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This paper reports on studies of wetting phase behavior and interfacial density profiles of square-
well fluid adsorbed at a square-well wall. At a specific drying transition, a comparison is made be-
tween computer-simulation data and coarse-grained density-functional theory. The successes and
failures of this comparison form the basis of a detailed discussion of the strengths and weaknesses of
the two approaches, as presently implemented, and proposals are made for removing the current
ambiguities. In addition, density-functional theory is used to map out the global interfacial phase
behavior at bulk liquid-vapor coexistence, in terms of the fields { T,€,} where T denotes tempera-
ture and €, is the strength of the attractive wall-fluid interaction. Particular attention is paid to
questions of statistical-mechanical consistency in the form of exact sum rules.

I. INTRODUCTION

A. Wetting transitions at simple fluid-wall interfaces

In this paper we are concerned with statistical thermo-
dynamic transitions occurring between different states of
fluid adsorption at a container wall when the bulk fluid
(far from the wall) lies at liquid-vapor coexistence. For
the simplest systems three states of adsorption can be en-
visaged: (i) complete wetting, where the adsorbed film is
a macroscopic layer of liquid, (ii) partial wetting, where
for a macroscopic system the adsorbed film consists of a
finite layer of adsorbed liquid drops and vapor bubbles,
and (iii) complete drying, where the adsorbed film is a
macroscopic layer of vapor. This phase behavior can be
considered to belong to a phase space consisting of two
bulk thermodynamic fields, temperature (7)), and chemi-
cal potential (), together with a set of surface ““thermo-
dynamic” fields; for example, parameters describing the
strength (€,) and range (a,) of the attractive wall-fluid
interactions. Thus complete wetting occurs at high posi-
tive values of €, (strongly attractive walls), while low or
negative values of €, (repulsive walls) enforce complete
drying and intermediate values yield partial wetting.

In the restricted space of (T,u,€, ), the boundary be-
tween complete wetting (or complete drying) and partial
wetting is a curve of first-order and/or second-order wet-
ting (or drying) transitions lying in the (T, u,.,€, ) surface
(where cc denotes a value at bulk liquid-vapor coex-
istence). Points on this curve separating first-order from
second-order behavior are tricritical points.! In general,
for appropriate values of a,, one expects to find two tri-
critical points, one on the drying side and one on the wet-
ting side, separating low-temperature first-order wetting
and drying transitions from second-order or so-called
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critical transitions at higher temperatures (up to the bulk
critical point temperature). In physical systems, the
study of wetting transitions is most readily envisaged as a
process of varying T at fixed (€,,a,,); but see Ref. 2 for
an ingenious exception. However, from the point of view
of statistical mechanics it is much simpler to vary the
surface fields at fixed T.

Discussions such as that given above are readily gen-
eralized to provide a comprehensive statistical thermo-
dynamic description of interfacial phase behavior, syn-
thesizing a huge variety of surface phenomena. Since the
addition of each extra field variable increases by 1 the
number of degrees of freedom relevant to the Gibbs phase
rule, it is clear that interfacial systems are capable of
displaying a bewildering complexity of phase behavior
and associated phase transitions.

B. Computer simulation of wetting transitions
in fluid-wall systems

In the (T,pu,.,€,) surface of the space (T,u,€,) it is
clear that both wetting and drying transitions must be
readily observable by varying €, at fixed 7. Such a pro-
cedure is straightforwardly implemented (in principle) as
a computer-simulation “experiment,” as was first pro-
posed by van Swol and Henderson.* In their work, the
fluid was confined between two walls at a sufficient sepa-
ration for the system to be able to accommodate the pres-
ence of essentially bulk liquid-vapor coexistence in planar
symmetry. The method of van Swol and Henderson in-
volves using one of the walls to enforce two-phase coex-
istence; e.g., by ensuring complete wetting on the far wall
one can study wetting transitions at a wall-vapor inter-
face by fixing the number of particles to fill about half the
simulation box with liquid and varying the value of €, on
the left-hand wall to observe the transition from partial
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to complete wetting (within the restriction of the finite
system size). In fact, Ref. 4 is restricted to a discussion of
a drying transition, the authors’ being content to estab-
lish the principle that surface phase transitions are ubi-
quitous in such systems and can be usefully studied by
computer-simulation procedures for inhomogeneous
fluids. In these procedures, partial wetting corresponds
to no more than a microscopically thick layer of liquid
(vapor) separating bulk vapor (liquid) from the wall. The
total number of particles and the geometry of the simula-
tion box are chosen to ensure that planar symmetry is
maintained throughout the simulation. Physically, one
can think of this as simulating a small area of a macro-
scopic system, focusing on the microscopic nature of part
of a wall-drop or a wall-bubble interface; e.g., a transition
to complete drying corresponds to vapor “pushing” the
liquid drop away from the wall. Note that here, a first-
order transition is not reversible as it would be in a ma-
croscopically sized system.

