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Energy transport by lattice solitons in a-helical proteins
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Yomosa's model for peptide chains is generalized in two respects. (1) The internal vibrations of
the peptide groups are incorporated by considering a one-dimensional lattice with alternating
masses and alternating linear and nonlinear interactions for the intrapeptide bonds and the hydro-

gen bonds between the peptide groups, respectively. (2) Discreteness effects are taken into account
by applying a new version of Collin's quasicontinuum approach. In the cases in which this ap-
proach is not sufficient, we apply an iterative method where the accuracy can be increased systemat-
ically. We obtain very narrow solitons with lower and upper velocity limits. Our results have been
confirmed by computer simulations. The lifetime of the solitons is finite due to the emission of opti-
cal phonons. However, using a-helix parameters, this effect is negligible.

I. INTRODUCTION

For the past 35 years the question of energy transport
in muscle proteins has gained considerable attention.
The biological energy quantum is given by the hydrolysis
of adenosine triphosphase (ATP) as 0.42 eV. It is as-
sumed that this energy is transported practically without
loss through the macromolecules and is eventually used
for the contraction of muscle fibers. The soliton concept
can give an elegant answer to this question because here
the dispersion of the energy can be prevented by non-
linear effects.

The fibers of striated muscles in vertebrates contain
many myofibrils consisting of sarcomeres. Each sar-
comere consists of parallel-running thick and thin fila-
ments. The basic mechanism for muscle contraction con-
sists of sliding the thin filaments relative to the thick
ones. ' This sliding can be described by phenomenological
models consisting of a sequence of molecular processes. '

The thick filaments consist of myosin molecules, which
0

resemble rods with a diameter of about 40 A and a length
of about 1600 A. The myosin consists of two polypeptide
chains forming a double Q.-helical structure. At one end
there are globular heads where the ATP hydrolysis takes
place.

In each helix there are three chains of peptide groups
coupled by hydrogen bonds. Beginning in 1973,
Davydov has developed a quantum theory for solitons
on these hydrogen-bonded chains. The idea is that the
energy from the ATP hydrolysis leads to an excitation of
the amide-I vibration in the first peptide groups at one
end of the chain. This vibration has an energy of about
0.205 eV and an electric dipole moment of 0.30 debye
which is directed approximately along the helix axis. By
the dipole-dipole interaction the next peptide groups on
the chain can be excited, and so on. However, in this
way the energy would not be transported but only
dispersed. The essential point in Davydov's assumption
is that the vibrational excitations are coupled nonlinearly
to a deformation of the hydrogen bonds. If the coupling
exceeds a certain threshold, solitons can be formed which

are solutions of a nonlinear Schrodinger equation. Fur-
ther assumptions must be made in order to explain how
the solitons eventually produce a relative sliding between
thick and thin filaments (see above).

Davydov's model has been refined or modified by
several authors, which we do not discuss here because the
stability of the solitons now appears to be questionable.
Both thermal and quantum fluctuations reduce the life-
time such that it may not be large enough for the biologi-
cal energy transport. (However, for one of the modified
models the stability against thermal fluctuations seems to
be better. ) Moreover, some doubts have appeared re-
cently as to whether the nonlinear Schrodinger equation
can be derived properly from Davydov's Hamiltonian.

In 1984 Yomosa proposed an alternative model that is
much simpler than Davydov's model because only the
hydrogen bonds are involved in the energy transport.
The peptide groups are rigid; i.e., they are represented by
single masses which are coupled by strongly nonlinear
hydrogen bonds. Thus the energy is transported by lat-
tice solitons, which has several advantages.

(i) The conditions for the occurrence of solitary waves
on a one-dimensional lattice are very weak this means
that every realistic interaction potential can be used, e.g. ,
Lennard- Jones or Morse potentials. Solitons in the
mathematical sense exist only for a completely integrable
model, the Toda lattice, but for simplicity we will gen-
erally use the term soliton.

(ii) Lattice solitons are nontopological; i.e., there is no
energy gap. Thus the whole energy of a soliton can be
converted into mechanical work for the muscle contrac-
tion. By contrast, Davydov solitons show an energy gap
and only the kinetic part of the energy can be converted.

