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Thermal transport in gases via homogeneous nonequilibrium molecular dynamics
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Thermal transport in gases is investigated by nonequilibrium molecular-dynamics computer simu-
lations. A homogeneous driving force generates a heat flux in the absence of a temperature gra-
dient. It is uniquely derived from a moment-method analysis of the Boltzmann equation by requir-
ing an identical linear response as would result from a temperature gradient, The algorithm is
shown to be identical to the Evans-Gillan method if in the latter only kinetic terms are retained in
the equations of motion. The validity of this peculiar approach in the linear regime is demonstrated
by simulation results for the heat conductivity and the distorted velocity distribution function. In
the nonlinear regime, however, the external force leads to an unphysical divergence of the heat con-
ductivity. The accompanying kinetic theory analysis and other recent related work confirm the
long-standing presumption that the Evans-Gillan algorithm gives an incorrect nonlinear response.

I. INTRODUCTION

Nonequilibrium molecular-dynamics computer simula-
tions (NEMD) are widely used to investigate the linear
and nonlinear transport properties of fluids. In the
pioneering work of Ashurst and Hoover' the simulation
aimed at a great resemblance to the corresponding labo-
ratory experiments: velocity and temperature gradients
were induced by walls. Due to the usually small system
size, a considerable dependence on the number of parti-
cles was observed, and definite conclusions about the bulk
properties were impeded by the eA'ects of the boundaries.
For the plane shear flow the periodic-boundary condi-
tions can be adjusted to allow for simulations of quasi-
infinite systems. Meanwhile, several well-probed homo-
geneous algorithms for the shear flow problem are at
hand. Their validity in the nonlinear flow regime has
been established by means of nonlinear response theory
fear transient phenomena and by comparing the steady-
state response of a sheared gas with predictions of the
Aoltzmann equation. ' The thermal transport appears to
be more intricate. Although a corresponding homogene-
ous algorithm has been derived independently by Evans
and Gillan, its validity beyond the linear regime could
not be proved. In the present approach the outstanding
position of the kinetic theory of gases in statistical
mechanics is used to elucidate the problems inherent in a
homogeneous heat flux simulation. The article proceeds
as follows.

In Sec. II the kinetic theory based on the Boltzmann
equation with inclusion of an external (velocity-
dependent) force is introduced. A moment-method ap-
proach for its solution is briefly sketched. The transport
relaxation equations are linearized in Sec. III where the
external force is constructed to exactly mimic a tempera-
ture gradient. It is uniquely derived by requiring an iden-
tical linear response as would result from a temperature
gradient. Not surprisingly, the external force is shown to
be equivalent to the Evans-Gillan force if only kinetic
terms are retained in the latter. The formalism of Sec. II

is applied to predict the nonlinear response to this force
and to compare the nonlinear coupling behavior with the
corresponding coupling which would result in the pres-
ence of a temperature gradient. These predictions are
confirmed by the simulation results presented in Sec. IV.
In the linear regime the (macroscopic) transport
coefficient as well as the (microscopic) velocity distribu-
tion function are shown to be identical as in a laboratory
experiment where the same heat flux is generated by a
thermal gradient. In the nonlinear regime, however, the
external driving force leads to an unphysical divergence
of the heat conductivity which contradicts recent exact
kinetic theory results as well as observations made in
other computer simulations for the heat flux of a gas be-
tween parallel plates. The conclusions are summarized
in Sec. V.

II. KINETIC THEORY

A moment-method approach is used for the kinetic-
theory analysis based on the Boltzmann equation. In
general, moment methods consist of an expansion of the
one-particle distribution function with respect to a com-
plete set of functions. In the present case, Sonine polyno-
mials in conjunction with Cartesian irreducible tensors
are employed to describe the deviation from the local
equilibrium distribution. The method was introduced by
Waldman' (for small deviations from a global equilibri-
um) and turned out to be particularly useful for the case
of a streaming gas far from equilibrium. '"

In regard of earlier presentations of the method" '

only a brief sketch is given here, mainly to introduce the
notation. In addition, the discussion is restricted to the
case of a homogeneous heat flux, generated either by a
temperature gradient or a homogeneous driving force K,
which will be specified in the following section.

It is useful to introduce a characteristic thermal speed
c„(r,t ) and a dimensionless velocity V(r, t ) by

co=+kBTIm and &2coV—=c .
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The local character of these quantities is due to a possible
space and time dependence of the temperature field
T(r, t). The particle velocity and mass are denoted by c
and m, respectively, and k~ is Boltzmann's constant.

