by the radiative and the collisional
terms in (2.1). The small expansion parameter e indicates
that the radiative and collisional processes occur at a
time scale that is rapid compared with the effects of the
macroscopic gradients, expressed by the free-flow term. '

We also introduce the total distribution function

after the collision. Hence the velocities c', c', , and the rel-
ative velocity u in (2.2) should be considered as functions
of the independent variables c, c&, and u'. The quantity
o, (u, u') is the differential cross section for an elastic col-
lision between a particie in state i and a particle in state j,
with relative velocity u and u' before and after the col-
lision. The two Boltzmann terms in each of the two
equations (2.1) indicate that a particle in any one of the
two internal states may suffer a velocity-changing col-
lision with particles in either state. Since we allow the
cross sections o.„,o, =o. „and o. to be different, the
collisional evolution of the distribution functions f, and
f is the same as for a mixture of two species. The radia-
tive transitions may be regarded as inducing a
monomolecular reaction with a velocity-dependent rate.

We can conveniently summarize the structure of the
evolution equations (2. 1) by introducing the two-vector
function

f, (c, r, t) = —cVf, (c, r, t)+—B(c,r)f (c, r, t)
i f(c,r, t)=f, (c, r, t)+f (c, r, t) (2.6)

—[4 +B(c,r)]f, (c, r, t )

+J„[f,f, 1+J„[f,f, ]

a—fg(c, r, t )
= —c.Vfg(c, r, t ) B(c,r)f (c,r, t )—

+[A +B(c,r)]f, (c, r, t)

+J„[f,,f, l+J„[f,f, ] (2.1)

X ucr, , (u, u') (2.2)

with 3 the spontaneous-decay rate. The Boltzmann
operators J;& (i,j =e,g) are bilinear functionals of the
standard form'

I, [a,b]= Idc, du'[a(c')b(cI) a(c)b(c, )]—

for the particles, irrespective of their state.
The separation of the evolution equation in a free-flow

term, a linear radiative term, and a bilinear collision term
applies, irrespective of the number of the levels coupled
by radiative transitions, and for arbitrary spectral and
coherence properties of the radiation field.

III. CONSERVED QUANTITIES

On the rapid time scale, the combined action of radia-
tion and collisions drives F to a steady state. This state is
fully determined by specifying the values of those quanti-
ties that are conserved under the action of R +C. Then
on the slow macroscopic time scale, the free-flow term
modifies the value of these conserved quantities, while the
operator R +C continues to drive F to its steady state.
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The result is that F follows these slow changes while
remaining close to the steady state pertaining to the
values of these locally conserved quantities. This is the
picture of the Chapman-Enskog method of kinetic
theory.

Radiative transitions and collisions have as conserved
quantities the number of particles, and the momentum
and kinetic energy of the particles. Here we use explicitly
that inelastic collisions may be ignored. These conserva-
tion laws imply that the number density n, the hydro-
dynamic velocity v and the temperature T can change
only due to macroscopic flows, resulting from the free-
(low term in (2.5). These quantities are expressed in the
total distribution function f in the usual way, '- and we
write

n(r, t)= Jdcf(c, r, t),
v(r, t)= f dccf(c, r, t)/n(r, t),
2 (r, t)= Jdc —,'m[c v(r, t—)] f(c,r, t)/[ —',n(r, t)k],

(3.1)

n v= —n(v V—)v ——V.P,
c}t m

(3.2)

—,'nk — T= ——'nkv. VT —P:Vv —V q .
a

Here q is the heat flow, defined as

q(r, t)= J dc[c —v(r, t)]—,'m[c —v(r, t)] f(c,r, t) (3.3)