(iii) Using lattice solitons, a molecular interpretation
can be given for the phenomenological "rowing boat"
model which describes the relative sliding between thick
and thin filaments (see above).

(iv) Molecular-dynamics simulations by Perez and
Theodorakopoulos" have shown that lattice solitons are
very stable against thermal fluctuations, even at room
temperature. Moreover, the lattice solitons are more
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stable than Davydov solitons if collisions between the two
types of solitons are considered. "

(v) Quantum mechanics is necessary only for the initial
condition. The idea is that the energy quantum of 0.42
eV released by the ATP hydrolysis produces impulsively
a pulselike compression of the hydrogen-bonded lattice.
According to the inverse scattering theory, ' an arbitrary
initial pulse develops into a finite number of solitons plus
a radiative background (phonons). This result holds for
integrable classical systems. However, at least for one in-
tegrable quantum lattice model solitonlike excitations
have been found: For the quantum Toda lattice in the
strong-coupling regime there is a branch of excitations
with a dispersion curve (energy vs momentum) which is
practically identical to that of the classical solitons,
though the ground state shows large quantum Auctua-
tions. ' In Appendix A we show that a quantum Toda
lattice with Yomosa's a-helix parameters is in fact in the
classical regime. Moreover, in the classical limit energy
and momentum of the solitary excitations are fi-free, con-
trary to the phonons which are semiclassical. ' ' For
nonintegrable lattice models we assume that the situation
will be qualitatively similar. In Sec. VII we outline a
method to check whether such a model is in the classical
regime.

For the above reasons lattice solitons are very good
candidates for the energy transport. In this paper we
generalize Yomosa's model in two ways; (i) The peptide
groups are no longer rigid. For simplicity we consider
only one internal degree of freedom (Sec. II) which leads
to interesting new features for the solitons (Sec. IV); the
generalization to more degrees of freedom is straightfor-
ward (Sec. VII). (ii) Contrary to Yomosa, we do not
work in the continuum limit. In fact, discreteness effects
turn out to be decisive. These effects are first taken into
account by applying the quasicontinuum approach
(QCA) of Collins we use a recent rederivation of the
approach in Fourier space' which offers several advan-
tages (Sec. III). However, at least for a part of the
relevant energy range, the QCA is not sufficient (Sec. V).
Therefore we apply an iterative method' where the accu-
racy of taking into account the discreteness effects can be
increased as much as necessary (Sec. VI). Finally, we
discuss the energy loss of the solitons due to the emission
of optical phonons (Section VI). The results of the vari-
ous sections are always checked by computer experi-
ments.

II. MODEL

quency Qo (Fig. 1). The resulting Lagrangian is

L = g [—,'Mi A „+,'M—2B„—V( A„+i B—„)

—
—,
' m Qo(B„—A „) ], (2.1)

where m is the reduced mass; A„and 8, are displace-
ments from the equilibrium positions.

The neglect of anharmonic terms for the internal vibra-
tions is justified by the fact that the covalent bonds
within the peptide groups are considerably stronger than
the hydrogen bonds. Thus the relative displacements for
the internal motion,

b, „=(B„—A„)la, (2.2)

are expected to be much smaller than the relative dis-
placements

y„=(A„+,—B„)/a (2.3)

5V
0'n +&

5y„
1

(p, b,„+b,„+)=0,
1+p (2.4a)

=0, (2.4b)

with the mass ratio p =M& /M2.
As A„appears only linearly, it can be eliminated,

which leads to a fourth-order equation in time

a2 av
9'n+9'n+&

+e e 2
5V

&0'n &0'n+ & &V'n —
&

=0, (2.5)

with

P
(1+p)

m

M ' (2.6)

of the hydrogen bonds.
A„and y„are defined in units of the equilibrium dis-

tance a of neighboring hydrogen bonds, times in units of
Qo ', and energies in units of m Boa . After this scaling
we write the nonlinear interaction in the form aV(y„)
where the harmonic part of V has the form —,'cp„. The di-
mensionless parameter e measures the strength of the
nonlinear interaction compared to the linear one. In this
notation the equations of motion are

Following Yomosa and Perez and Theodorako-
poulos" we consider a one-dimensional lattice of
hydrogen-bonded peptide groups. The nonlinear interac-
tions between neighboring peptide groups are described
by a suitable potential V, e.g. , a Toda potential or a
Lennard-Jones potential, with parameters from the litera-
ture (Sec. V).