The deviation of the nonequilibrium velocity distribu-
tion function F(r, V, t ) from a local Maxwellian distribu-
tion FM( V ) is expressed by a function 4(r, V, t ),

F(r, V, t)=FM(V )[I+A(r, V, t)] . (2)

In the present notation the (normalized) Maxwellian dis-
tribution simply reads as

FM( V ) =~ & exp( —V ) . (3)

Insertion of the ansatz (2) in the Boltzmann equation
leads to an equation for the quantity N,

(FM4)+ &2coV.V(FMC&)+ — (KF~N)+FMcu(4)+FMco(4, 4)a
M

2mco BV

d — 1
FM — 2coV VFM- (KFM) .

dt 2mco BV

The linear and the quadratic part of the collision operator are denoted by M and 6, respectively. " The function e' is
now expressed in terms of the basis functions,

The summation is restricted (as indicated by the prime) to those functions P which characterize the deviation from a lo-
cal equilibrium distribution. Some examples were given in Ref. 11. The last relation in (5) introduces a useful short-
hand. One should keep in mind, however, that the i stands for a whole set of indices, indicating the tensorial rank and
the order of the respective expansion function.

The P' are orthogonal with respect to an integration with the Maxwellian distribution

f'&= (y'y&) = fF ( v )y'y&d'v . (6)

Consequently, using (2) and (5) one readily obtains

a'=(p'&0) = f FM( V )&Pp'd V= fF(V)p'd V—= ((p')) . (7)

Hence, the moments a' are just the nonequilibrium averages of the corresponding expansion functions. Two expansion
functions, P„and P„'„deserve special attention as their moments are proportional to the heat flux and the friction pres-
sure, viz.

1/2 1/2

g„=o „"' =
((

—
I
v' —-,'& v„))

=

m.„—:a„" =(( 2[ V„V„I )) = IP„)
2po

The symmetric traceless part of a tensor is denoted by I I
. The ideal-gas pressure is po =

nk&& T and the symbols Q„
and ~„,, are introduced as a reminder of the special meaning of these moments. Similarly, the first two scalar and the
first vectorial expansion functions are related to the density, temperature, and streaming velocity, respectively. Howev-
er, these quantities determine the local equilibrium distribution and must not occur in the expansion (5).

The transport relaxation equations (equations of transfer) for the moments a' result from a multiplication of (4) with
P' and subsequent integration. For stationary states one obtains

+ (, P&~(P') ) +g ( P&~(f', P ) )a
5

k 2

1/2

co
—

( |&' T ) ( P'P„) +
&Zmco

Where diff'erential operators act on F~ in (4), partial in-
tegrations were performed such that the resulting in-
tegrals are simply local equilibrium averages which are
denoted by brackets, cf Eq. (6). Implicit use has been

made of the usual constant-pressure assumption and of
the resulting identity —V(inn)=V(lnT). The first term
in (10) can be disregarded for the present case as for a
homogeneous heat flux the moments, characterizing the
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where A@2( stands for the matrix element & ((}ice(p) ) ).
Nondiagonal matrix elements are neglected. The stan-
dard form of the heat conductivity' ' is rediscovered
with the use of (8),

Ska po
2 tll CO

1

(12)

Before the consequences of the nonlinearities in (10) are
investigated in detail, a homogeneous force K is formally
constructed to mimic a temperature gradient.

deviation from local equilibrium, are homogeneous too.
Except for the matrix elements of the linearized collision
operator all remaining terms on the left-hand side of (10)
lead to nonlinearities in the driving term V T (or K). The
right-hand side is linear in these quantities and, due to
the orthogonality (6) of the expansion functions, contrib-
utes for selected moments only. In the absence of an
external force linearization of (10) leads to

1/2
5 1

~, Q„=— — co (V„—T),

x„=y y ~ „'",' . . . , (t." . . . „(v) .
I=Or=1

(17)

2 2yl 1 y2
3

(18)

Insertion of the ansatz (17) in (13) immediately leads to
the conclusion that only the last two functions in (18) are
relevant. Their averages vanish and the remaining
coefficients A „'"'. . . are restricted by

I =0 r =1
(19)

This identity must hold irrespectively of the nonequilibri-
um state, determined by the moments a', cf Eq. (5).
Hence all coefficients A „".. . in (19) must be zero and (17)
simply reduces to

However, here the summation extends over all expansion
functions and, in fact, those which had to be excluded in
(5) for physical reasons are essential for the following.
They are

' 1/2

III. HEAT FLUX VIA EXTERNAL FORCE
g (2)y2+ g (1)yl

P P pv v (20)

A. Linear regime

A homogeneous driving force K which induces a heat
flux in a stationary, constant-temperature NEMD simula-
tion has to fulfill the following requirements.