P(r, t)= fdcm[c —v(r, t)][c—v(r, t)]f(c,r, t) (3.4)

is the pressure tensor.
Equations (3.2) are an exact result from the evolution

equations (2.1), or their generalization for general spec-
tral properties of the radiation and level degeneracies.
They demonstrate that our evolution of n, v, and T is
determined by macroscopic gradients only, so that it
takes place exclusively on the slow time scale. The first
equation of Eqs. (3.2) is just the continuity equation for
the particle density, but the equation for v and T involve
the pressure tensor P and the heat flow q. The pressure
tensor P can be separated as usual in its isotropic and its
anisotropic part, according to

where k is Boltzmann's constant. Since only the free-flow
term in (2.5) can contribute to the rate of change of these
quantities, the conservation laws take the same form as in
standard gas-kinetic theory, ' and one directly derives

a—n = —v Vn —nV. v,at

In order to turn Eqs. (3.2) into a closed set of equations
for n, v, and T, we have to express the quantities q and II
in terms of n, v, and T. This is what the Chapman-
Enskog method achieves in standard gas-kinetic theory.
In Sec. IV we generalize this method for the situation of
an irradiated gas.

IV. GENERALIZED NA VIER-STOKES
EQUATIONS

F=FO+eF]+. . . (4.1)

we notice that the lowest-order term in (2.5) has the order—1. This gives an equation for Fo, in the form

0=R[Fo]+C[Fo,Fo] . (4.2)

Even this lowest-order equation can only be solved ex-
plicitly for special model systems. Here we notice that
for given local values of n(r), v(r), and T(r), there is a
unique solution Fo(c,r). This follows from the assump-
tion that the particle number, the momentum, and the
energy are the only conserved quantities for the com-
bined action of radiation and collisions. Obviously, this
solution will depend in addition on the local intensity I(r)
of the radiation field.

There are two situations where the solution of (4.2) is
simple. First, when the collisional cross sections do not
depend on the internal state of the collision partners, we
may substitute one single Boltzmann term J for each J,
in (2.1). Adding the two equations that are contained in
the two-vector equation (4.2) then leads to the simple
equation

J[fo fo]=0 (4.3)

for the total distribution function to zeroth order in e.
This equation has the unique solution

3/2

fo(c, r) =n(r)
2~k T(r

In this section we derive formal expressions for the
heat flow q and the pressure tensor P, to first order in the
expansion parameter e. We shall focus our attention on
the formal structure of these expressions, rather than on
their closed analytical form. If we substitute these results
in the conservation equations (3.2), we obtain equations
of motion for n, v, and T. The driving forces in these
equations are not only the gradients of these quantities,
but also the strength and the gradient of the intensity of
the radiation field.

Our starting point is the evolution equation (2.5) for
the pair of distribution functions f and f, . If we expand

P(r, t ) =p (r, t )I+ II(t, t ),
where I is the unit tensor and

(3.5) XexpI —
—,'m[c —v(r)] /kT(r)I

=n W(c), (4.4)

p(r, t)=n(r, t)kT(r, t) =
—,'TrP(r, t) (3.6)

is the isotropic pressure. The remaining part H is the
pressure anisotropy, which is a symmetric tensor with
trace zero.

which is the Maxwell-Bolt zmann distribution at the
specified density, average velocity, and temperature.

The second situation where the solution for fo follow-
ing from (4.2) is trivial occurs when the stimulated transi-
tion rate B in (2.1) does not depend on the velocity c.
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q»(r ) =q»(r )z,

Il»(r) = G»(r)(xx+yy —2z&),
(4.5)

where x, y, and z denote unit vectors in the three Carte-
sian directions. The two quantities qp and Gp depend on

Then it is obvious that in the solution to (4.2), both f,, »

and f, are proportional to the Maxwell distribution f„
with the given average velocity v and temperature T.
The Boltzmann operators vanish in this case, and the ra-
tio of the partial densities n, and n is simply equal to
B/( 3 +B). In these two simple cases, the zeroth-order
heat flow qp and the pressure anisotropy Hp vanish. Sub-
stituting these zero-order values in the conservation laws
(3.2) gives the standard Euler equations. '

The zeroth-order distribution f» differs from the
Maxwell distribution n 8'only when the Boltzmann terms
J, in (2. 1) are not identical, and when the stimulated
transition rate B depends on the velocity. In this general
case of state-dependent collision cross sections and
velocity-dependent excitation, the unique solution of (4.2)
for given n, v, and T gives the total velocity distribution
f„(c,r) to zeroth order. This in turn determines the

zeroth-order heat flow qp, and pressure anisotropy Hp.
When the light has a propagation direction in the z direc-
tion, the stimulated transition rate B can only depend on
c, . For symmetry reasons qp and Hp must then be invari-
ant for rotations about the z axis, so that we may write

r only through the density n, the hydronamic velocity v,
the temperature T, and the intensity I. Explicit expres-
sions for q»(n, v, T,I ) and G»(n, v, T, I) can only be ob-
tained in special model cases.

