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Mass transport and mixing by modulated traveling waves
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Particle transport and mixing in modulated traveling waves in a binary-fluid mixture heated from
below is studied numerically. The fluid divides into three regions separated by Kolmogorov-
Arnol'd-Moser curves: a core region where particles are carried along with the wave (trapped), an
outer region where particles are left behind by the wave (untrapped), and a separatrix layer between
the two where particles chaotically alternate between being trapped and untrapped. The probability
distributions for the lengths of individual trapped and untrapped events are sharply peaked at small
times, have a power-law decay, and exhibit similar complex structure. The core and outer regions
are responsible for long-range transport with no diffusion. The chaotic separatrix layer gives rise to
long-range transport with enhanced mixing and anomalous diffusion, where, for long times
(x'(t) ) —(x (t) )'-t', 1 & v & 2.

I. INTRODUCTION

Hydrodynamic waves are of fundamental importance
in many branches of physics, and both linear and non-
linear waves have been extensively studied. Less well
studied, however, are the mixing and transport properties
of such waves, which require a Lagrangian description.
As is well known, linear waves do not cause mass trans-
port; nonlinearities are required to produce a nonvanish-
ing Stokes drift. ' In addition, wave momentum or ener-
gy are transported if the waves break or dissipate. In the
present paper we point out that quite simple waves may
cause the fluid elements through which they pass to exe-
cute complex or chaotic motions leading to enhanced
mixing and long-range transport. Such mixing occurs
only in the coarse-grained sense, however, since fine mix-
ing requires diffusion processes at the molecular level.
These processes, which allow interchange of mass be-
tween neighboring fluid elements, are absent at the level
of idealization represented by the equations of hydro-
dynamics. At this level the problem, may, therefore, be
formulated in terms of fluid elements, hereafter referred
to as "particles, " which retain their identity during
motion.

To make the above suggestion more concrete we focus
on two-dimensional quasiperiodic waves in an incompres-
sible fluid. Then the equations of motion for the particle
trajectories can be written in the form of Hamilton's
equations,

aq(x, z, t) . aq(x, z, t)
Bz Bx

where x,z are, respectively, the horizontal and vertical
coordinates and P is the stream function of the flow. In
Eq. (1) the physical space occupied by the fluid is the
phase space of the system, and the stream function is the
Hamiltonian. If the stream function is time dependent
then the particle trajectories may be chaotic even though
the Eulerian low is laminar. Such a flow is said to

display Lagrangian turbulence or chaotic advection. The
simplest such example arises when P is periodic in time.
Moreover, when g can be written in the form
P(x, z, t) =go(x, z)+6/1(x, z, t), 6 « 1, the resulting parti-
cle motion is close to being integrable and homoclinic or
heteroclinic orbits present in the integrable case may be
broken. In this case it is possible to use ideas from Ham-
iltonian dynamics to investigate the structure of regular
and chaotic regions in the fluid, and to show how this
structure is responsible for the transport and mixing
properties. When Eq. (1) describes motion in a quasi-
periodic wave, the above discussion applies to a suitably
defined comovi ng stream function. Consequently, the
phenomena described in this paper are quite general, and
are expected to be of relevance to two-dimensional quasi-
periodic waves in a variety of physical systems.

We focus on waves in binary fluid convection: a two-
species fluid mixture heated from below. This choice of
system is suggested by recent experiments which re-
veal not only convection in the form of traveling waves
(TW), but also a secondary bifurcation from TW to
modulated waves' (MW). Although the latter bifurcation
occurs in spatially confined waves, its characteristics
agree remarkably well with theoretical predictions based
on the assumption that the wave trains are spatially
periodic. These predictions make use of equivariant bi-
furcation theory to analyze the system near a particular
codimension-two bifurcation, and enable one to deter-
mine explicitly the TW and MW stream functions and
thereby the conditions for the existence of chaotic parti-
cle trajectories in the MW. In the present paper we use
these results to study the role of chaotic advection in
transport and mixing by modulated traveling waves.
This study is complemented by more recent experiments
investigating particle transport in TW, and in time-
dependent Rayleigh-Benard convection.

Earlier studies of transport in Hamiltonian systems
have emphasized transport in the action variable. In con-
trast, the transport which arises in waves exhibiting
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II. TRAVELING AND MODULATED WAVES

The waves which we study take the form of traveling
rolls, i.e., they have a two-dimensional structure in the
horizontal and vertical directions, with translation invari-
ance in the remaining horizontal direction. We shall use
the coordinates g, the horizontal position in a frame
comoving with the TW, scaled such that the TW has
wavelength 2n, and g the vertical position, scaled such
that the bottom and top of the fiuid are at g=0, rr, respec-
tively. The time ~ is chosen such that the TW has unit
phase velocity.