(i) No net momentum must be produced; the momen-
tum balance equation thus leads to

«~„)&—=0. (13)

(ii) The constant-temperature constraint and the ener-

gy balance equation demand

« I(.„V„&)=0 . (14)

(iii) The driving terms on the right-hand side of (10)
must be identical in the equation for the heat flux,

1/2
5 1 I

c()—(V„T)= — K„(t . (15)
a

(iv) Finally, for all other moments the right-hand side
of (10) must vanish,

(16)

In a first step the linearized transport relaxation equa-
tions are used to construct a driving force K such that it
generates exactly the same linear response as would result
from a temperature gradient. This approach can be ex-
pected to lead to a kinetic theory analog of the force de-
rived independently by Evans and Gillan by means of
linear-response theory. In addition, the left-hand side of
(10) allows to compare the nonlinear coupling behavior,
which will be dealt with in the second part of this section.

Further restrictions for the matrix A „"' are next derived
from the orthogonality requirement (16). Using (6) and
partial integration it is rewritten as

2K„V„— ' =0,

for 0'& I0' 0' 0.' O'. I . (21)

Insertion of (20) and use of the explicit form of the expan-
sion functions [Eqs. (9) and (18)] leads to

BKp $O

av„
g (2) y2

1/2

where the relations [(2), (5)—(7)] have been used. A„' ' is
determined by the last constraint (15),

The last term in (22) would generate a friction pressure,
cf. Eq. (9), consequently, I A„"'

I
=0 and only the trace

Azz) is of relevance. Note, (22) allows no conclusions
about an antisymmetric part of A„"'. For the heat-flux
problem, however, there is only one significant direction.
Consequently, A „'"is dyadic and hence per se symmetric.

The remaining coefficients, A„'' and A&&', are now
determined by the final two requirements. The constant-
temperature constraint (14) reduces to

1/2
5

(23)

Similar to (5) a general ansatz for K„ is made,

' 1/2
(2) 3 2 j.3( '= — — mc —(V T) .

T
(24)
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In order to avoid confusion it is preferable to introduce a
different symbol for the field strength which was con-
structed to mimic a temperature gradient

g„=——(&„&) .
1

P y P (25)

With the two remaining coefficients [(23) and (24)] and
the explicit form of the relevant expansion functions (18),
one ends up with

K„=—mco( V' —
—,
' )g„—P V„,

l /2
2 5p=———

4
m", g„g„&0.

(26)

(27)

—&2mcoP= (((—'mc ——'kii T)mc~ ))g~ .P 3~A- y P P B

(28)

The second part in parentheses could be identified with
the average enthalpy as well as with the average energy of
a particle because, as ((ci )) =0, an additive constant

The conclusion about the sign of P is drawn in view of
Eq. (11) which, due to the requirement (15) holds equally
well when V' (lnP is replaced by the field strength g„.

It is certainly worthwhile to compare this result with
the equations of motion derived by Evans and Gillan by
means of linear-response theory. As for small perturba-
tions, the thermostating multiplier P is not relevant only
the first term in (26) is considered. Using the definition
(1) it can be rewritten as ( —,'mc —

—,'Ik&T)g„. The first
part clearly is the (kinetic) energy of a particle while the
second part can be either interpreted as the average (ki-
netic) energy or as kii T minus the (kinetic part of the)
enthalpy. The latter distinction, which is, of course,
trivial for the ideal-gas case, corresponds to the subtle
difference between the equations of motion of Evans and
Gillan which has attained some attention in the past. '

In the present case, where only the kinetic contributions
to these quantities are relevant, the two algorithms are
identical. It should be mentioned, however, that the
Evans-Gillan driving force involves an additional contri-
bution, solely attributed to the potential interaction be-
tween the particles which, of course, is beyond the scope
of kinetic gas theory.