Now we turn to the next order in e of (2.5). The
zeroth-order contribution is

BFp c.V—F»+R [F, ]+C[F,, F»]+C[F»,F, ] . (4.6)
Bt

The gradient may be expressed as

BF dF BF BF
V'Fp=Vn +Vv +V T +VI

Bn Bv 0T BI
(4.7)

Likewise, for a given stationary intensity distribution the
time derivative in (4.6) is

BFp

fjt

(jn ~Fo + +
at Vn at av at aT

(4.8)

To zeroth order, we may substitute for the time deriva-
tives of n, v and T in (4.8) the conservation laws (3.2) to
this same order. This means that we have to substitute
for q and P in (3.2) their zeroth order in e, so that we
may use the zeroth-order terms (4.5). After substituting
(4.7) and (4.8) in (4.6), and eliminating the time deriva-
tives by using the zeroth-order form of the conservation
laws (3.2), we obtain the equation

BFp BFp 1[(c—v) Vn —n V.v]+ [(c—v) V]v — V.P»
Bn Bv nm

BFp 2 BF+ (c—v).VT — (P».Vv+V. q») + c.VI=R[F, ]+C[F,,F„]+C[F„,F, ] .0T 3nk " BI
(4.9)

The zeroth-order pressure tensor Pp is obtained by substi-
tuting II» in (3.5). The right-hand side of Eq. (4.9) is a
linear expression in the first-order correction F, . The
left-hand side of (4.9) is just a rewrite of BF»/r}t+ c VF».
This implies that this left-hand side gives zero when it is
multiplied with 1, c, or —,'mc, and subsequently integrat-
ed over the velocity and summed over the two com-
ponents. This can be checked explicitly. The solution of
(4.9) for F, is unique with the additional requirement that
it gives a vanishing contribution to n, v, and T.

We may conclude that Eq. (4.9) has a single unique
solution for F, , which is determined by n, v, T, I, and
their gradients. From F1 we can in turn determine the
first-order contributions q, and H, to the heat flow and
the pressure anisotropy. Substituting qp+q, and Hp+ H]
for q and II in the conservation laws (3.2) gives a closed
set of evolution equations for n, v, and T. This set gen-
eralizes the Navier-Stokes equations.

In order to illustrate the structure of these generalized
hydrodynamic equations we discuss several simple limit-
ing cases in Sec. VI.

V. SYMMETRY CONSIDERATIONS

We have seen that Eq. (4.9) determines in principle the
first-order contributions q, and II, to the heat flux and
the pressure anisotropy in terms of the gradients of n, v,
T, and I This equatio. n (4.9) generalizes a basic result of
standard gas-kinetic theory, where the radiative term R is
omitted, and Fp may be replaced by the general Maxwel-
lian f», as given in (4.4). Equation (4.9) then takes the
form12, 15

m
f» k~

1 2 5kT—(c—v) —— (c—v) VT/T
2 2 m

+ [(c—v)(c —v) —
—,'(c —v) I]:Vv

=J[f~,f»]+J[f»,fi] .

This equation determines f, completely, since we have
the additional requirement that f, gives a negligible con-
tribution to n, v, and T.
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q&
= —RENT, (5.2)

The Boltzmann collision operator J is isotropic in the
space of functions of c—v, for the given Maxwellian
fo = n W. Therefore this operator cannot change the rank
of an irreducible tensor with respect to the group O(3).
It is this feature which causes the heat flow q to be pro-
portional to the temperature gradient, so that'

dynamic forces. The total number of transport
coefficients for the scalar parts is thus equal to 15.