In contrast to Refs. 9 and 11 we do not neglect the
internal vibrations of the peptide groups. As a first ap-
proximation we describe each group by two masses M,
and Mz coupled by a linear interaction with eigenfre-

M,

FIG. 1. Peptide chain modeled by a diatomic lattice with al-
ternating linear and nonlinear interactions for the intrapeptide
bonds and the hydrogen bonds between the peptide groups, re-
spectively.
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where M =M, +M2 is the total mass.
Linearization (5V/5'„= q „) yields the dispersion

curves of acoustic and optical phonons
]/2

the Fourier transforms exist,

y(q) = f dz e '~'y(z) (3.3)

The sound velocity is
1/2

Cs cm .

1+et 1+ 1
16tz, . , q (2.7)

(2.8)

and b, (q). Moreover we define the force

F(z) =ct 6V
ficp z

and its Fourier transform F(q).
The equations of motion (2.4) now read

(3.4)

III. QUASICONTINUUM APPROXIMATION

q„(t) =(p(n ct) =-(p(z)—
with velocity c, satisfying the boundary conditions

d'
lim g(z) =0, 1 =0, 1,2, . . .

dz

(3.1)

Because of these conditions, and analogous ones for A(z),

For the diatomic chain with nonlinear nearest-
neighbor interactions, a standard decoupling technique in
the continuum limit' can be used and yields "acoustic"
pulse-type solitary waves and "optical" envelope-type sol-
itary excitations. ' These calculations are rather in-
volved, even more for our model which has not only al-
ternating masses but also alternating interactions.

We prefer not to apply this method because there are
two general problems. (i) Only polynomial interaction
potentials can be used; usually the realistic potentials are
expanded up to the fourth order, assuming that the
anharmonicities are small. (ii) In the standard continuum
approximation the difference operator is expanded up to
a certain order which can lead to an ill-posed Cauchy
problem. This difficulty occurs because the dispersion
due to the discreteness of the system is not taken into ac-
count consistently.

For the monoatomic chain both problems have been
overcome by the quasicontinuum approximation (QCA)
of Collins' for solitary waves and periodic modes. Here
the difference operator is inverted instead of expanded.
Rosenau developed a still more general approximation
scheme which reduces to the Collins result in the case of
solitary waves.

For the diatomic chain, Collins ' considered only
pulselike solitary waves. We are not interested here in
the optical solitons because for the energy transport the
pulse solitons are much better candidates. (i) They are
supersonic, in contrast to the optical ones. (ii) The mech-
anism needed for the conversion of the energy into a
shortening of muscle fibers seems to be simple only for
pulse solitons.

Since the QCA overcomes the above mentioned prob-
lems we now apply it to our diatomic model with alter-
nating interactions. However, we use a recent rederiva-
tion of the QCA in Fourier space. ' This formulation is
much simpler than the original one' and can easily be
generalized from the monoatomic chain to our model.

We are interested in solitary waves

1—c q tp+F —(e'~+p, )b, =0,
1+p

(
—c q +1)b,— (e 'q+p)F=O

1+p
The elimination of 5 yields

c q (1 —c q )y(q)=[4c sin (q/2) —c q ]F(q),

(3.5a)

(3.5b)

(3.6)

which can also be obtained directly from (2.5).
According to Ref. 17 the QCA now consists of the fol-

lowing steps. We write (3.6) as

A (q)g(q) =F(q) (3.7)

and expand A (q) in a Taylor series for ~q ~
(q„where q,

is the radius of convergence. A truncation after the
second term and an inverse Fourier transformation yields
a second-order differential equation

aoy(z) —a~@"(z) =F(z), (3.8)

which allows the pulselike solutions we are interested in.
In fact, (3.8) has the structure which occurred already in
the monatomic case, ' ' apart from the coefficients
which here have the form

c 2

2 2
Cm C

2
m 2

12(c —c )