In this comoving frame, the TW stream function is in-
dependent of time,

Po( g, g ) = g+ R cosg si—ng, (2)

and depends on a single parameter, the TW amplitude R.
Equation (2) describes a traveling wave which, in the lab-
oratory frame, moves to the left with unit phase speed.
In the equations of motion for the particle trajectories, go
plays the role of a two-dimensional autonomous Hamil-
tonian. Such a Hamiltonian is integrable " hence the
particles travel along streamlines or surfaces of constant
energy. The TW stream function for R =3.266 is shown
in Fig. 1. At this value of R a secondary bifurcation to
MW takes place. Since the TW is periodic in g we may
take the phase space to be the cylinder

[ (g, g):gE( vr, rr), gE (O, vr) —). The number of times a
trajectory winds around the cylindrical phase space does,
however, have direct physical significance. Two points
which differ in g by 2nn, where is n an integer, obey the
same dynamics, but are in different parts of the wave
train. We shall distinguish these different positions by
their wave-crest number: gE=( —~, n) has wave crest 0,
g&(~, 3n) has wave crest 1, etc. Observe that for R ) 1,
1(o contains two types of orbits: those which appear as
closed curves, and those which wind around the cylinder,
incrementing their wave-crest number. The regions con-

chaotic advection takes place in physical space, and
occurs despite restriction of the motion to a very small
range of action. This transport is similar to that studied
by Geisel et al. „ in a model of a two-dimensional solid. '

In Sec. II we describe the TW and MW stream func-
tions and in Sec. III we give an overview of the transport
and mixing properties of the waves. The chaos gives rise
to episodic trapping and untrapping of particles, in which
particles chaotically alternate between being carried with
the wave and being left behind, resulting in long-range
transport and enhanced mixing. In Sec. IV we investi-
gate the stable and unstable manifolds of fixed points of
an appropriately defined time-T map and discuss their
role in the transport process. In Sec. V we use a surface
of section map, the separatrix map, to study the trapping
and untrapping processes in more detail. The use of
these techniques is validated by detailed comparison with
solutions to Eq. (1). In Sec. VI we investigate the
phenomenon of anomalous diffusion which results from
the existence of cantori, invariant curves which act as
partial barriers to the particle trajectories. Our results
are discussed in Sec. VII.

m/2

FIG. 1. The comoving stream lines in a pure traveling wave
for R =3.266, showing the heteroclinic orbit y separating re-
gions of trapped and untrapped particles.

4(g g &)=00(g g)+&gati(g g r), (3)

where

1 ——cos(g+ag+ g)
2

a

2+ 1+—cos( g ar 9) sing—. —
CX

(4)

The perturbation contains three parameters: the ampli-
tude 6, the ratio n of the modulation frequency to the
TW frequency, and a phase 8. The period of P& is
T=2~/a. We shall use the value of o. deduced from the
experiment, +=0.195, and without loss of generality
take 0=0.

The particle trajectories in the flow described by the
MW stream function (3) are precisely those of an inte-
grable Hamiltonian with a small amplitude nonintegrable
Hamiltonian perturbation, and are given by

6
g =1—R cosgcosg —— 2

1 ——cos(g+ar)

2+ 1+—cos(g —ar) cosg,

5
g, = —R sing sing —— 2

1 ——sin( g+ar)

2+ 1+—sin(g —ar) sing .

taining these two types of trajectories are separated by
heteroclinic orbits connecting pairs of saddle points
which appear on /=0, ~ as R increases through unity.
These special orbits are of particular interest in what fol-
lows.

Near the secondary bifurcation the MW stream func-
tion P contains a small amplitude time-dependent pertur-
bation'
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FIG. 2. Time-T map for a modulated wave with R =3.266,
a=0. 195, 0=0, and 6=0.4. Several initial conditions were
started along the line (=0.

FIG. 3. Wave-crest number vs time for MW trajectories: the
solid lines are particle trajectories, and the dotted line is a point
fixed in the laboratory frame. The parameters are those used in

Fig. 2.

As 6 is increased from zero, we expect the appearance of
hierarchies of island chains, successive breakup of
Kolmogorov-Arnot'd-Moser (KAM) curves, and the ap-
pearance and thickening of chaotic layers. "' Figure 2
is the time-T map when 6=0.4, obtained by numerically
integrating the MW equations of motion (5) for several
initial conditions along the line (=0. The (low in the
empty upper corners can be obtained from that in the
lower center by the symmetry g~g+n, g~tr g. The-
large chaotic layer results from the breaking of the TW
heteroclinic orbit. Three thin islands are visible, one of
which is embedded in the chaotic layer. There are both
chaotic layers and additional island chains within the reg-
ular regions, but they were not found by the initial condi-
tions used in Fig. 2. These structures are typical of
nonintegrable Hamiltonian systems.

The fluid in the MW is divided into three regions. In
the core region particles are trapped and carried along
with the wave. In the outer region particles are un-
trapped and left behind by the wave. These two regions
are also present in the TW. Between the core and the
outer region is a chaotic separatrix layer bounded by
KAM curves. The dynamics and mixing processes re-
sulting from the presence of this layer are the subject of
this paper. Due to the symmetry of the stream function,
the fluid contains core regions surrounded by separatrix
layers at both the top and the bottom of the ffuid. In be-
tween the two separatrix layers lies the outer region. For
simplicity, we shall study the core and separatrix layer at
the bottom of the fluid; the dynamics in the upper core
and separatrix layer is obtained by symmetry.