Furthermore, the heat flux q, and the pressure anisot-
ropy II, have each a vector part, transforming as a two-
dimensional vector in the xy plane under rotation about
the z axis, and reflection about any plane through the z
axis. These vector parts with respect to the group O(2)
are

with X the heat conductivity. Likewise, the tensor S with
components (q, ,q, y), (I1, II, ) . (5.6)

S;, = —,'(V;U, +V, u, ) ——,'5;JV v (5.3)

is the only thermodynamic force in (5.1) which is an irre-
ducible (symmetric traceless) tensor of rank 2, so that the
pressure anisotropy II, must be proportional to S, and we
write'

II, = —2(S, (5.4)

with g the viscosity. Substituting these two relations (5.2)
and (5.3) in (3.2) gives the common Navier-Stokes equa-
tions in terms of the two transport coefficients k and g.

In the present case of an irradiated gas, the full spheri-
cal symmetry is reduced to a cylindrical symmetry with
the propagation direction z of the light as axis of symme-
try. The right-hand side of (4.9) may be viewed as a
linear operator acting on F&. Now this operator can cou-
ple only irreducible tensors with respect to the group
O(2). ' Generalizing the considerations leading to the
proportionalities (5.2) and (5.4) now reveals that the sca-
lar part of q& and II& with respect to the group O(2) is a
linear combination of the scalar parts of the gradients of
n, v, T, and I. The scalar parts of q, and II, are

The gradients of n, v, T, and I have five vector parts, as
indicated in Table I. Therefore the number of transport
coefficients relating the vector fluxes (5.6) to these vector
forces is equal to 10.

Finally, the pressure anisotropy has a part transform-
ing under the group 0 (2) as an irreducible tensor of rank
2, which is basically a symmetric traceless tensor in the
xy plane. ' ' This tensor is determined by the two com-
ponents

(5.7)

The gradient forces contain a single second-rank tensor,
as given in Table I. Hence, this tensor part (5.7) is deter-
mined by a single additional transport coefficient.

We conclude that in the general case, the Navier-
Stokes equation of an irradiated gas may require a total
number of 26 transport coefficients. Of course, in practi-
cal cases many of these will be negligible, and in special
model cases most may be zero. Not only does the light
intensity I create a zeroth-order contribution qo and IIO
to the heat flux and the pressure anisotropy, but also the
intensity gradient VI acts as a thermodynamic force in a
similar fashion as the gradients of n, v, and T.

IT& IT] + II& yy
(5.5)

VI. STRONG VELOCITY SELECTION

TABLE I. List of scalars, vectors, and second-rank tensors
that can be composed from the gradients of density, velocity,
temperature, and intensity.

Scalars Vectors Tensor

Bn

Bz
Bn Bn

Bx By

BT
Bz

BT BT
Bx By

BI
Bz

BI BI
Bx By

BU„Bv Bv, Bv+
Bx By' By

Bv

Bz

BU Bv

Bx' By

Bv Bv++
Bx By

BU BU

Bz Bz

The scalar parts of the gradients are given in Table I. It
is easily seen that there are five scalars in these thermo- In this section we derive explicit expressions for the

heat flux q and the pressure anisotropy II along the
lines of Sec. IV, in the special case that only a narrow ve-
locity group is excited by the radiation. This implies that
the fraction of excited particles is always small, even in
the presence of saturation. Thus we assume that the exci-
tation rate B(c) differs from zero only when c, is near the
Doppler-selected velocity co =(coL —coo)/kl, with coL the
central frequency of the radiation, mo the transition fre-
quency of the particles, and kL the wave number. Since
particles can only be excited within this narrow group, it
is natural to expect that the distribution functions f, and

f contain a narrow structure around c, =co. Since the
fraction of excited atoms is small, an additional expan-
sion in this fraction is justified. Furthermore, we approx-
imate the collision operator by assuming that an excited
particle with a selected velocity recovers the Maxwell-
Boltzmann distribution after a single collision, and that
these thermalizing collisions occur at a rate ~, . The cor-
responding rate for a ground-state particle with a light-
selected velocity is ~ . Note that these collision rates ~,
and ~ refer to collisions of an excited or ground-stateg
particle with collision partners that are predominantly in
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the ground state. We write the two velocity distributions
in the form

f, (c)=n W(c)[y„(c)+y,(c)]

qo= f dc —,'m(c —v) (c—v)n W(c)(1+yo+cpo)