(3.9)

(3.10)

Since F is the functional derivative of V(y(z)) the in-
tegration of (3.8) yields the general result

—,'a, [q'(z)]'+ V,tr(q(z))=0,

with

(3.1 1)

(3.12)

c, (c &c (3.13)

which means that we get supersonic, compressiona1 soli-

where we have set Vc,'0) =0.
Because of c ~

—,', a2 in (3.11) is always positive and
can be interpreted as an effective mass. Equation (3.11)
has pulselike, solitary solutions if there is a range of g for
which V,a(y) ~0, where the equality must hold at the
boundaries of this range. For the intermolecular poten-
tials we are considering we have V,a(y) ~ 0 for a negative
range y, ~ p ~ 0, with ao )0 and a (ao (because
V =q /2 for small y). These conditions lead to
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tary waves with amplitude y, . The meaning of the upper
limit c will be discussed in Sec. IV.

The shape &p(z) of the pulses is obtained by the integra-
tion of (3.11),

(3.14)

2c

V(V»= ,'(q' -2A'—+21'q'» (3.15)

where 9P ( 16y, the integral (3.14) can be evaluated
analytically and yields in the case of compressional pulses

This integral must be calculated numerically in the case
of the Toda or Lennard-Jones potential. However, if we
use an expansion of these potentials up to the fourth or-
der, q, qp

FIG. 2. Phonon dispersion curves. co+(q), optical; ~ (q),
acoustic; co (q), monatomic from (4.2). The intersections with
the straight line cq (c is the soliton velocity) are discussed in
Secs. IV and VI. Parameters: a=0.6, p=2, and c/c, =1.3.

g(z) =
I+[(cp~ —

&p, )/y~]sinh (Qz)
(3.16)

with

2 2 2
y C C& C~

cPi~2= 1-+ 1+2
2y

1/2

(3.17)

q'&q'z
2 2

(3.18)

p+e C2 2

&(q) = , , g(q) .
I+@ 4c sin (q/2) —c q

(3.19)

In order to be consistent with the approximations leading
to (3.8), we expand (3.19) to order q and perform an in-
verse Fourier transformation which yields

b(z) =ao p(z) — p'(z)1

1+p

For the relative motions within the peptide groups we
obtain from (3.5a) and (3.6)

c, &c «c (4.3)

otherwise q, is very small and the Fourier transform y(q)
cannot be negligible for ~q

~ q, .
Moreover, the lower limit c, leads to a further restric-

tion. The sound velocity

co (q) =2c ~sin(q/2) ~. Going back to the original units,
can be identified as the dispersion of a monatomic

chain of masses M=M&+M2 with a linear interaction
with coupling constant m Ao. For this reason we see now
that the upper limit c for the soliton velocity in (3.13)
results from the linear interaction in our diatomic model
with alternating linear and nonlinear interactions. For
the usual diatomic model there is no upper limit for the
velocity. '

In practice, i.e., for solitons with a finite width, the
condition (3.13) even must be tightened to

1

2(1+@)
aoc 2

rp" (z)
12c

(3.20)
c, =[a/(1+a)]' c (4.4)

IV. VELOCITY RANGE FOR THE
QUASICONTINUUM APP ROACH

There are restrictions for the velocity of the solitons,
both for technical reasons and in principle. We discuss
the latter point first. In (3.7) the function

A (q)= cq(1 —cq )

c sin (q/2) —c q
(4.1)

has been expanded in a Taylor series which implies that
the Fourier transform @(q) of the solitary wave must be
negligible for ~q~ ~q, . Here q, is the radius of conver-
gence, defined by the first nontrivial solution of

2c Isin(q/2)
~
=cq . (4.2)

In Fig. 2 this condition is visualized as the intersection of
the straight line cq with the dispersion curve

is the slope of the acoustic branch co (q) for q~0 (Fig.
2). In order to ensure a certain range of soliton velocities
satisfying both conditions in (4.3), we must demand
a « 1. In fact, this is fulfilled for our model since the hy-
drogen bonds between the peptide groups are consider-
ably weaker than the covalent bonds within these groups
(a is the ratio of the coupling strengths, see Sec. II). In
Sec. V we will give estimates for a.