III. OVERVIEW OF TRANSPORT AND MIXING

The time- T map in Fig. 2 is obtained by plotting
g'(mod2tr). The long-range transport properties of the
fluid, however, are given by the wave-crest number. In
Fig. 3 we plot the wave-crest number versus time ob-
tained by numerically integrating the MW equations of
motion (5) for several initial conditions along the line
/=0. The solid lines are particle trajectories, and the

dotted line is a point fixed in the laboratory frame. The
particles in the core are trapped; hence they remain at
wave crest zero and their trajectories constitute the solid
horizontal line in Fig. 3.

The particles in the outer region increase their wave-
crest number rapidly. Chaotic trajectories in the outer
region are restricted to very thin layers by KAM curves,
and hence also increase their wave-crest number rapidly
and relatively constantly. By comparing with a point
fixed in the laboratory frame, we see that the outer region
constitutes a backflow, with particles streaming in the op-
posite direction of the wave propagation. These trans-
port properties of particles in the core and outer region
have been seen in experiments on traveling waves by
Moses and Steinberg.

The behavior of particles in the separatrix layer ap-
pears dramatically in Fig. 3; the trajectories alternate be-
tween trapped episodes, appearing as horizontal seg-
ments, and untrapped episodes, appearing as steep seg-
ments with slopes comparable to those in the outer re-
gion. Segments with shallow slopes are composed of
many short trapped and untr apped episodes. Both
trapped and untrapped episodes of widely varying dura-
tion are visible in the separatrix layer. The island embed-
ded in the separatrix layer, which is visible in Fig. 2, is
perpetually trapped and shall be considered to be part of
the core. There also may be islands within the separatrix
layer that are perpetually untrapped and are thus in the
outer region. In this way, both the core and outer re-
gions may be composed of several disconnected regions.

Particles in the core are carried large distances as they
travel with the wave. Because they are trapped within
the core, which is bounded by KAM curves, they do not
mix with the surrounding fluid. Within the core itself,
there is mixing due to isolated chaotic layers. This mix-
ing is small since the chaotic layers are very thin for
small 5. Of course, in any real system the wave train is of
finite extent and the core is eventua11y carried to a region
where the wave breaks down. At this point, it is possible
that particles in the core will mix with the surrounding
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fluid. In addition, due to departures from the fluid ap-
proximation, mass can slowly diffuse across KAM
curves. In the context of an idealized infinite wave train,
however, particles in the core experience long-range
transport but do not contribute to enhanced mixing.

Particles in the outer region are trapped in the
backflow and carried large distances in the opposite
direction of the wave. The wave-crest velocity is con-
stant, as seen by the fact that trajectories appear as
straight lines in Fig. 3. Because the trajectories in the
outer region travel at different velocities, the particles
spread out as in a shear flow. The regular trajectories fol-
low one-dimensional curves, and for small 6 the chaotic
layers are very thin; hence the particles do not mix with
one another. As in the core, departures from the fluid
approximation allow mass to cross KAM surfaces result-
ing in a small degree of mixing.

The separatrix layer produces both long-range trans-
port and relatively large enhanced mixing. A single tra-
jectory consists of a sequence of trapped and untrapped
episodes of varying duration. Thus, particles are picked
up and carried with the wave for a while, then they are
dropped and drift backwards (with respect to both the
wave and the laboratory frame) for a while, and then they
are picked up again, etc. In this way, particles from
widely varying regions of the fluid are mixed together. In
addition, particles which start nearby spread out rapidly.
As seen in Fig. 3 the mean transport of particles in the
separatrix layer is in the direction of wave propagation.
This process occurs even at very small values of 6. The
value of 6 controls the width of the separatrix layer, and
hence the fraction of the fluid involved in the process, but
the trapping and untrapping exist for all nonzero 6.

In the remainder of this paper we focus on the hopping
between trapped and untrapped episodes. We shall use
two maps to study different aspects of the dynamics: the
time-T map already introduced, and the separatrix map
(also called the whisker map) introduced by Chirikov' '
to study motion near the separatrix of the parametrically
forced pendulum. The time-T map arises in the formula-
tion of Mel'nikov's method and is the natural choice to
study the role of the stable and unstable manifolds in the
dynamics. The separatrix map, on the other hand, is con-
structed using a surface fixed in phase space and is the
appropriate map when studying the statistics of the hop-
ping. A further advantage of the separatrix map is that it
is simple to construct and can be quickly iterated on a
computer. We find that calculating certain aspects of the
transport requires long-time statistics of the chaotic dy-
namics. In fact, these times are so long as to preclude
direct numerical integration of the equations of motion;
the speed of iteration of the separatrix map is necessary
in order to obtain such long-time statistics.

to the symmetry of the problem, the heteroclinic orbit
along the boundary is not broken. The heteroclinic tra-
jectory y, however, is broken. Let gI and g„be the posi-
tions of the fixed points with g(0 and g) 0, respectively.
There are two manifolds of interest: 8'", the unstable
manifold of the fixed point at (g, g) =(g&, 0), and W', the
stable manifold of the fixed point at (g, g) =($„,0). These
manifolds intersect transversely for nonzero 6, indicat-
ing the existence of a Smale horseshoe. Following Chan-
non and Lebowitz, ' Rom-Kedar et al. ' study how the
lobes of such intersecting manifolds affect particle trans-
port. They show that the time evolution of a small num-
ber of lobes determines the transport properties, allowing
a significant reduction in the numerical calculation of the
transport rates. Further, they show that it is the intersec-
tion of the lobes which is important for transport.