The thermostating multiplier p (27) is relevant for
nonequilibrium molecular-dynamics simulations of a sta-
tionary heat flux and an explicit form for the Evans algo-
rithm is given in Ref. 15. To identify (27) with the kinetic
part of Evans's equation, P has to be multiplied by
(V2mco) to get the correct dimension, cf. Eq. (1). If the
(dimensionless) heat fiux Qz is written as a nonequilibri-
um average of P& [Eqs. (7) and (8)], one readily obtains

does not alter the result of this nonequilibrium average.
The denominator is 3mkii T= (( (m c) )) and if these
averages are to be evaluated as A'-particle averages one
gets

—&2mcoP= g (E' E)g—.p'
i =l

X p'. p'
/=I

(29)

B. Nonlinear regime

The two "experiments" to be compared are as follows:
First, the usual setup where a homogeneous heat flux is
generated by a temperature gradient between two plates
which are sufFiciently separated to neglect boundary
effects. No external forces shall disturb this standard
textbook example. Second, the "demoniacal" driving
force constructed in Sec. III A is used to generate a
homogeneous heat flux in the absence of a temperature
gradient.

For the first case the transport relaxation equations for
the moments a ' (10) reduce to

which is indeed the results of Evans" if all potential con-
tributions are neglected; p' is the momentum of a particle
i and E' its (kinetic) energy, E the average (kinetic) ener-
gy per particle. '

The inhomogeneous driving mechanism as expressed
by the velocity-dependent force K (26) can be interpreted
as follows: Depending on their energy relative to the
average energy, the particles experience the driving force
K in a way that "cold" particles are accelerated in the
direction of g and "hot" particles in the opposite direc-
tion. The magnitude of the acceleration depends on the
deviation from the average energy and is consequently
varying. Its time average vanishes which prevents a spa-
tial separation of hot and cold particles, i.e., the tempera-
ture and density fields are homogeneous. However, a flux
is induced which is, in the linear approximation, identical
to the heat flux generated by a temperature gradient.
This "Fourier demon" does work on the system which is
extracted by the drag term PV„ in E—q. (26).

To summarize this section, an external driving force
was uniquely derived from the Boltzmann equation by re-
quiring an identical linear response as would result from
a thermal gradient. It was found to be identical with the
forces derived by Evans and Gillan if in these all poten-
tial contributions are neglected. So far, however, it is
only in the linear regime that the quotient of the resulting
fiuxes (here Qz) and the driving field (

—gz ) can be
identified with the heat conductivity. The present ap-
proach allows us to analyze the nonlinear response too
and, hence, provides means to probe the validity of this
relation even in the nonlinear regime.

Cp
/~V 3+V„P' —(V T)+~"+g~" &ov. v.

5a~=—
2

1/2

c,—(&„&)& P'P„'),0 ~ p (30)

while for the latter they now read as
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1/2 ' 1/2
cp a Cp

/I

(31)

Two obvious abbreviations for the collision matrix elements have been introduced and in (31) explicit use has been made
of the results and constraints of Sec. III A. The nonlinear response is determined by the coupling of the expansion func-
tions on the left-hand side of (30) and (31). In order to make use of the orthonormalization (6) of the expansion func-
tions, the action of the multiplication and differentiation operators on the functions P' is to be investigated. This can be
done using general relations for the Sonine polynomials. ' For scalar expansion functions P" (r & 2), e.g. , one obtains,

1/2 1/2 1/2
a 1 —,

1 2
V, 3+ V, ,

— {f"= — (2r '- I )&2r +1/" + — 4r&r —1$" '+ — &(r —2)(r —1)(2r —1)(t"'av, P p

(32)

{ V2 i
)

/la-'

a
BV„

(4r —6)&r —1$" '+
p

1/2

6
2(r —1)&2r + 1$"1

p

1/2
1+
3

1/2

&(r —2)( r —1)(2r —1)P„" (33)

V„P"=2( r —1 )P"+&2( r —1 )(2r —1 )P"
~ av„

(34)

The similarities in (32) and (33) are striking. These equa-
tions determine the coup1ing of vectorial to scalar mo-
ments which, obviously, diff'ers slightly for the two situa-
tions. In general, these operators couple tensors of rank I

to tensors of rank I+1. For the external-force case an ad-
ditional coupling term occurs which couples tensors of
equal rank only, and can thus be conceived as a
modification of the matrix elements of the linear collision
operator. " It stems from the constant-temperature con-
straint of the simulation and has no counterpart in the
thermal-gradient case. For vectorial and tensorial expan-
sion functions similar relations can be derived which lead
to the conclusion that the nonlinear coupling behavior on
the left-hand side of the Boltzmann equation ("streaming
term") is quantitatively different for the two driving
mechanisms, although the qualitative similarities are
striking.