So far we have discussed only the limitations which re-
sult from the finite radius of convergence for the Taylor
series of 2 (q). Moreover we must test whether the trun-
cation (3.8) behind the second term of the series is
justified. For a given mass ratio p, i.e., for given c, we
choose a velocity c satisfying (4.3) and estimate the q
range for which the truncated expansion agrees well with
A (q). Then we choose a potential V and calculate the
solitary wave &p(z) which belongs to c. Its Fourier trans-
form p(q) must be negligible outside of the above men-
tioned q range. The results of this test are given in Sec.
V.
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V. SOLITARY WAVES FOR REALISTIC
PARAMETER VALUES

A( )

The lattice constant a for the H-bonded peptide chains
in the a helix is about 4.5 A. For the eigenfrequencies
of a peptide group we choose as a representative value

Qp =3. 1 1 X 10' sec ' from the amide-I vibration. The
total mass M=M&+M2 corresponds to the mass of a
peptide group plus an average residue in a muscle pro-
tein, which gives together about 100 proton masses. "
The mass ratio p=M, /Mz is kept as a free parameter
which is varied between 1 and 10 (our results are invari-
ant under the transformation p~ 1/yM).

We model the hydrogen bonds between neighboring
peptide groups by a suitable nonlinear interaction, e.g., a
Toda potential with parameters fitted to an ab initio self-
consistent-field molecular-orbital (SCF MO) calculation
for a H bond in a formamide dimer. In our dimension-
less units this corresponds to

FIG. 4. 3 (q) from (3.7) and its truncated Taylor expansion
(solid and dashed line, respectively), for @=1 and c/c, =1.05.
For comparison y(q) using a Toda potential is shown.

a VT(yp) = [exp( 13yp)+P—yp I ], — (5.1)

with f3=18 and a=0.001 23/c . (Note that in Sec. III
the interaction was introduced in the form czV, where
V=cp /2 for yp~0. ) With these parameters the sound
velocity is c, =4900 m/sec for 1 + p + 10.

As a second example we take a Lennard-Jones poten-
tial with parameters fitted to the equilibrium distance a
and the bond energy, " which gives

VLJ(q»=
1 1

72 (1+cp)y2
' .+1

( I+yp)
(5.2)

. 15 .

and a =0.000 811/c,„.The corresponding sound velocity
is about 4000 m/sec for 1~p ~ 10.

For fixed mass ratio p, i.e., for fixed c, we choose a
velocity c from the range (4.3) and calculate the corre-
sponding solitary wave yp(z) by (3.14), and its Fourier
transform &p(q). A first test shows (Fig. 3) that
yp(q, )/yp(0) is indeed negligible for a large range of veloc-

ities (about 30% above c, ) as expected from the discus-
sion of the radius of convergence q, in Sec. IV.

However, this large velocity range is considerably re-
duced by the second test described in Sec. IV. For the
potentials and parameter values used here, the QCA is
valid for velocities c which do not exceed the sound ve-
locity by more than about 5 —10%; Fig. 4 shows an ex-
ample for c = 1.05c, .

Eventually we perform a final test by comparing with a
computer simulation: We take (3.14) and (3.20) as initial
conditions and integrate the difference-differential equa-
tions (2.4) numerically (see Appendix B). The time evolu-
tion of a single pulse (Fig. 5) shows that the QCA solu-
tion is a good approximation: Only very small oscillations
(phonons) appear immediately after the start; after a
while these phonons are left behind and the pulse travels
without changing its shape (see Sec. VI, however). Figure
6 shows the scattering of two solitons.

