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In simulations on the Little-Hopfield model it is found that the convergence time to a stable state
close to one of the embedded patterns scales like ¢ (mg)log,oN, where N is the size of the network
and c¢(mg) depends on the initial macroscopic overlap m, with the pattern. In a related model
known as the pseudoinverse model the convergence time to the pattern is much smaller than log,o/NV.
The results are compared with other possible pattern recognition methods.

During the last few years there has been extensive in-
terest in the theory of neural networks that model associ-
ative memories. In such models the number of patterns
one can store and retrieve is found to be p =aN (a <2),
where N is the number of neurons (spins) and the number
of synapses connecting neurons are of O (N?2). Therefore
the embedded information per synapse is of O(1) which
might be expected from an information theory point of
view. Nevertheless, the quality of a system as an associa-
tive memory is a function of many parameters like the
quality of the retrieval, basins of attraction, rate of con-
vergence to the patterns, etc., beside the capacity per
synapse.

In this paper we present some results of simulation on
the convergence time to the embedded memories versus
the size of the system, under parallel dynamics where
p < N. The simulations were made on the fully connected
Little-Hopfield"? (LH) model and on the pseudoinverse
(PI) model** at zero temperature. In this limit it is
simpler to get better results, because the effect of thermal
noise is eliminated. This limit may also have practical
advantages if one wants to build pattern recognition de-
vices.

In the thermodynamic limit and where p < N, unfor-
tunately one can only calculate the time evolution of the
macroscopic overlap analytically for the few first time
steps.” The calculation of the macroscopic overlap for a
large number of time steps becomes very complicated and
is still an unsolved problem.

The models to be discussed here are governed by an en-
ergy

(1)

where S; =21 and N is the size of the network. The cou-
plings, synaptic efficiencies, are constructed of the p given
spin configurations (patterns) and given in the LH case by
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and in the PI case by
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where {£"}] are quenched independent random variables
which could take the values +1 with equal probability
and stand for the ith bit in the uth pattern. Here, C ! is
the inverse of the overlap matrix C defined by
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Parallel dynamics at zero temperature means that the
configuration at time step ¢ is given by the rule

S;(t)=sgn z J;:S;(t—1) (5)

ij=j
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where all the spins are updated at the same time and
{S;(0)} is the initial configuration. The dynamical pro-
cess evolves until S;(r)=S;(r—1) fori=1,2,...,N, and
the lowest such 7 is defined as the convergence time.

In the simulations the initial configuration was picked
at random under the constraint that it has an overlap m,
with a certain pattern. In order to get good enough
statistics for each model and for each system size we used
the following procedure: (1) choose n, different samples,
(2) in each sample we start with an initial overlap m,
with each one of the patterns, and (3) in each such “val-
ley” of one of the patterns we start with n. different ran-
dom initial configurations which have an overlap m, with
the pattern. Therefore the number of measurements for
each system size is pnn.. It is obvious that it is better to
make the simulations on pn n, different samples. This is
due to the fact that many measurements in the same sam-
ple and within the same “‘valley” are correlated. Never-
theless, we choose this way, especially for large systems,
in order to limit the slowest computations, which are the
calculation of the synaptic efficiencies for each sample.

In Figs. 1 and 2 the results for the LH case are present-
ed, where a=0.1 and m;=0.4 and m;=0.6,0.75,
respectively. For N =50-100, n,=100-150 and n,
=100-150; for N =300-500, n,=20-30 and n,=2-4;
and for N 21000, n,=3-5 and n,=1-2. We would like
to stress that in both of these figures the ferromagnetic
point, p =1 (or in our cases N =1/a=10), is known
analytically without any errors. The convergence time in
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FIG. 1. The time convergence vs log;o/V for the LH model,
where a=0.1 and m;=0.4. The dots indicate the average con-
vergence time, and the dashed lines indicate that the width of
the distribution of the convergence time grows also as log V.

this case is exactly 1, for the reason that after one step
one knows undoubtedly that the system is in a stable state
without any need to check it.

In these simulations a was fixed to be 0.1 in order to be
as far as one can in the region of a finite a, but not too
close to the maximum capacity in the thermodynamic
limit @, ~0. 14,° above which the fraction of errors in the
retrieval increases dramatically. Nevertheless, in finite
systems, the transition as a function of a and the overlap
of the retrieval state with the pattern are not sharp func-
tions as they are in the thermodynamic limit. Therefore
in the simulations we decided to count only cases where
the final overlap was greater than 0.9. We also checked
that the fraction of cases, among pn,n, measurements,
which converge to a stable state with respect to a single
spin flip and which have a magnetization greater than 0.9
is an increasing function of the size of the system (cyclic
flows with an average magnetization greater than 0.9 are
very rare). This is an indication that m is within the
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FIG. 2. The time convergence vs log;oN for the LH model,
where @ =0.1. The dots stand for the average convergence time
for my=0.6. The X signs and the dashed signs stand for the
average convergence time and the width of the distribution of
the convergence time for m,=0.75, respectively.
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basin of attraction, which is true only for m,=0.4 in our
system size.