The separatrix layer in the M%' can be divided into re-
gions which are trapped and untrapped for a single itera-
tion of the time-T map. The region which is trapped for
one iteration T consists of those points in the separatrix
layer whose wave-crest number is unchanged in time T.
Similarly, those points whose wave-crest number changes
in time T are untrapped and in region S. The two re-
gions are not invariant. The fact that the image of T is
partially in Vl, and vice versa, gives rise to the alternation
between trapped and untrapped episodes. Figures 4(a)

m/2

( (mod 2z)

Tc / 2

IV. STABLE AND UNSTABLE MANIFOLDS +tDSWA+

As 6 is increased from zero, the fixed points on the
boundary of the fluid persist in the time-T map. Al-
though their positions on the boundary move, the time-T
map must undergo a bifurcation for the fixed points to be
either destroyed or change their stability properties. Due

( (mod 2x)

FIG. 4. (a) The region 7 which is trapped for one iteration of
the MW time-T map. The parameters are those used in Fig. 2.
(b) The region 'M which is untrapped for one iteration of the
MW time-T map. The parameters are t'hose used in Fig. 2.
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and 4(b) show the regions 7 and VL, respectively. These
regions are obtained by numerically integrating the equa-
tions of motion wif t' 'th 5=0 4 for several initial conditions
along (=0 in the separatrix layer.

The regions '7 and '9 are related to the lobes of W' and
Figure 5 is a simplified sketch of these lobes. Since

L lies on the inside of W" it contains particles that would
be permanently trapped when 6=0. However, for 6) 0,
the lobe L is mapped into the lobe L' in one iteration of
the time- map. in-T . Since L ' lies to the outside of W' the
particles in it would be permanently untrapped if 5=0.

1Con sequen y etl the lobe structure determines exact y
which particles become detrapped in one iteration of t e
time- map.-T . Correspondingly, there are untrappped par-

1 which become trapped after one iteration. ustices w ic
into eachunderstanding the way the various lobes map in

other under t e ime-d h t -T map enables one to understand
the process of trapping and detrapping. ' '

Figures 6(a) and 6(b) show 8'" for a=4.0 and 0.195,
respectively, obtained numerically by iterating 5000 ini-
tial conditions lying on the unstable manifold near (I.
Th t bl anifold W' is obtained by reflecting W"esa em
about /=0. When a=4. 0 [Fig. 6(a)] W'" and W oo

ualitatively like the sketch in Fig. 5, and it is easy toquaia'
identify the lobes L and L'. In particular, since L' lies
entirely to the left of g=~, the wave-crest number of the
particles in is no c1

' L '
t changed in one iteration of the time-

T map. As a decreases lobe L' elongates towards larger
values of g, eventually crossing g=~ and winding around

cylinder one iteration of the time-T map will increase the
wave-crest number of those particles in lobe L which ie
in the preimage oh

' f the part of L' winding around the
1' der. Lobe L also responds to decreasing a by

ing around the core. For any value of o., the higher-order
lobes are successively more elongated, and eventually
wrap aroun e cy

'
d th cylinder. Thus successive iterations o

the time-T map cause transport in wave-crest number
even for large a. When a=0. 195 [Fig. 6(b)] even the
low-order lobes are very elongated and parts of W" ap-
pear disconnected due to the extreme stretching of the

f ld d the paucity of initial conditions use .
L '. TheNonetheless, we can still identify the lobes L and . e

latter is the lobe which extends to roughly 3.5~. The lobe

FIG. 5. Simplified sketch of the lobes created by the intersec-
tion of the manifolds W' and W".

(aj

FIG. 6. (a) The manifo1ds W' and W". W' is obtained by
iterating t e ime- mh MW t' Tmap for 500-0 initial conditions near gl.
W' is the reflection ofl f 8'" about (=0. The parameters are
those used in Fig. 2 except a=4.0. (b) Same as (a) except
a=0. 195, and only W„ is shown.

L is its preimage under the map and is obtained by
reflecting the lobe which winds several times around the
core about the line /=0. Since lobe L' extends past 3rr it
wraps around the cylinder twice; a single iteration of the
time-T map can thus increase the wave-crest number of a
partic e in y zero,

'
1

' L b o one or two. Particles come to e in
lobe L because they originally started in a lobe which
eventually maps to L. These lobes may wind around the
cylinder in the negative g direction, causing L to contain
particles which originally had smaller wave-crest num-
bers. In this manner, the winding of the lobes around the
phase space cylinder is responsible for transport in wave-
crest number. The spatial periodicity of the MW ffow
means that the structure of manifolds and lobes is repeat-
ed at each wave-crest number. Successive episodes o

oftrapped and untrapped flow are due to intersections o
lobe L' and its images at one wave-crest number with
lobe L and its preimages at a larger wave-crest number.
For a more detailed discussion of lobe geometry and the

al. "role of lobe intersections, see Rom-Kedar et a . '