A more extensive simulation study, including both wet-
ting and drying behavior, has since been undertaken by
Sikkenk et al.,’ using a special-purpose computer
designed for the study of models involving Lennard-Jones
interactions. This work uses symmetric boundary condi-
tions, namely, the fluid is confined between two identical
walls. Nevertheless, the finite size of the simulation box
means that partial wetting states correspond to nonsym-
metric density profiles (liquid adsorbed on one wall and
vapor adsorbed on the other). A wetting or drying transi-
tion, obtained by varying €, identically at both walls, is
then a transition to a symmetric profile. However, Ref. 5
has proved to be controversial because hardware restric-
tions forced Sikkenk et al. to construct their walls from a
small number of rows of heavy Lennard-Jones atoms.
This resulted in the surface free energy being dominated
by an enormous surface stress contribution (i.e., the lay-
ers of solid atoms forming the walls were under tension),
but, nevertheless, in calculating contact angles Ref. 5 ig-
nored this surface stress by assuming it to be invariant
with regard to the nature of the adsorption (i.e., assuming
the tension of the stressed outer solid layers to be exactly
the same for both the wet and dry wall).®

In this paper, we compare the molecular-dynamics
(MD) computer-simulation results of van Swol and Hen-
derson* with density-functional calculations. This, we be-
lieve, is the first such direct comparison concerning the
ability to describe a wetting or drying transition. For the
study of surface phase transitions, neither brute-force
computer simulation nor coarse-grained density-
functional theory can be said to be so well understood
that it can be used to directly test the other method. In-
stead, this study contributes more or less equally to fur-
ther understanding of the merits and problems of both
procedures. Briefly, the weak link in density-functional
theory is the uncertain connection between the chosen
functional and the underlying model Hamiltonian one is
aiming to study, while the most uncertain aspects in-
volved in computer-simulation studies of phase transi-
tions arise from restrictions on the amount of computa-
tional resources.

The molecular-dynamics simulations of Ref. 4 are
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based on a classical Hamiltonian with impulsive forces; in
particular, the potential used is

S Sulry)+3v(z), (1a)
ii<jj i
where
w0, r<o
u(r)=1—¢, o<r<3c/2 (1b)
0, r>30/2

o, z<0, z>L,

v(z)= {—e,, 0<z<o0/2 (1c)

0, otherwise

and periodic boundary conditions were implemented in
the XY plane. The hard-wall boundary at L, ensured the
presence of liquid-vapor coexistence because a hard wall
is completely dry;’ i.e., by equilibrating from a half-filled
initial configuration the system is forced to fill the right-
hand side with vapor. The drying transition was located
by lowering €, in steps, equilibrating after each step, un-
til the density profile corresponded to a liquid film
sandwiched between two thick layers of vapor. The tran-
sition at the left-hand wall, between a damped oscillatory
wall-liquid profile and a completely dry wall, occurred
rapidly on the scale of €,,. From this and related obser-
vations it was concluded that the drying transition was
most likely first order, but since the sharpness of a transi-
tion cannot be arbitrarily tested by computer simulation,
it is not possible to rule out rapid second-order behavior.?
The simulation data available from Ref. 4 include contact
angles, density profiles, and free-energy profiles.

C. Coarse-grained density-functional theory

Formally, it can be shown that for Hamiltonians of the
class (1), the exact grand potential is given by the solution
of the minimization with respect to density fluctuations
of some functional of the one-body density profile p(r).°
In practice, the link with the Hamiltonian is fudged be-
cause one is forced to work with some phenomenological
functional. To successfully describe the structure of a
wall-liquid interface it is essential to be able to accommo-
date strong oscillatory behavior in the density profile. On
the other hand, the grand potential should not be strong-
ly influenced by structure that is periodic on the scale of
a molecular diameter. Thus workers have proposed in-
troducing a coarse-grained density profile p[p(r)], a func-
tional of the full profile, and treating the grand potential
as primarily a functional of p.'° Some very general
theories of this type have been proposed.'!'”!3 To date,
almost all the effort has been put into hard-core contribu-
tions to the free-energy functional. The attractive fluid-
fluid interactions can in principle be treated on the same
sophisticated footing, but in practice the lack of explicit
knowledge of pair correlations in non-hard-sphere fluids
has led to the adoption of simple mean-field treatments.
Here, the best one can do is some sort of liquid-state per-
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turbation theory,'3® so the usual choice has been to

adopt the simplest such approach:
Q=F[pl+L [d1 [d2p(1p(2)u,(ry,)
+kT [d1p(1){In[A’p(1)]—1}