The simulations suggest the following results. (1) The
average convergence time to a stable state close to the
pattern scales with log,,N, which can be seen even in
small systems. More precisely, the convergence time is
fitted by t.,,, =c(my)(log,,N —1)+1, where the slope
c¢(myg) is a constant which depends only on m,. (2) The
slope of the average convergence time versus log, NV is a
decreasing function of m,. The slope ¢ (m) for the aver-
age convergence time is given by 0, 1.4, 2.1, and 3.35 for
my=1, 0.75, 0.6, and 0.4, respectively. It seems that at
least for this range of m,, a good approximation for
c(mg) is given by c(my) < 1—mg . (3) The width of the
distribution of the convergence time also seems to scale
with log,,/V as shown in Fig. 1.

The result that ¢, <log,,/N can be compared with in-
formation theory. Basically, the task in such pattern
recognition systems is to identify (flow to) the pattern
which has the maximal overlap with the initial
configuration. Let us try to compare these results with
other possible methods. The calculations of the overlaps
of the p patterns with the initial state can be done in
parallel dynamics (or using continuous neurons) even in
O(1) time steps. The search of the maximal overlap
among the p overlaps using parallel dynamics on a binary
tree, for instance, takes c¢In/N time steps where
¢ =1/log;y2 (see also Ref. 7). Therefore one can do the
same task by other methods with time proportional to
InN, but with a bigger coefficient in comparison to the
average c(mg) for my=0.4 (at least for the parallel
binary search). Nevertheless, from a practical point of
view one can terminate the dynamical process after a
finite number of steps which ensure an overlap close
enough to 1.

The result that the slope ¢ (m)) is a function of the ini-
tial configuration is surprising, because the magnetization
for my=0.6, for instance, after one step and in the ther-
modynamic limit is greater than 0.75.° Therefore it
seems natural that the asymptotic behavior of c(m)
should be independent of the initial overlap. However,
from Ref. 5 one can verify that the magnetization in each
time step is not only a function of the magnetization in
the previous step, but is a function of the magnetizations
and the correlations among the configurations in all the
previous time steps. Furthermore, in the thermodynamic
limit one can explicitly verify from Ref. 5 that m(1) as a
function of m, is greater than m(2) as a function of m(1)
for m(1)=m,, where m (t) is the average magnetization
at time ¢. This result might indicate that also for a large
number of time steps the convergence time is slower as
m,, is smaller, which is in agreement with our results.

The result that the broadening of the convergence time
distribution scales like the average convergence time is
also a surprising result. In order to explain such a behav-
ior, let us consider for simplicity the following conver-
gence process. Assume A(z)=m (t)—m(t —1)=¢, then
A(t +1)=ye, where y <1. The process is terminated
when A(t) < 1/N, yielding a convergence time of O(InN).
For a fixed y the distribution of the convergence time is
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of O(1), and for a random y(¢t) with a finite width the dis-
tribution is of O (VInN ). Nevertheless, a possible source
for a distribution of width of O(InN) is that m(¢) is a
function of {m(z;)} and {q(¢;,t;)}, where ¢;,¢; <t and
q(t;,t;) is the overlap between the configurations at ¢;
and tj.5 For instance, one can verify analytically that
dm (1)/dm,#dm (2)/dm, for m(1)=m (2). Therefore
our process is a random process with a long memory and
one would expect that also the average y(¢) depends on
the history of the system. [An example is a process
where the average y(¢) increases as a function of the
average v in the past.] Another possibility is that this re-
sult might in fact be O (V'InN ) in larger systems or with
a better statistics even in our large systems.

The results for the PI case for «=0.1 and m;,=0.3 are
presented in Fig. 3. Here, the basin of attraction is
larger’ than in the LH case and enables a smaller m, to
be used, which gives relatively a larger convergence time.
In this case, only stable states with an overlap which is
equal to 1 are included, for any system size.> These re-
sults show that in the PI case the convergence time scale
is much smaller than O(InN), and maybe converges in
the thermodynamic limit even to a constant. Further-
more, the width of the distribution of the convergence
time does not scale with InN.

These results could be understood by the fact that in a
configuration which is one of the patterns, the local field
on each spin is equal to 1 —J; ~1—a.* This result is in
contrast to the behavior in the LH case, where there are
many spins with small negative and positive local fields.®
Furthermore, even far away from the pattern the average
overlap, within the replica symmetric approximation,® is
given by m =tanh(Jm /T), where T is the temperature,
m is the only macroscopic overlap, and J is given explicit-
ly in Ref. 3. This result is very similar to the result in the
ferromagnetic case. Therefore one would expect that the
behavior of the system would be similar to a ferromagnet-
ic system, and hence the convergence time is much faster.