The trapped region T and the untrapped region 'M may
be divided into disjoint regions Y, and V/„which are
trapped and untrapped, respectively, for exactly n itera-
tions of the time-T map,
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'T= g '7„, 7 8 "T„=0for mWn
n =1

O'= U 'M„, Vl A Vl„=0 for mWn
n =1

The action of the time-T map is to take each T„+& into
T, and Vl, +, into A„ for n )0. T& and Vl& are mapped
into A' and 'T, respectively; the distribution of the dura-
tion of trapped and untrapped episodes is determined by
the intersections of the image of T, with the A„'s and the
image of A, with the T, 's. For example, if the image of
'T, were entirely in Vl, then all untrapped episodes (after
the first one) would last for five iterations of the time-T
map.

The time-T map, however, fails to capture some essen-
tial aspects of the dynamics. The separatrix layer encir-
cles the core. As trajectories wind around the top of the
core they approach the neighborhood of ((„,0) where
they have two choices: they may continue with positive
velocity and wind around the cylinder, or they may re-
verse direction and wind back around the bottom of the
core. If a trajectory remains at the same wave-crest num-
ber in one iteration of the time-T map it may be because
it wound around the core rather than winding around the
cylinder, or it may be because the particle traveled slowly
enough that it didn't make a choice in time T. On the
other hand, a particle which changes its wave-crest num-
ber may have wound around the cylinder more than once
in time T. A trajectory may even wind around both the
core and the cylinder in time T. Thus, although the
time-T map arises naturally in the study of periodically
perturbed systems, it does not capture some of the crucial
features of the motion near a separatrix. For this reason,
we turn to the separatrix map.

z/2

E (mod 2m)

FIG. 7. Surface of section X used to construct the separatrix
map.

perturbed (TW) stream function

n + I

qn+1 qn+ f
S d7. (9)

Since the time derivative of a quantity 3 (g, g) at time r is
given by the Poisson bracket

dA
(10)

where (g„,g„) is the position on X of the nth intersection.
The value of the stream function at the next intersection
is then

V. THE SEPARATRIX MAP

The separatrix map is an approximate map obtained by
considering the intersection of trajectories with a surface
X fixed in phase space. In the two-dimensional phase
space of the MW, X is a one-dimensional line. Although
the map is insensitive to the exact surface, we choose for
concreteness the surface

where (g, g)=(+(o, 0), go=cos '(1/R) are the positions
of the fixed points of the TW. The surface is sketched in
Fig. 7. In traveling from one intersection with X to the
next a trajectory will either wind exactly once around the
core and be called trapped, or wind exactly once around
the cylinder and be called untrapped. The separatrix
map thus captures the essential dynamics of the separa-
trix layer.

Two different times will be used to construct the
separatrix map. The first, s", is the time of the nth inter-
section with X. Although necessary for the formulation
of the map, s" will not appear in the map itself. The
second time t" is the time at which the trajectory crosses
/=0(mod2m) with positive velocity just prior to the
(n +1)th intersection. Thus t"&s"+' & t" +'.

For each intersection we calculate the value of the un-

we can write Eq. (9) as
n+ 1

Co"=co+&f'' drI&o(u. ) ((.)).Vi(C(r) r(.)') I

Following Chirikov' we approximate the change in go
by evaluating the above integral on the unperturbed
separatrix, rather than along the actual trajectory. De-
pending on whether the particle is trapped or untrapped,
it spends its time near (=0 either traveling to the left
from g=g„ to g=g&, or traveling to the right from g=g„
to g=g&+2m, respectively. Thus in approximating the
true trajectory with the motion on the unperturbed
separatrix we must integrate along different portions of
the boundary /=0 for trapped and untrapped trajec-
tories. But since Po=$, =0 on /=0, the contribution to
Eq. (11) from the motion along /=0 is zero and the dis-
tinction is irrelevant. The only contribution to Eq. (11)
comes from integrating along the heteroclinic connection

The actual trajectory takes a finite time to travel from
the neighborhood of g& to the neighborhood of g„. On
the other hand, a particle following the heteroclinic con-
nection y requires an infinite amount of time to travel
from gl to g„. The replacement of integration along the
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true trajectory with integration along y is accomplished
by integrating from —~ to ~ and adjusting the phase of
gi such that it has the same phase for both trajectories
when /=0. The trajectory on y is parametrized such

that /=0 at r=0, while the true trajectory crosses (=0
at i=t". To match phases when /=0, the explicit time
dependence of fi must thus be a+t" T. he resulting ap-
proximate expression is

q,"+'=—q,"+Sf" drI $0(gy(7), gy(r)), P,((,(~),P,(r),7+t ) I (12)

where (g~(r), g~(r)) is the heteroclinic orbit y. We now
note that the integral in Eq. (12) is precisely the
Mel'nikov function M(t")." The new value of 1(o is thus
approximated by

qn+1 qn+5M(tn) (13)

The explicit form of the Mel'nikov function is

6o.M(t")= — sin(at") f dr/ (~)cos(ar) . (14)
R o r

It remains to find an expression for the time t"+'. In
the same spirit as the approximation used above, we ap-
proximate the time for the actual trajectory to go from
one crossing of (=0(mod2~) to the next by the time a
trajectory of the unperturbed systems takes to complete
one circuit of its orbit. Thus the time between t"+' and
t" is approximated by the period of the unperturbed (TW)
orbit with stream function $0+'. The value Po+' is used
rather than 1(o since the trajectory crosses /=0 with posi-
tive velocity just before it intersects X the (n +1)th time.