At this point one is tempted to continue the parallel
evaluation of the transport relaxation equations in order
to arrive at a detailed quantitative comparison of the two
methods. However, the field strengths which are applied

I

in the simulations correspond to significant variations
over the length scale of a few molecular diameters. These
go along with density inhomogeneities and restrict the
applicability of the present analysis. The temperature
dependence of the collision matrix elements is certainly
significant for the nonlinear heat flow problem between
parallel plates. In addition, the restriction to homogene-
ous moments is a crude simplification which is, in gen-
eral, not consistent with the constant pressure assump-
tion. Corresponding modifications are beyond the scope
of this article; instead, recent exact results for the non-
linear heat flow problem between parallel plates are uti-
lized for a final comparison with the results of a
moment-method solution for the force-driven heat flux.
In this case even the temperature and density fields are
homogeneous such that the present description is com-
plete.

For a further evaluation of the transport relaxation
equations the coupling behavior for the vectorial and ten-
sorial expansion functions for the external force case are
needed; they are for vectorial functions Pz (r & 1)

1/2
1

3

1/2

(2r+1)&r P"+'+
3

1/2

(r —1)&2r +3/„"z+ 2

1/2

1/2
4
5

1/2

(4r —4)&r —1$" '+
p.k

v'(r —2)(r —1)(2r +1)P„"&

2(r —1)&2r +1/"+ — &(r —1)(2r +1)(2r —1)P"1

3

(35)

V& P&=(2r —1)P& ++2(r —1)(2r + 1)$& (36)

And for tensorial functions Pz„
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1/2
2
5

1/2

(2r +3)&r P"+'+ (2r —1)(r'2r + 3P"

1/2

(r —1)(r 2r +5/„"&,+2 3

1/2

+ — &(r —1)(2r +1)(2r +3)P"
5 CT

1/2
6+
7

1/2

+ — &(r —2)(r —1)(2r +3)P„")„

( 2r —1 )&r —1(t)„"&,
'

(37)

V„$~,=2rg), + 2(r —1)(2r +3)()()q„',p gy AK (3&)

where 5&„' „is the isotropic tensor of rank 4, '

(39)

Before the general coupling scenario in (31) is addressed,
some remarks on the collision matrix elements are ap-
propriate. While the linear part co'~ couples tensors of
equal rank only, the quadratic part Q~' exhibits a much
more complicated coupling behavior which would severly
obstruct the following analysis. Henceforth, however,
the quadratic part will be neglected. This is justified by
results of earlier studies on the non-Newtonian viscosity
coefficients. "' It was clearly demonstrated that the
eFect of the quadratic collision operator on the transport
coefficient is completely negligible while only selected
higher moments are slightly modified. Similar remarks
hold for the nondiagonal elements of the linearized col-
lision operator. " But, as they are easily incorporated in
the present formalism, they need not be neglected.

For the present problem (co, ) ', cf. Eqs. (11) and (12),
provides a characteristic relaxation time ~. It is inversely
proportional to the density and is used to define a re-
duced (dimensionless) field strength G„,

' 1/2

( 22) —) G
5

2
(4O)C01gp

Let the heat fiux be in z direction (e'„being the corre-
sponding unit vector),

G„—:Ge'„, Q„=Qe'„. (41)

(r) (r) z (r) (r) 3
0 2 t e„'e„' I (42)

The factor &3/2 has been chosen to be consistent with
the notation in Ref. 11. With these definitions it is

Then, in the linear regime, cf. Eqs. (11) and (25), the (re-
duced) heat conductivity simply reads —Q/G =1. Non-
linear corrections to Fourier's law would involve the di-
mensionless quantity G rather than the field strength it-
self.

Finally, note that for the present pure heat flux prob-
lem all vectorial and (irreducible) tensorial moments have
one relevant component only,

1/2

straightforward to select the relevant moments and to
solve the transport relaxation equations in this finite mo-
ment approximation.