This result immediately raises the question of whether
one can build other pattern recognition systems, for in-
stance a layered network, which can solve the task with
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FIG. 3. The time convergence vs log,,N for the PI model,
where a=0.1 and m,=0.3. The dots indicate the average con-
vergence time.
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O(1) time steps. The answer to this question is
affirmative, and let us now briefly describe the structure
of such a layered network. The first layer contains p neu-
rons {S}'} taking continuous values, such that S/=m,,
where m; is the overlap of the input with the /th pattern.
In the next layer there are p(p —1) two-state neurons
[S,?,H(}, where /=1,2,...,p, k=1,2,...,p—1, and
S,f,+k=e(m,—mk ), where ©O(x) is the Heaviside step
function. In the third layer there are again p continuous
neurons such that Sp=3, .S} x. The pattern with
the maximal overlap is / if and only if S7=p —1. The
weak point of this method is that the number of neurons
and synapses scale like N2 in the case where p < N. Nev-
ertheless, in cases where there is only one macroscopic
overlap, or in cases where the difference between the
maximal overlap and the second maximal overlap is
greater than the differences among the other overlaps,
one can easily use macroscopic thresholds in the second
layer such that it is necessary to have only O (N) neurons.
For instance, in the second layer there are pg neurons,
where g is of O(1) and S}, ;. , =6(m;—m,; —¢), where € is
smaller than the difference between the largest and the
second largest overlap. It is obvious that the maximal
overlap is [ if S} =g. The constraint of one strongly dom-
inant overlap is not artificial, since otherwise in the mod-
els studied here the retrieval is not ensured. It is also im-
portant to stress that this system is much better than a
simple two-layer grandmother-cell circuit,®® since the
important parameter is the differences among the over-
laps and not the value of the largest overlap.

Since not only the convergence time plays a role in the
analysis of parallel algorithms, but also the size (number
of neurons), one approach to estimating the quality of a
parallel algorithm is the product of time by size.!® It is
important to note that the best product measure cannot
be any less than the lower bound time for the same
sequential solution. The reason is that it is possible to
sequentialize any parallel dynamics. On one hand, the re-
sult for the PI system is reasonable, due to the fact that
the product of time by size seems to scale like O (N).
This order of complexity is the lower bound for a search
of the maximal number among N (disordered) numbers.
On the other hand, in the studied models each neuron is a
processor of 1 bit, where in other methods each processor
is of O(InN) bits [to represent and to compare overlaps in
the range (—N,N)]. However, our neural network sys-
tems are a shared memory system, which means that the
same data (spin configuration) are shared by all the neu-
rons. For instance, all the neurons in the next time step
read the information of the ith neuron from the previous
time step, and all the neurons together decide what to
write in the ith neuron in the next time step. Further-
more, each neuron is not a processor which can make a
comparison between two numbers, but can sum N num-
bers in each time step. These two concepts of unrestrict-
ed range of shared memory and processors each one of
which can sum O (N) numbers in each time step give a
strong computational power together with a simple cir-
cuit structure to the neural network systems. In order to
achieve these goals it is necessary to have some analog
devices with nonlinear characterizations, like analog neu-
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rons in layered networks or analog membranes (to sum
the input) in the discussed models. One of the main fu-
ture goals is to understand the computational power of
systems based on these concepts to solve more complicat-
ed problems. It seems that one can gain a logarithmic
time [=(time) X (size)] in comparison to the usual sequen-
tial or parallel dynamics. The possibility of gaining
higher orders of computational time in more complicated
problems certainly deserves further study, and may help
to understand the advantages of such dynamics in biolo-
gy in correspondence with information theory.

Simulations on larger systems and with better statistics
or analytical progress are necessary in order to verify our
results.

Finally, we would like to mention that the limit of a
finite connectivity, where each neuron receives a finite
number of inputs, seems to be a limit where one can
simulate much larger systems. However, from some
simulations that we made it seems that the fluctuations
are much larger in this limit. Nevertheless, a conver-
gence time of O (InN) seems to be the natural time scale,
due to the fact that almost all loops in the system are of
O(InN).'" Therefore it takes O(InN) steps for a local
event to influence the whole system. We would like also
to stress that in asymmetric systems!! with finite connec-
tivity one can analytically prove that the convergence
time is of O (InN). "2
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Note added. After this work was completed, I received
a copy of unpublished work by Komlos and Paturi which
proves that in the thermodynamic limit of the LH model
and in the case of a perfect retrieval [@7=O(1)] the con-
vergence time under parallel dynamics is O (InlnN).
Furthermore, in the case of a finite a after In(1/a) paral-
lel steps the overlap is greater than or equal to
1—exp(—1/4m,) and remains within this distance.
Therefore this work proves that, in the thermodynamic
limit and for large enough initial macroscopic overlap, in
practice one can terminate the dynamical process after a
small number of steps.
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