After these tests we turn to the essential question
whether the solitons of the QCA can transport enough
energy. Figure 7 shows the energy E of a single soliton as
a function of c/c, (for both our potentials). E must be
compared with the biological energy quantum of 0.42 eV
(see the introduction). Yomosa assumed that these
quanta set the initial conditions for the lattice solitons.
Naturally, an arbitrary initial condition generally pro-

. 10 .

0.05 .

FIG. 3. Fourier transform g of the QCA solution at the ra-

dius of convergence q, of the Taylor series of (4.1) as a function
of the soliton velocity c. Toda and Lennard-Jones potentials
from Sec. V (solid and dashed line, respectively), with p = 1.

/ / 3268
/ }(y/t

/ }( y /
/

/ y / 1634

/ }(" /
/ )I " /

/

-0.016-
100 rI 200

FIG. 5. Computer simulation for a chain of 200 unit cells, us-
ing a QCA soliton with c/c, =1.05 as initial condition, a Toda
potential, and p= 1.
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FIG. 6. Collision of two QCA solitons, same parameters as in

Fig. 5.

This method can also be applied to the pulse-type soli-
tary waves of our diatomic model: Our basic equation
(3.6) can be written in the form

p(q) = A '(q)F(q), (6.1)

which already suggests an iteration because F(q) is the
Fourier transform of F(y(z) ), see (3.4). However, instead
of (6.1) we use a slightly different form which will turn
out later to be more convenient: We first split off the
linear part of the force (3.4) and denote the nonlinear part
by 6

F(qr(z)) =a[p(z)+G(y(z))] . (6.2)

duces several solitons plus an oscillatory background.
Knowing that nature usually works fairly effectively, and
in order to be on the safe side, let us assume that the en-
ergy of one quantum essentially goes into one or two soli-
tons. Then we see from Fig. 7 that we need a velocity of
at least 1.2c, for which the QCA clearly is no longer val-
id. Naturally, this velocity is only a rough estimate that
depends on the energy unit m Boa, i.e., on our choice of
Qo. But in any case we need a new method in order to
handle the case of larger velocities, and this is presented
in Sec. VI.

Inserting (6.2) into (3.6) and isolating y we get

a[c2q 2 —to (q) ]
q(q)=

[c q
—co (q)][c q

—co (q)]
G(q), (6.3)

where co+(q) and co (q) are the dispersion curves (2.7)
and (4.2), respectively.

Similar to the monatomic case, ' an iteration for (6.3)
would converge only to the trivial solution y(z)—:0. This
can be prevented by keeping @(0) constant during the
iteration. ' This condition leads to the elimination of c
from (6.3), and thus to a new iteration procedure

VI. ITERATIVE METHOD AND STABILITY
a[c; q

—coz (q)]

[c, q
—co+(q)][c;q

—co (q)]
(6.4)

With increasing velocity and energy the solitary waves
become narrower, their width can be in the order of the
lattice constant. In this case the QCA can no longer
work. It also would not help to take more terms of the
Taylor expansion of A (q) in (3.7); the resulting higher-
order differential equations cannot be integrated like
(3.8). Moreover, even the infinite Taylor series cannot
fully represent A (q) because of the finite radius of con-
vergence.

Recently for the monatomic chain an iterative
method' has been developed. Here the accuracy of tak-
ing into account the discreteness effects is increased sys-
tematically. In the case of the Toda lattice the iteration
converges to the exact one-soliton solution.

with

g;(0)+ G;(0)

y, (0)+c, /c G;(0)
(6.5)

This implies c, &c; &c, i.e., the same condition as for
the QCA, cf. (3.13).

Each iteration consists of 4 steps:

G, (z) = G(q, (z)),

G, (q) by Fourier transformation,

calculation of y,. +,(q) by (6.4),
y, +,(z) by inverse Fourier transformation .

E (eY} X
X

As starting function p, (z) we choose the QCA result.
The elimination of c from (6.3) means that the iteration

process does not select a solution with a given velocity c,
but a solution with a given integrated amplitude

g, (0)=f dz qr, (z) . (6.6)

'5 c/c, ~

FIG. 7. Soliton energy vs velocity c, using Toda interactions
(solid line, QCA result; x, iterative solution) or Lennard-Jones
interactions (dashed line, QCA; y, iterative solution).

c, changes during the iteration and converges towards a
value which usually is considerably lower than the initial
one (Fig. 8). By the way, this behavior is qualitatively
similar to that during a computer simulation: Starting
with an approximate solution as initial condition, an
adaptation to the lattice by the emission of phonons is ob-
served. The resulting solitary wave has a lower velocity
(and energy) than the initial wave.