+ [dipDw()—ul, (2a)
where A=(h%/2m7kT)"/* and
u(rpin)y ¥ <Fmin
Ug(r)= u(r), r>ron
[u(r)Zu(r,;,) defines r ;.]. In numerical evaluations,

the hard-sphere (HS) free-energy functionals used to date
all belong to a class known as the weighted-density ap-
proximation (WDA):

Sslp1= [d1p(HAYy(p(1) (2b)
p(= [d2p2)w(12,5(1)) , 20)

where AYys(p) denotes the excess free energy per particle
in a homogeneous hard-sphere system (of density p) and
w(12,p) is the nonlocal weight function (which in the
WDA is itself a function of p).

The implementation of the density-functional theory
defined by (2) proceeds by invoking the condition for
thermodynamic equilibrium 8Q /8p=0; i.e.,

KT In[A’p(D]+[v()—pl+ [ d2p(2)u,(12)

+ Ays(p( 1))+ dep(Z)At/Ji{s(ﬁ(Z))%%:O

(3a)
together with

8p(1) _ w(12,p(1))
8p(2)  1— [d3p(3)w'(13,5(1))

(3b)

Here, the prime denotes the density derivative 3/3p. In
homogeneous bulk fluid (2¢) and (3b) reduce to

gg%%zw(rlz,p) , (4a)

and thus (3) assumes a modified van der Waals bulk equa-
tion of state:

fdr w(r,p)=1,

AY(p)=Adys(p) — Lap ,

w(p)=kT In(A’p)+[pA(p)] , (4b)
a=—fdrua(r) .

Since the bulk density and equation of state are imposed
boundary conditions on the density-functional algorithm,
we can rewrite (3a) as

p(1)/p=exp{—[v(1)/kT1+cV(1) =iV}, (5a)

where the only quantity requiring numerical evaluation is
the one-body direct correlation function, ¢‘!'(1),
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SFEX
_ () 1y—
kTc'''(1) Sp(1)
_ _ o 8p(2)
= Ays(P(1)) + [ d2p(2)Avs(p(2))
Sp(1)
+ [d2p(2)u,(12) . (5b)

The value in bulk fluid is given by the equation of state
—kTc)V=(pAY) =pu*(p) . (5¢)

Taking further functional derivatives of 5(b) generates
the hierarchy of direct correlation functions defined by
the WDA functional,

Bxflc(ll(l)
B(1,2,...,8)=————— .
el = 50(2) - - pls)

Since feasible criteria for the choice of weight function
are restricted to comparison with bulk fluid properties, it
follows that one should restrict the choice of weight func-
tion to a homogeneous form, w(r;,,p(1)). Here, we are
forced to explicitly consider pair correlations, because the
bulk fluid one-body direct correlation function and all its
density derivatives, see (5¢) and (6), are determined by the
equation of state. Accordingly, it is natural to generate
physically sensible criteria for the weight function by re-
quiring a good description of the hard-sphere two-body
direct correlation function.'* One helpful property of
WDA theory is that the exponential form of (5a) essen-
tially guarantees a positive definite density profile. Ex-
ceptions could arise if the right-hand side of (5a) con-
tained a factor of the form exp[lnf(1)], since negative
f (1) would correspond to negative p(1). To date, this
problem has only been encountered when using the prim-
itive van der Waals equation of state,

—AYyus(p)/kT=In(1—pv) ,

(6)

where v is the hard-sphere excluded volume; i.e., unphysi-
cal negative densities arise if pv > 1.1

The particular WDA density-functional theory used in
this work is due to Tarazona.'* In fact, we are indebted
to Dr. Tarazona for supplying us with a version of his nu-
merical program written for the specific case of Yukawa
fluid-fluid interactions and an exponential wall-fluid po-
tential. We were required to make extensive changes to
enable the program to accommodate the discontinuous
square-well potentials of our underlying model (1). The
choice of weight function adopted by Tarazona is a
three-term virial expansion

w(r,p)=wy(r)+pw,(r)+p2w,(r) , (7

with the coefficients w;(r) extracted from a fit to the cor-
responding virial expansion of the Percus-Yevick hard-
sphere two-body direct correlation function.'® The
zeroth-order term is the normalized step function,