= f dc[ ,'m—(c—v)' ——', kT](c—v)nWyo, (6.6)

f (c)=n W(c)[1 +(ps(c) +yg(c)],
(6.1)

A. Zeroth order

where n W is defined in (4.4). The factors y, and y are
assumed to differ from zero exclusively in the narrow ve-
locity region where the excitation rate B(c) is nonzero,
and the factors y, and cp denote additional smooth
corrections. The sharp factors g, and g describe basi-
cally the Bennett peak and hole, corresponding to the
particles that have not yet suffered a collision since their
last radiative transition. The sharp factors y have an ap-
preciable strength within the selected velocity group
only, whereas the smooth factors y are nonzero but small
over the full width of the Maxwell distribution. The con-
tribution to Maxwellian averages, such as macroscopic
fluxes, remains small for both g and y.

go= —(Ir, —ir )B/N (6.7)

in the absorption rate. If we call U the number of photon
absorptions per unit time and per unit volume, then the
balance of loss and gain of excited particles in the sharp
distribution g,p gives

( 3+1~, ) f den W(c)y, „(c)= U. (6.8)

With (6.7), this equality gives

dcnWcypc = — U,3+~, (6.9)

with

for go of the form (6.5), and when g„+y~ do not modify
n, v, and T.

For later use it is convenient to express the strength of
the sharp structure

The equation (4.2) for the zeroth-order terms gives
equations for the factors cp, p, y p and g,p, g p. These
equations can only hold if the terms containing sharp fac-
tors compensate each other. This gives the two equations

0= —(A+B+x, )y,o+B(1+y o),
0=( A+B)y, o

—(a. +B)y o B. — (6.2)

Here we used the fact that the only contribution from the
Boltzmann operators yielding a sharp contribution is the
loss terms, which describes the removal of particles from
the selected velocity group. According to the strong-
collision assumption, particles entering a collision with a
velocity in the narrow selected group will leave the col-
lision with a smooth distribution. Note that we have
neglected the smooth contribution within the selected
group. The solution of (6.2) is

Ke /Cg

a (6.10)

3+v ( —'mco ——'kT)coU .
e

(6.1 1)

The zeroth-order pressure anisotropy Hp is evaluated
in the same fashion. The result takes the form given in
(4.5), with

the relative difference of collision rates.
With (6.6) and (6.9) we easily obtain an expression for

the zeroth-order heat flux qp. The narrow structure gp
may be treated as a 5 peak at c, =cp, with strength deter-
mined by (6.9). The hydrodynamic velocity v is assumed
small compared to typical thermal velocities, so that v

may be ignored in (6.6). We find that the zeroth-order
heat flux qo takes the form given in (4.5) with

y, p=vgB/cV, y p= —w, B/cV, (6.3) Go= —', (mco —kT)U .
w+~, -'

(6.12)

with

N=( A+2B+Ir, )ir +B(~,—~ ) . (6.4)

cp =a+P (c—v)+y —,'m(c —v) (6.5)

where the parameters a, P, and y are determined by the
requirement that n W(go+go) yields a vanishing contri-
bution to n, v, and T. The heat flux to zeroth order may
then be evaluated from the identity

Furthermore, the zeroth-order terms f,o and f o also
contain smooth correction factors cp, p and g p. These
smooth factors are needed to compensate for
modifications in n, v, and T that the sharp factors y alone
would create. In line with the assumption of strong col-
lisions, we assume that the smooth factor yp=y, p+y p

has the form

In order to appreciate these results, one should realize
that their variation with the light frequency coL is deter-
mined by the selected velocity component cp. The ab-
sorption rate U as a function of ~1 is basically propor-
tional to the Doppler absorption profile.

Results of the same structure as (6.11) and (6.12) were
obtained by Folin et al. on the basis of a rather special
scaling assumption of the potentials. Measurements of
the light-induced pressure difference IT„—IT, = —3Gp
have been reported for the case of CH3F. '"

The qualitative behavior of qp and Gp as a function of
the light frequency coL is illustrated in Fig. l. Assuming
that a )0 (or ~,) i~ ), the heat flux is in the propagation
direction for a light frequency cuI just above the reso-
nance frequency. When coL is more than a few Doppler
widths above resonance, the heat flux changes sign. The
pressure in the x direction is changed by an amount Gp.
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we consider g&=g, &+y &. For simplicity we consider
only the common case that K, and Kg differ slightly, so
that a « 1. Then we find to a good approximation

X]
Kg

8+o
c VI

Gjr
(6.14)

I I I I I I I I I i I I I

This pressure change is negative for cuL near resonance,
and it becomes positive for excitation in the Doppler
wings.