For the potentials and parameters used here, a
sufhcient convergence is achieved after at most eight
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C;

5 10 15
I

FIG. 8. Velocities c; from (6.5) during the iteration, for 3 ini-

tial velocities c =4c 3 2c„3c„2c„using a Toda potential and p= 1.

/ t.

( I /
/ 722

r
/0

-0. 150-
0

I

100 r1 200
FICx. 10. Collision experiment, using as initial data two very

narrow solitons (with c/c, =1.9) from the iterative solution; for
a Toda potential and p= l.

c;q =co+(q) . (6.7)

The existence of the pole means that (6.4) makes sense
only if G(q) and @(q) are negligible for ~q ~

~ qo. In prac-
tice a cutoff is necessary in each step of the iteration, see
Appendix B.

(a}
—~~ 2675

II j
/

&no
-0.075-

0
I

100 rI 200

/ 2675
~/ t

1J
' /

l/
~ /i

/ 1003
'I /

/0

/
/

/
/

/
/

/
jr/

-0.0'75-
0

I

100 rl 200

FICx. 9. Computer experiments with solutions for
c/c, = 1.28. (a) QCA result; (b) iterative solution as initial con-
dition, using a Toda potential and p = 1.

iterations. As a test, the results were used as input for a
computer simulation. Contrary to the QCA result for a
velocity outside of the validity range [Fig. 9(a)], the
shape of the pulse remains unchanged, no adaption to the
lattice is observed [Fig. 9(b)]. The soliton character of
the pulses is also seen clearly in scattering experiments,
even in the highly discrete regime (Fig. 10). Figure 7
shows the soliton energies; they are considerably higher
than the QCA results for the same velocities.

However, a complete convergence cannot be achieved,
i.e., an exact solitary wave solution probably does not ex-
ist. In fact, contrary to the monatomic case, ' our itera-
tion procedure (6.4) shows a pole, namely, at the solution

qo of

Contrary to the finite convergence radius q, which lim-
its the validity range of the QCA (Sec. IV), the oc-
currence of the pole is not a technical problem but is con-
nected with a physical effect. Peyrard et al. showed by
computer simulations and theoretical investigations that
a solitary wave with velocity c cannot be stable if the line
cq has an intersection with one of the phonon branches

th
co q . The solitary wave permanently looses bes energy y
t e emission of phonons, their frequency spectrum is cen-
tered around co~cu~qo,', where qo is the intersection point.
Due to the energy loss the velocity c decreases gradually,
and the width of the wave increases. Thus the discrete-
ness effects which are responsible for the phonon emis-
sion become smaller and smaller. Eventually the solitary
wave is practically stable because the energy loss is ne li-
gible.

s is neg i-

This scenario appears for our model, too. The condi-
tion (6.7) corresponds to the intersection of c,q with the
optical-phonon branch (Fig. 2). In a computer simulation
two very different time scales appear: Starting with any
initial condition, including the QCA result, the above-
mentioned adaptation to the lattice needs only a rather
short time [Fig. 9(a)], this adaptation is not necessary
when the result from our iterative method is used as ini-
tial condition [Fig. 9(b)]. Contrary to the adaptation pro-
cess, the emission of optical phonons occurs for a much
onger time, in principle it goes on forever while the soli-

tary wave disappears asymptotically.
However, this effect is extremely small when a-helix

parameters are used. For example, in Fig. 9(b) no pho-
non emission is seen. The situation can be illustrated by
drawing Fig. 2 using these parameters: As cx is very small
(Sec. V) th) ere is a wide gap between the acoustic- and
optical-phonon branches, and the intersection point qo is
far outside of the first Brillouin zone (e.g. , qo =5' for
c=2c, ). Therefore the above condition for the conver-
gence of the iteration [negligible y(qo) and G(qo)] is
indeed very well fulfilled. We conclude that the energy
loss due to the emission of optical phonons is negligible in
the case of the e helix.