The selection of the moments is done in view of the
coupling behavior in Eq. (31). It was found above to be
dominated by the first term while the relatively simple
coupling of the second term can be treated as a
modification of the matrix elements for the linearized col-
lision operator. Some qualitative features of the complex
system of equations can best be described by looking at a
simplified version where only "dominating" terms are re-
tained. They are

(rl G(Cr, r (r)+Cr, r —( (r —()
O1az O1

+Cr, r —2 (r —2))
O'1 az

(r) Ggr2 G(~r, r+( (r+()+Cr r (r)
10 10

+ Cr, r —
1 (r —1)+Cr, r (r)

1p a 12 0

+ Cr, r —
1 (r —1) + Cr, r —2 (r —2)

~ao ao
(r) G(Cr, r+) (r+()+Cr, r (r)
0 21 21 z

+ Cr, r —( (r —1)+

(43)

(44)

(45)

The ellipsis in (45) stands for the coupling to tensorial
moments of rank 3 which need not to be considered for
the present purpose. The coefficients C&&" are determined
by the relations (33), (35), and (37). Two properties of
these relations are important: all coefficients are positive
and tensors of rank I couple to tensors of rank l'=l+1
only. Each coupling involves a multiplication with the
driving field G. The coupling scenario with increasing
field strength can now be described as follows. The heat
fiux Q=a,( ' is the only moment which is linear in G. It
is negative and couples to the scalar moments a ' ', a ' ' as
well as to the tensorial moments vrp, ao ', ao '. Hence
these moments have a positive leading term proportional
G . Some of them, viz. a' ', pro, ao ', in turn, lead to addi-
tional negative contributions proportional G to the heat
fIux, cf. Eq. (44). In addition, of course, other vectorial
and tensorial moments of third rank are driven by a simi-
lar coupling. Their leading term is negative and propor-
tional to G . These odd ranked tensorial moments lead
to positive contributions proportional G to the tensorial
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moments of even rank, and so on. Consequently, if the
heat flux is expanded in powers of G, only odd powers
occur and all coefFicients are negative. This can be gen-
eralized to all moments of odd tensor rank and the corre-
sponding statement for moments of even tensor rank is
obvious. Hence all moments are monotonic functions of
the temperature gradient and diverge. This coupling
scenario diff'ers drastically from the shear flow case where
especially the feedback of higher moments on the linear
terms was found to be almost negligible. '"

Of course, the reasoning was not rigorous insofar as
only apparently dominating coupling terms were con-
sidered. These trends, however, can be substantiated by
quantitative results of a finite moment approximation.
To obtain the heat flux in a precision of order G the mo-
ments a' ', ~0, and aa ' were above found to be relevant.
They are supplemented by all other moments with a lead-
ing term proportional to G, viz. a' ' and a0 ', a,' ' is in-
cluded to account for the nondiagonal coupling via the
collision matrix and (35). All collision matrix elements
for the selected moments can be found in the litera-
ture"' ' and the coefficients are obtained from the gen-
eral relations [Eqs. (33)—(38)]. One ends up with a non-
linear system of seven equations which can be solved by a
recursion scheme. The method has been successfully ap-
plied in Ref. 11 and shall not be repeated here. In the
present case, however, solutions can only be obtained for
a limited range of field strengths. They are used for a
comparison with the results of NEMD simulations to be
introduced in Sec. IV. In the present context it is in-
teresting to note that the NEMD algorithm fails as well
for field strengths above a certain threshold.

IV. NONEQUILIBRIUM MOLECULAR DYNAMICS

which is "cutoff" at r=2. 5o. . As usual, the energy pa-
rameter c, the "particle diameter" o., and the mass m are
used to define reduced units. The results are for
T=2.75m. /kz and n =0.02o. which corresponds to an
argon gas at 330 K and 2.4 MPa. The mean free path is
16o. and field strengths ranging from g=0.002o. ' to
g =0.016cr were applied. With the identification (25)
these would correspond to temperature gradients of
about 1 —5 K/o. for an argon gas which is far beyond the
capability of laboratory facilities. Nevertheless, the re-
sults for g ~0.005o. ' will be shown to be in accordance
with predictions of the linearized kinetic theory.

The following equations of motion for the 128 particles
are solved by a predictor-corrector method with a time
step of At =0.005o.&m /c,

N
mr', = g F;, —mc0( V, ——,')ge' —PV, ,

j=1
N

/3= ——', mc Dg
—g [( V,

2 —
—,
'

) V; ],
i =1

(47)

The simulations were performed for a gas interacting
via the Lennard-Jones potential

12 6

(46)

cf. Eqs. (26) and (27). Note, an N-particle average is em-
ployed to evaluate the heat fiux (8) in the equation for f3.