B. First order

Now we turn to the first-order results, which are for-
mally determined by (4.9). In the light of the approxima-
tions mentioned above, we treat as small parameters the
gradient of n, v, T, and I, the smooth factors yo, and the
average of the sharp factors go, and we consider the first
order in these parameters. First we consider the sharp
contribution to (4.9). For simplicity we assume that the
gradients of n, v, and T give contributions which are
small compared with the effect of the intensity gradient.
This is a realistic assumption in practice, since the hydro-
dynamic quantities usually vary little over the dimensions
of the system, whereas the intensity can show drastic
variations over small distances at the edge of the beam.
Therefore, the only first-order contribution to the sharp
structure from the left-hand side is due to the term pro-
portional to BFo /BI. On the right-hand side of (4.9), the
sharp terms may be treated in the same way as in (6.2).
The sharp structures g, in F,, are damped due to col-
lisions with particles in the Fo distribution, which gives
rise to damping rates K, and K . The damping due to
partners in the F, distribution may be ignored in the
present model, since F, has a vanishing contribution to
the density. With these arguments, the equations deter-
mining y, &

and g &
are obtained as

~+eO c.VI = —( 3 +8+a, )y, i+By, ,ar
~X 0 c-VI=(2+8)y„—(8+» )y s&

.
(6.13)

These equations are easily solved for g, ~
and g, . Since

we are only interested in the total velocity distribution,

FICx. 1. Zeroth-order heat Aux qo and pressure anisotropy Go
in arbitrary units, as a function of the reduced frequency detun-
ing in units of the Doppler width 6=(ct)g ~o)lkL&(kTlm).
These plots represent Eqs. (6.11) and (6.12).

aU aT
qi = co(m o 3 T)

~ (A+a, 2 az az
(6.15)

For the components normal to the propagation direction
we find

a kT q BU BT
(A+, ) 2 8 8

(6.16)

and a similar equation for q& . This shows that gradients
both of the temperature and of the intensity (or the ab-
sorption rate) serve as a thermodynamic force creating a
heat flux. For a light frequency cuL near resonance, the
gradients of U normal to the propagation direction are
most effective in creating a heat Aux, and for a frequency
coL in the Doppler wings, the parallel gradient is more
important. The intensity-gradient contributions to the
heat Aux are sketched in Fig. 2.

In the same way we may evaluate the first-order pres-
sure anisotropy. We can separate II in the form

B,= II,„—2gS, (6.17)

where II„ is the radiative contribution due to the sharp
structure (6.14) and the last term is the usual contribution
due to the velocity gradients, as specified in (5.4). The ra-
diative contribution has diagonal elements, which are
given by

This sharp structure must be compensated by a corre-
sponding smooth factor, of the form (6.5), in order to
compensate for changes in n, v, and T. These factors are
accounted for by evaluating the heat flux according to
Eq. (6.6).

Finally we consider the smooth factor arising from the
gradients in n, v, and T. Since each term on the left-hand
side of (4.9) contains a gradient, we must ignore the con-
tribution from y, o and y 0. Hence, we take a Maxwellian
for Fo. Furthermore, we may neglect IIo and qo in (4.9),
since these quantities are also small. On the right-hand
side of (4.9), we ignore the difference in cross sections for
particles in different states, since the fraction of excited
particles is small. Hence, by adding the two equations
implicit in the two-vector equation (4.9), we obtain exact-
ly the form (5.1). The first-order smooth correction is
therefore equal to the first-order correction to the
Maxwellian in standard gas kinetics for a simple gas
without a radiation field. The additional contribution to
the heat flux and the pressure anisotropy due to the gra-
dient of n, v, and T are therefore given by (5.2) and (5.4),
with X and g the heat conductivity and the viscosity of
the gas in the absence of light.