VII. CONCLUSION

Lattice solitons remain good candidates for the energy
transport in the o. helix when an internal vibration mode
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of the peptide groups is taken into account. Our theory
can easily be generalized for a lattice with a basis of more
than two atoms; e.g. , three masses representing a peptide
group N —C =0. The essential point, which allows the
elimination of coordinates in the equations of motion, is
the neglect of anharmonicities for the internal vibrations.
This neglect is justified because the covalent bonds within
the peptide groups are considerably stronger than the hy-
drogen bonds between the peptides.

Discreteness effects are very important. They are par-
tially incorporated by the quasicontinuum approxima-
tion. However, for the parameters of the a helix, a sys-
tematic implementation of the discreteness is necessary,
which is achieved by an iterative method. The conver-
gence of this method is limited in principle by an instabil-
ity of the solitons due to the emission of optical phonons.
However, this effect turns out to be negligible.

As molecular dynamics simulations have shown that
solitons on monatomic lattices are stable against thermal
fluctuations, " we expect that the same will hold for our
diatomic lattice.

In our opinion, there are two points which should be
settled next.

(1) We must check whether our model is indeed in the
classical regime. Contrary to the test for the Toda lat-
tice, for which the quantum version can be treated exact-
ly by the Bethe ansatz (see introduction), our model is not
integrable. Nevertheless, an estimate can be given: The
canonical momentum p of a soliton can be calculated by
two different methods. If the de Broglie wavelength
A, =h/p turns out to be much smaller than the width of
the soliton, we are in the classical regime. (This estimate
is equivalent to the use of the uncertainty relation in Ap-
pendix A. )

(2) Models are necessary which describe in detail how
the energy released by the ATP hydrolysis can be con-
verted into a compressional pulse, serving as initial condi-
tion for lattice solitons.
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APPENDIX A

For the monatomic quantum Toda lattice with the in-
teraction

(Al)

a dimensionless coupling parameter

m co

Ay
(A2)

APPENDIX B

Two numerical procedures are used in this work. The
first is a computer simulation, i.e., the solution of the
equations of motion (2.4) for a chain of 401 particles (200
lattice constants, free boundaries) for a given initial con-
dition. Here a fourth-order Runge-Kutta scheme with
automatic step-size control is used. The time step is
chosen such that the energy of the chain is conserved
within a relative accuracy of 10 . During the simula-
tion, time and length are scaled such that both the veloci-
ty of sound c, and the absolute value of the maximal cp„
are equal to 1.

The second procedure is the iteration (6.4). Here the
Fourier transformations are performed as described in
Ref. 17. Because of the pole in (6.4) at qo defined by
(6.7), a cutoff' is necessary for g, +,(q). A sharp cutoff
would induce oscillatory tails in y, +,(z), which are
unwelcome since we expect a pulselike form. Therefore
we replace g;+, (q) for ~q ~

~ q, by an exponential decay-
ing function; here q &

must be chosen such that
y, +,(q, ) ((y, +,(0). In practice we take one of the grid
points close to the first zero of @,+,(q).

can be defined. ' The strong coupling regime C))1 is
equivalent to the classical regime E„~))E h, where
E„,=men /y and E „=%co are typical soliton and pho-
non energies, respectively. In practice, already for C ~ 5
the dispersion curve for the supersonic excitations cannot
be distinguished from that of the classical solitons.

The classical regime can also be obtained from an un-
certainty relation. The position of a soliton can be deter-
mined within about a lattice constant a, the canonical
momentum' of a soliton is in the order of mco/(y a),
which yields again C)) 1.

Yomosa modeled the hydrogen bonds of the a helix
by a Toda potential with the parameters @=4 A ' and
mes /@=0.31 eVA '. With m being on the order of
100 proton masses we get m co /y =0.08 eV and
Ace=0. 0073 eV; thus C =11, which is clearly in the clas-
sical regime.
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