Although the external force was derived by requiring a
constant temperature, only the total energy is constant
while the temperature is found to fluctuate by less than
2% around its prescribed value. This is due to the in-
teraction via the pair-force F, and, hence, beyond the ca-
pability of the ideal-gas analysis. However, the work
done on the system is purely kinetic and compensated by
the thermostating multiplier P.

A related remark concerns the relatively low density.
For the chosen state the characteristic relaxation time
r(38) is 7.5 o&m/e or 1500 time steps. This sets the
time scale for the regression of fluctuations and makes
the phase-space sampling rather inefficient. However,
considerable density effects were observed for higher den-
sities which contrasts the gas phase simulations of the
shear fiow at the density n =O. lo (Refs. 5 and 11)
where the potential contribution to the pressure tensor
was found to be negligible. In the present case only the
kinetic contribution to the heat flux is driven by the
external force and one would not expect to observe a no-
ticeable potential contribution to the heat flux which, in
the present notation, reads as ' '

(49)

E; ' stands for the potential energy of particle i and
r, =r, —r . This quantity was monitored in some ex-
ploratory simulations for (reduced) densities ranging
from n =0.01—0. 1. A surprising empirical rule was
found for the relation of the potential and kinetic contri-
butions to the heat flux: Q~" /Q"'"=n, i.e., for n =0. 1,
Qt'"/Q"'"=10%. In contradistinction to the shear fiow
case a considerable cross coupling between kinetic and
potential effects is observed which, in light of the ap-
parently different nonlinear behavior of dense fluids, '

deserves more attention in the future.

A. Transport coe%cient

The results for the heat flux are displayed in Fig. 1 and
are compared with results of the seven-moment solution
of the Boltzmann equation introduced in Sec. III B. The
heat fiux, defined in Eq. (8), is evaluated as an N-particle
average. It is preaveraged in each run with 100000 time
steps by accumulating values in intervals of 200 time
steps. Thirty-two runs were performed for each field
strength and the averages and standard deviations of a
final averaging over all 32 runs are displayed in the figure.
The central processing unit (CPU) time used for each
state point amounts to 5 h on a Cray Research XMP-24.

Reasonable accordance between kinetic theory and
simulation results is found. This is confirmed by similar
plots for the other six moments, which are evaluated
analogously according to Eq. (7). Apparent deviations
from Fourier's law are observed for G) 0. 1. It has al-
ready been mentioned that both the kinetic theory
analysis and the simulation fail for field strengths above a
certain threshold. The reproducible breakdown of the
simulation for g =0.018o is a consequence of an align-
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FIG. 1. Heat flux divided by the strength of the external field
which mimics thermal gradient. The results of the simulations
are compared with a seven-moment solution of the Boltzmann
equation. Apparent deviations from Fourier's law (dashed line)
are observed (see text).

FIG. 2. The distribution function F ' ' divided by the
Maxwellian distribution and the speed V [see Eq. (51)]. It is

compared to the result of the linearized Boltzmann equation
(dashed line).

ment of the particle motion in the direction of the applied
force which reduces the collision rate. Between the rare
collisions the constant acceleration leads to huge veloci-
ties for some of the particles while others, due to the
constant-temperature constraint, appeared to be
"frozen. " The simulation is terminated by a "catastroph-
ic" collision between members of these groups. The
scenario leads to an increasing statistical uncertainty with
increasing applied field. The alignment of the particle
motion in z direction is manifested by a normal pressure
diff'erence, expressed by the moment pro, cf. Eq. (9), and is
in accordance with the kinetic theory analysis.

B. Velocity distribution function

F(V)=Fs( V )+F ''( V )V, + (50)

where the ellipsis stands for contributions of higher ten-
sor rank and V, stands for the z component of the unit

The two lowest gradients considered (corresponding to
g=0.002cr ' and g=0.004o ') can be associated with
the linear regime and can thus be used for a comparison
with laboratory experiments of temperature-driven heat
flow. A very sensitive comparison is based on the
velocity-distribution function. Although experimentally
difficult, Doppler broadening techniques have successful-
ly been applied for a direct measurement of the velocity
distribution function of a heat-conducting (polyatomic di-
lute) gas. Corresponding results for a streaming gas
were first obtained by NEMD. The method introduced
in Ref. 23 can be easily employed for the present case of a
homogeneous force-driven heat flux.