The separatrix map is thus

gn + i
p +ngM( )t

n

tn+i —tn+ Z (qn+i)
(15)

where T(go) is the period of the unperturbed orbit with
stream function go. The approximations which go into
Eq. (15), while reasonable, are rough, with no indication
of the size of the corrections. The closer the true trajec-
tories are to the unperturbed separatrix the better the ap-
proximations will be; we thus expect the map to be valid
in the limit of small 5 when the separatrix layer is thin.
Chirikov' tested the validity of the separatrix map in his
study of the parametrically forced pendulum by compar-
ing it with numerical integration of the equations of
motion for the case where the ratio k of the frequency of
the perturbation to the unperturbed frequency is large.
He found that the agreement between the separatrix map
and the numerical calculation was "satisfactory, " and im-
proved as the ratio became larger. In the MW, on the
other hand, the frequency of the perturbation is a, the
appropriate unperturbed frequency is (R —1)'~, the fre-
quency of small-amplitude orbits circling the center of
the core of the TW, and the ratio A, =a/(R —1)'~ &&1.
We thus undertake our own comparison of the separatrix
map with the numerically integrated MW trajectories
which we shall describe below.

The map (15) so far says nothing about whether a tra-

jectory winds around the core or the cylinder. In the
TW, those trajectories with i(o) 0 ($0&0) wind around
the core (cylinder). Thus we make the identification that
when Po) 0 (go &0) the particle is trapped (untrapped)
for the next iteration of the separatrix map. If the parti-
cle is trapped then the wave-crest number remains con-
stant during the next iteration of the separatrix map, oth-
erwise it increases by one. Note that the separatrix map
differs from the time-T map discussed in Sec. IV. In the
latter, the stable and unstable manifolds of a fixed point
may extend over several wave crests if a is su%ciently
small. Consequently, in time T a transition by more than
one wave crest may occur. This process is also captured
in the separatrix map since a trajectory always intersects
the surface X whenever the wave-crest number changes.
In the separatrix map, transitions by An & 1 in wave-crest
number in time T are simply those which require An
iterations of the map before t"+ "—t"= T.

The simplicity of the separatrix map is worth noting.
The map depends only on the Mel'nikov function and the
period of the unperturbed orbits; it can thus be used to
study the dynamics whenever a homoclinic or heteroclin-
ic orbit is broken by a perturbation. Further, because
these functions can be calculated in advance and stored,
numerical iteration of the separatrix map is quite rapid.
In fact, iterations of the separatrix map proceed 10 times
faster than direct numerical integration of the equations
of motion.

We judge the validity of the approximations used in
the separatrix map by comparing iterations of the map
with direct numerical integration of the equations of
motion. Figure 8(a) compares the probability distribution
of trapped episode duration obtained by iterating the ap-
proximate separatrix map and integrating the exact equa-
tions of motion for 5=0.01. Figure 8(b) shows a similar
comparison for the distribution of untrapped episode
duration. The separatrix map captures both the magni-
tude of the peaks and the detailed structure of the distri-
butions, indicating that despite the roughness of the ap-
proximations it is an excellent tool for studying the dy-
namics of the separatrix layer. Similar results were ob-
tained for different values of R, e, and 5. Note that this
calculation verifies both the separatrix map (15) and the
identification of trapped and untrapped episodes.

Figure 9 plots iterations of the separatrix map for
several initial conditions. The chaotic layer around
go=0 is the separatrix layer. The regular trajectories
outside the separatrix layer are in the core when $0) 0,



2586 JEFFREY B. WEISS AND EDGAR KNOBLOCH

10 '

10
!

10 ' (a) i

102 !

10 '

10 s

I

10

10-'

lo-'

10~
0

~ '

10 20

i terations

30 40 50

10

10
0

iterations

300

10'
P

10

10

10-'

(b)

4
O
h

10

10'
I

10 2

1

10

1O-'

10

(b) i

10-'

10~
0

I

10
~

'

20

iterations

30 40 50

10

lo

10"
0

iterations

FIG. 8. (a) Comparison of the probability distribution of the
duration of trapped episodes obtained by iterating the approxi-
mate separatrix map (solid line), and that obtained by numeri-
cally integrating the exact equations of motion (dotted line).
The parameters used are R =3.266, a =0.195, 0=0, and
6=0.01. (b) Same as Fig. 8(a), but for the distribution of the
duration of untrapped episodes.