With these ingredients we can directly evaluate q& and
II, . We obtain for the heat flux in the propagation direc-
tion
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qlz

q)x

I I I I I ) I I I I I I

—2 0 2

I

—2 0 2 4

FIQ. 2. ( omponents of the first-order heat flux and pressure anisotropy in arbitrary units. The plots correspond to Eqs. (6.15),

(6.19), (6.16), and (6.20).

l~]r xx 1r yy T ]r, zz =G]

with

(6.18)

G&=
e 1—(kT —mco)co

BU
(6.19)

a. (3+1~, ) 3 0 0

Furthermore, II,„has nonvanishing off-diagonal com-
ponents

(6.20)

q=q0+q& (6.21)

(6.22)

and a similar expression holds for H] yz The remaining
component H, „vanishes. These radiative contribu-
tions to the pressure anisotropy are sketched in Fig. 2.

We find that intensity gradients cause pressure aniso-
tropies as well as a heat flux. A gradient in the propaga-
tion direction gives a contribution to the heat flux in this
same direction, and an axially symmetric pressure anisot-
ropy. An intensity gradient normal to the propagation
direction creates a heat flow (6.16) in this same direction,
and an off-diagonal component in the pressure tensor, as
given in (6.20). Note that these intensity-gradient contri-
butions to the heat flux are even in the detuning coL —co0,

whereas contributions to the pressure tensor are odd in
the detuning.

Effects of the intensity gradients on thermodynamic
fluxes were discussed before in Refs. 10 and 11. Our
derivation is based, however, on a systematic expansion
of the evolution equation for the velocity distributions F.
Therefore, our method allows generalization to other sit-
uations than the case of strong velocity selection and
strong collisions.

Now that we have obtained explicit expressions for q
and H up to first order, we can substitute

into the conservation laws (3.2). The result is an explicit
form of generalized Navier-Stokes equations. The evolu-
tion of n, v, and T is determined by these equations,
where the intensity and its gradients now serve as addi-
tional thermodynamic forces.

C. Simple solutions

2A, (A+~, )

2
C0

X U(x, y) (mco —kTO)(z —zo)

—c0(mc0 —3kT) + T0, (6.23)

with T0 and z0 integration constants. We assumed that
the temperature variations remain small. When the cell
is surrounded by walls that are kept at a constant temper-
ature T, a steady-state heat flux will arise, as described by
(6.11), (6.15), and (6.16).

Analogous effects arise due to the light-induced contri-
butions to the pressure anisotropy. When light passes
through an open tube embedded in a larger vessel, the
pressure at the open ends is constant. The diagonal part

A number of solutions of the equations of motion can
be easily characterized. First we consider the heat flux
and the steady-state temperature. When a closed cell is
surrounded by adiabatic walls, no heat can leak out of the
cell. When a light beam passes through the cell, a light-
induced heat flow will arise, that builds up temperature
differences. In the steady state, the total heat flux will
usually disappear. Hence the sum of (6.11) and (6.15) will
be zero and also (6.16) must vanish. For a light beam
with a given spatial intensity profile, and a negligible in-
tensity decrease in the propagation direction, the temper-
ature will vary linearly in the z direction, and the temper-
ature variation in the normal direction is proportional to
the intensity profile. We find
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of the pressure tensor as described by Go and G&, Eqs.
(6.12) and (6.19) will not afFect the hydrodynamic velocity
in the propagation direction, at least when the intensity
does not vary in this direction. Of course, the intensity
variations over the cross sections of the cell give rise to
pressure gradients in this direction, which will lead to a
density profile in the steady state. The pressure on the
tube wall is therefore modified by the light, A more in-
teresting effect arises from the off-diagonal components in
H, created by the intensity profile. These components are
given in (6.20). In the steady state and for zero pressure
difference at the ends of the tube the total off-diagonal
components of H& must vanish, since the net force in the
z direction on a volume element must be zero. Hence, the
transverse gradient of the component U, of the hydro-
dynamic velocity is proportional to the transverse gra-
dient of U. We obtain from (6.17) and (6.20)

v, (x,y)= kTcoU(x, y)+vo .
Kg 3+K (6.24)