First, the directional dependence of the nonequilibrium
velocity distribution is taken into account,

vector V. In the linear regime the only relevant moment
in the ansatz (2,5) is the heat ffux, hence the scalar part
Fs( V ) reduces to the local Maxwellian FM( V ) and, cf.
Eq. (8),

1/2

FI "(V )=FM( V )Q — (V —=')V .
5 2

(51)

V. CONCLUDING REMARKS

A kinetic theory analysis based on the Boltzmann
equation has been employed to elucidate the relevance of
the homogeneous Evans-Gillan algorithm for the simula-
tion of thermal transport. The uniquely derived external
force which mimics a temperature gradient in the linear
regime led to an unphysical nonlinear response which
contradicts recent theoretical and (computer) "experi-
mental" results. The uniqueness indicates the lirnita-
tions of homogeneous algorithms for the simulation of
nonlinear transport. The failure of an algorithm based on
Gauss's principle of least constraint has already been es-

Note, the function F' ' '( V ) contains the full information
on the velocity distribution for the specified directional
dependence, while the right-hand side on (51) is a kinetic
theory approximation. The quality of this approximation
can be tested by a direct evaluation of F ''( V ) via the
NEMD simulation. It is obtained as an N-particle aver-
age of g; V, 6( V —V; ). Details can be found else-
where. '' In Fig. 2 the quantity F'''/(FM V) is plotted
for g=0.004o. ' and compared to results of the linear-
ized Boltzmann equation (dashed line), cf. Eqs. (11) and
(51). Excellent agreement is found. The graphical repre-
sentation is chosen in close analogy to Ref. 22.
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tablished. In this respect the present results support the
current tendency "back to the roots" of NEMD, viz. to
the boundary-driven simulations as pioneered by Ashurst
and Hoover. ' Due to the increasing computing power of
modern vector computers the systems can be made large
enough to be able to distinguish between bulk and bound-
ary effects. It is interesting to note that the kinetic theory
of gases is quite often used to establish newly developed
simulation techniques. ' ' ' Reference 4 also contains a
first remark about the discrepancy of the normal stresses
obtained from the Evans-Gillan algorithm and the
Chapman-Cowling analysis. '

However, the Evans-Gillan scheme provides an
efficient tool to study linear thermal bulk properties. It
has successfully been applied in conjunction with the
difference method. Even in the gas phase additional in-
vestigations seem to be promising. For polyatomic gases
the node of the velocity distribution function as displayed
in Fig. 2 is shifted due to additional contributions in the
Sonine polynomial which are attributed to the rotational
and vibrational energies. The experiments confirmed a
rapid convergence of the Sonine expansion which was a
priori not obvious. Supplementary NEMD simulations
for polyatomic model gases could promote a deeper un-
derstanding of, e.g. , the relative importance of the in-
tramolecular potential which could easily be varied.

And even in the nonlinear regime the Evans-Gillan
method, if applied with care, has some merits. The
present study provides insight in the respective relevance
of the magnitude of the driving field and the accompany-
ing inhomogeneities. The computer simulation as well as
the kinetic theory analysis excluded the latter and led to
an apparently unphysical divergence of the "heat conduc-
tivity. " It has been pointed out that the nonlinear cou-

pling via the streaming term of the Boltzmann equation is
qualitatively equal for the force- and the gradient-driven
case. It is concluded that the spatial variations of the
density and temperature fields are essential because they
compensate for the effect of large driving fields (tempera-
ture gradient or external force).

In general, the homogeneous "computer experiments"
are easier to analyze theoretically. A generalization of
the present moment method approach for (strongly) inho-
mogeneous nonlinear transport phenomena would, if
feasible, further complicate the formalism and obstruct a
more physical interpretation of the results. Other
methods, based on the Bhatnagar-Gross-Krook (BGK)
collision model appear to be more promising in this
respect. However, the successful treatment of the non-
linear shear flow problem'" inspires one to employ the
same methods to study the nonlinear coupling between
the two fundamental transport processes. Although re-
stricted to be linear in the temperature gradient some
progress can be expected concerning the influence of the
normal pressure differences on the heat flux. These were
not taken into account in earlier treatments of the non-
linear transport processes in gases.
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