FIG. 10. (a) Probability distribution of the duration of
trapped episodes calculated from the separatrix map. The pa-
rameters are those of Fig. 8(a). (b) Same as (a), but for the dura-
tion of untrapped episodes.

and in the outer region when $0 & 0.
One feature of the dynamics which plays an important

role in determining the transport properties is the proba-
bility distribution of the duration of trapped and un-
trapped episodes. These distributions are shown in Figs.
10(a) and 10(b), respectively. Note the similarity between
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C)

0.00

-0.01

-0.02
0

t (mod T)

FIG. 9. Iterations of the separatrix map for several initial
conditions. The parameters are those of Fig. 8(a).

the trapped and untrapped episode distributions. The
complexity of the structure is striking; the distributions
oscillate over five orders of magnitude in a few iterations.
These oscillations can ultimately be traced to the irregu-
lar intersections of the lobes of the stable and unstable
manifolds in the time-T map. Also of interest are the
long tails in the distributions. Yet the distributions are
not identical. The means of the trapped and untrapped
episode distributions are 2.98 iterations and 2.77 itera-
tions, respectively. The rrns deviations are more difficult
to determine precisely as they depend sensitively on rare
events in the tail; approximate values are four for trapped
episodes and 40 for untrapped episodes. The overall
shape of the distribution's decay can be determined by
smoothing the structure. Figure 11 shows the smoothed
untrapped episode distribution, along with the power-law
decay obtained by a least-squares fit to a log-log plot of
the distribution. The decay exponents are 3.79 for the
trapped episode distribution and 3.59 for the untrapped
episode distribution. The smaller decay exponent and
larger rms deviation indicates that long untrapped ep-
isodes are more likely than long trapped episodes. These
exponents are significantly larger than those reported in
related studies employing k ))1. '

Distributions with long tails are ubiquitous in chaotic
systems in which there are islands and chaotic layers. '
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On the other hand, consider an ensemble of initial condi-
tions spread across a two-dimensional shear flow with the
velocity profile

v„(x,y) =v(y),

u (x,y)=0.
(18)

The position at time t of a particle starting at
(x,y)=(0,yv) is (u(yo)t, yo). The horizontal spreading of
particles is given by

FIG. 11. Smoothed probability distribution of the duration
of untrapped episodes obtained from that of Fig. 10(b) by
averaging over episodes with duration of 1 to 20 iterations, 21 to
40 iterations, etc. The solid line is a fit of the smoothed distri-
bution to a power-law decay with exponent 3.59.

VI. ANOMALOUS DIFFUSION

The dispersion of particles is measured by the mean
square of the distance traveled

bx (t) = ( [x(t)—x(0)]') —(x(t) —x(0) )', (16)

where, for our purposes x (t) is a one-dimensional particle
trajectory and the average is over initial conditions. The
dependence of b,x (t) on t is often characteristic of the
type of process responsible for the dispersion.

A random process such as Brownian motion induces a
spreading in particle trajectories in which the mean-
square distance depends linearly on the time. In this
case, one can define a diffusion coefficient

Near the unbroken KAM curves which bound chaotic
layers and islands are cantori which, at a slightly smaller
value of the nonintegrable coupling (5 in the MW), are
themselves unbroken KAM curves. These cantori appear
in hierarchies, have small gaps, and are effective barriers
to the motion of chaotic trajectories. Cantori generally
act as barriers to motion in the direction of the action
variable, while allowing motion in the angle variable.
Once inside one of these cantori, a trajectory may take a
long time to escape. If the trajectory manages to pass
through several cantori in the hierarchy the escape time
may be enormous. Thus, chaotic trajectories may sha-
dow the KAM curves bounding a chaotic region.

By capturing trajectories near the bounding KAM
curves, the cantori produce long episodes of trapped and
untrapped flow. A trajectory captured behind cantori
near the upper (lower) KAM curve in Fig. 9 will wind
around the core (cylinder) during its stay near the bound-
ary, and hence be trapped (untrapped). This picture is
complicated by the fact that the bounding KAM curves
approach /=0 (see Fig. 9). Nevertheless, the hierarchy
of cantori produces a large distribution in the times for
which trajectories remain near the bounding KAM
curves, resulting in the long tails in the distribution of
trapped and untrapped episodes.

b x ( t ) = ( [ (uy )ot ] ) —( v (y o) t )

= t'[( u(yo )') —( u(yo ) )'], (19)

and depends quadratically on the time. The average in
(19) is over initial conditions with different yo. The two
processes also have quite different mixing properties: in
Brownian motion the particles mix rather well, while in
the shear flow (18) the ordering of the particles is
preserved as they spread.

In many chaotic systems it is the diffusion in action, or
energy, which is physically important. For maps in
which the phase space is periodic in the action as well as
in the angle, accelerator modes are possible. In this case,
the map may contain stable fixed points in which the ac-
tion changes by 2~n, where n is an integer. These fixed
points and their associated islands are the accelerator
modes. The cantori associated with accelerator modes
can cause chaotic trajectories to shadow these islands;
this results in particle streaming rather than diffusion,
and leads to an infinite diffusion coefficient. In more gen-
eric mappings the phase space is not periodic in action; in
this case the phase space may contain quasiaccelerator
modes which exist over a finite range of action. These
modes result in enhanced diffusion in action, but do not
lead to singularities.