The integration constant Uo is determined by the wall
properties. This effect of viscous flow, already predicted
in Refs. 10 and 11, has recently been observed experimen-
tally in CH3F. ' The net flow of particles induced by
light in a simple gas may be understood by noting that in
each point in the gas, the ground-state particles have
suffered their last collision on a further distance than the
excited particles, since the ground-state particles have a
larger mean free path. In the presence of an intensity
gradient, this leads to a noncompensating influx of
momentum, and thereby to a force. In a way, the effect is
analogous to light-induced drift, where now the
momentum-absorbing role of the buffer gas is taken over
by neighboring layers in the gas with a different intensity.

In general, also the diagonal terms in the pressure an-
isotropy II can give rise to steady-state drift velocities in
the absence of external pressure differences. When a tube
is oriented in a direction that is not parallel to the propa-
gation direction of the light, these diagonal elements give
stresses along the tube axis, which will lead to viscous
flow.

VII. CONCLUSIONS

We present a general formalism leading to evolution
equations for the density n, the temperature T, and the
hydrodynamic velocity v of a single-component gas in a
nearly resonant radiation field. The method consists of
elimination of the rapid variables, which are affected by
collisions and radiative transitions. It may be viewed as a
generalization of the Chapman-Enskog technique. ' ' "
The velocity distributions of the two states involved in
the radiative transition are expanded in a parameter of
the order of the mean free path divided by a typical mac-
roscopic distance. The zeroth and first order are deter-
mined, respectively, by (4.2) and (4.9). These distribu-
tions determine the heat flux q and the pressure anisotro-
py II in terms of n, v, T, and their gradients, and of the
light intensity and its gradient. Substitution of these re-

suits for q and II in the conservation laws (3.2) of particle
number, momentum, and energy leads to macroscopic
evolution equations for n, v, and T. These equations gen-
eralize the Navier-Stokes equations, and contain in prin-
ciple the full class of gas-kinetic effects of light.

A striking difference with standard gas kinetics is that
now even the zeroth-order velocity distributions cannot
be found exactly, and additional approximations are
needed to obtain explicit results. As an example, we treat
the case of excitation of a narrow velocity group, so that
the fraction of excited atoms remains small. Further-
more, the thermalization of this narrow group is assumed
to occur by a single collision, in analogy to the BGK
model. ' In this case, explicit expressions are obtained
for the heat flux and the pressure anisotropy. The results
are contained in (6.11), (6.12), and(6. 15)—(6.20). Similar
expressions were obtained in Refs. 9—11 on the basis of a
rather special collision model. We feel that the merit of
our method is that the effects arise naturally within a
unified and systematic description. Furthermore, the
general results of Sec. IV may serve as a basis for obtain-
ing explicit results with quite different model assurnp-
tions.

The physical origin of the zeroth-order heat flux and
pressure anisotropy is simply the modification of the total
velocity distribution by the combined action of velocity-
selective excitation and state-dependent collision rates.
This purely local mechanism cannot modify n, v, or T,
due to the conservation laws. But higher moments of the
velocity distribution, such as q and II, are affected in a
way determined bshe local intensity. First-order contri-
butions to q and H arise from the difference in mobility
between ground-state and excited particles, due to their
different mean free paths. Therefore the contribution
from ground-state particles to the exchange of momen-
tum and energy occurs on a slightly larger length scale
than the contribution from excited particles. The net re-
sult is a nonzero exchange of energy or momentum be-
tween neighboring regions with different intensity. This
explains that the first-order contributions to heat flux and
pressure anisotropy are proportional to the intensity gra-
dient.

The general formalism indicates the existence of many
more gas-kinetic effects of light than obtained explicitly
so far. When an appreciable fraction of the particles is
excited, the transport coefficients must be modified, since
the gas is basically a binary mixture. Furthermore, the
transport coefficients will attain a tensorial character, due
to the symmetry-breaking effect of the velocity-selective
excitation. Finally, the pressure anisotropy may attain a
contribution proportional to the gradient of the tempera-
ture, and likewise the heat flux may be directly affected
by velocity gradients. These effects, which are implicit in
our results of Sec. IV, need further investigation.
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