The transport in the separatrix layer of the MW differs
from that discussed above in that the transport is not in a
direction that changes the action. Indeed, the KAM
curves which bound the separatrix layer restrict the tra-
jectories to a rather narrow band in action. Neither is
the physically relevant transport in the angle direction;
particles in the core, for example, have a monotonically
increasing angle, but remain trapped by the wave forever.
It is the spreading of trajectories in wave-crest number
which causes mixing over large regions of the fluid. The
cantori near the bounding KAM surfaces do, however,
play a role similar to those near accelerator modes: tra-
jectories can penetrate the cantori and remain there for a
long time before exiting, resulting in trapped and un-
trapped episodes of large duration. Because of the possi-
bility of an infinite diffusion coefficient, we focus on the
diffusion exponent v,

hx (t) —t as t~~ . (20)

More precisely, we study hx (X) as N, the number of
iterations of the separatrix map, becomes large. This
gives the same exponent as measuring b,x (t) since, as
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verified numerically, for large N the fluctuations in the
time between individual iterations of the map average to
zero and t equals N times the average time between itera-
tions. An exponent greater than one indicates an infinite
diffusion coefticient and characterizes anomalous
diffusion

%'e have numerically measured the diffusion exponent
for particles in the separatrix layer. The spread of parti-
cles is strongly influenced by episodes of long duration;
one must therefore use very long trajectories to accurate-
ly measure the exponent. The average is performed on
1000 initial conditions within the separatrix layer with in-
itial time r =0 and random initial tto. The mean square
deviation of the wave crest number over N iterations of
the separatrix map is then fit to a power law. The result-
ing exponent v is plotted versus N in Fig. 12; we judge
that the exponent is close to its asymptotic value when
N=3. 2X10 . This large value of N precludes the possi-
bility of measuring the diffusion exponent by direct nu-
merical integration of the equations of motion. One must
take into account the fact that an initial condition may lie
within an island embedded in the separatrix layer, and
thus be perpetually trapped or untrapped, and properly
in the core or outer region, respectively. In Fig. 12 the
X's are averages over all initial conditions, while the 0's
average over only those initial conditions that make at
least one trapped or untrapped transition, indicating they
are not within such an island. Since N is necessarily
finite, this procedure counts some initial conditions as be-
ing in islands although they are actually in the separatrix
layer. The true diffusion exponent for the separatrix lay-
er is thus between the X's and 0's, but approaches the
0's as N ~ ~. The error due to using a finite number of
initial conditions is indicated by plotting the exponent
calculated from two different ensembles for each N. We
estimate a value of 1.93 for the diffusion exponent, indi-
cating the existence of anomalous diffusion. Thus, in

terms of the time dependence of the transport, the
separatrix layer is closer to a shear flow than to a stan-
dard diffusive process. Unlike a shear flow, however, par-
ticles in the separatrix layer become well mixed by the
trapping and untrapping process.

VII. DISCUSSION

The TW and MW stream functions studied above, Eqs.
(2) and (3), respectively, do not satisfy the correct experi-
mental boundary conditions for binary fluid convection.
The phenomena described in this paper are, however, due
to structures which are typica1 of nonintegrab1e Hamil-
tonian systems, and thus should persist in flows with real-
istic boundaries. For example, Moses and Steinberg pro-
pose a TW stream function which satisfies rigid boundary
conditions, hut unlike the stream function (2) does not
satisfy the dynamical equations. This stream function
has a fixed point inside the fluid with a homoclinic orbit,
and thus, like the TW (2), has core and outer regions. In
their experiment, Moses and Steinberg observe transport
which is similar to that of the TW (2). In the event of ei-
ther a second Hopf bifurcation or an external time-
dependent perturbation, we expect the homoclinic con-
nection to break; if the resulting manifolds intersect
transversely then the homoclinic orbit will be replaced by
a chaotic separatrix layer. There will be trapped and un-
trapped episodes, and the transport and mixing mill be
similar to that described above.

In this paper we have used techniques from dynamical
systems theory to study the transport and mixing in such
quasiperiodic waves. The Eulerian flow is simple and re-
sides on a 2-torus, while the Lagrangian flow is highly
structured, containing KAM curves, cantori, island
chains, and chaos. We find that there is a chaotic separa-
trix layer in which particles alternate between being
trapped and carried with the wave and being untrapped
and flowing backwards with respect to both the wave and
laboratory frame. By trapping and untrapping particles
for varying lengths of time the separatrix layer mixes
fluid particles across large distances. Further, the trap-
ping and untrapping produces long-range transport in
physical space, and, due to the presence of cantori, anom-
alous diffusion. The transport and diffusion studied here
differ from that in most previously studied chaotic sys-
tems in that it is transport and diffusion in wave-crest
number, and hence physical space, rather than in action.
Since the structures producing these phenomena are typi-
cal of nonintegrable Hamiltonian systems, we expect
long-range transport, anomalous diffusion, and enhanced
mixing to be common properties of two-dimensional
quasiperiodic waves with broken homoclinic or hetero-
clinic orbits.

FIG. 12. Diffusion exponent v vs number of iterations of the
map %. The X 's result from averages over all initial conditions,
while the o's result from averages over only those initial condi-
tions which make at least one trapped or untrapped transition.
The results are shown for two different realizations of 1000 ran-
dom initial conditions. The parameters are those of Fig. 8(a).
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