3/4m0d, r<o

wo(r= 1o, (8)

r>o

where o is the hard-sphere diameter. The weak-gas limit
result for the generalized WDA applied to an arbitrary
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pair-potential fluid [i.e., combining the first two terms on
the right-hand side of (2a) in the WDA form] is readily
shown to be

e —u(r)/kT _ 1

weol(r)= .
0 fdr(evum/kr_l)

Curtin and Ashcroft'® have expressed surprise that
WDA theory based on the low-density expansion (7)
should yield such good results for the density profile and
free energy of a dense inhomogeneous liquid. Presum-
ably, part of the reason for this is because it is possible to
accurately fit the two-body direct correlation function of
dense hard-sphere fluid with a three-term density expan-
sion. In fact, Tarazona empirically modifies the form of
w,(r) to obtain a good fit at all liquid densities. Further-
more, the calculated free energy and density profile can
be expected to be much less sensitive to the choice of
weight function than a pair correlation function (cf. Sec.
I D below).

9

D. Statistical-mechanical sum rules

In the all-field phase space of (T,u,€,,a,) the
statistical-mechanical sum rules obtained by isothermal
functional differentiation of the partition function with
respect to the remaining field variables (u,€,,a,)
comprise a generalized compressibility route to the sta-
tistical mechanics of wall-fluid systems. For example,
van Swol and Henderson* discuss sum rules for deriva-
tives of the contact angle (0);

Q) cosf=Q%), — %), , (10)

where the superscript (s) denotes a surface excess quanti-
ty, defined with respect to a Gibbs dividing surface that is
not dependent on the surface field parameters (€,,a,),
and the subscripts label the actual interface involved
(note, cosd=—1 corresponds to complete drying and
cosf@=+1 to complete wetting). In particular, in planar
symmetry one has the sum rule

Ty =Vyr—Vwr » (11a)
w
where yLVEQ(If{//A, A is the area of a wall, and
_ z; dv(z,€e,,a,)
I/ijzfz/dzp(z)% (11b)

w

Many more compressibility route sum rules, none of
which explicitly involves the fluid-fluid interactions, are
also discussed in Ref. 4. In addition, it has been shown
that such sum rules severely constrain the nature of con-
tinuous wetting transitions.!’

Also available is a complementary set of sum rules in-
volving gradients of the fluid-fluid potential, the most
well known being the condition for hydrostatic equilibri-
um, or force balance. Here, it is convenient to rewrite
the force-balance condition by introducing a pressure ten-
sor;'® namely, in planar symmetry

pylz)=—p(zW'(z), (12)

where py(z) denotes the normal component of the pres-
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sure tensor. By integrating (12) across a boundary wall to
a value of z beyond the range of the wall field v (z), we ob-
tain a sum rule linking the bulk pressure (p) with an in-
tegral over the surface forces:

p=—[" dzplzi'(2) . (13a)
To interpret (13a) in the presence of discontinuous exter-
nal fields (and hence a discontinuous density profile), it is
useful to note from graph theory that the function n (z),
defined by

p(z)=n(z)exp[ —v(z)/kT], (13b)

is continuous everywhere (n is a one-body y function). In
planar symmetry, a transverse component of the pressure
tensor can be regarded as a grand potential density (or
rather, minus this quantity). So, a surface excess grand
potential of a planar wall-fluid system can be expressed as

Q9/4=[" dz[pOl2)—pr(2)], (14)

where O(z) is the unit step function and we have chosen
to denote the origin (z =0) by the position of the Gibbs
dividing surface. Sum rule (14) was used in Ref. 4 to
measure contact angles, as defined by (10). Pressure ten-
sor component profiles were also collected.

An important criterion for the physical relevance of an
approximate numerical theory, such as density-functional
theory, is the level of consistency with statistical-
mechanical sum rules; i.e., density-functional theory can-
not guarantee to preserve the statistical identities of a
true Hamiltonian-based theory. The natural statistical-
mechanical framework of density-functional theory is the
compressibility route. However, it is still possible to ask
for consistency with hydrostatic equilibrium because in
statistical mechanics one can transform Eq. (12), or its
generalization to arbitrary symmetry, directly into the
gradient of Eq. (5a).! That is, in a single-component sys-
tem the constancy of chemical potential is equivalent to
hydrostatic force balance. In particular, a density-
functional theory of a planar wall-fluid interface will ex-
actly satisfy sum rule (13a), provided that

p=kTp—kT [* dzp(z)cV(z2) . (15)

In WDA theory the last term of (15) is given by (5b) in
planar symmetry; i.e.,

Zb d _
f_wdz pl2)——Adys(plz))

L z, d 68(2)
+ fd2p(Zz)A’ﬁ}{s(P(ZZ))f_wdz‘p(z] )d71 8p(1)

+fdzp(zz)f_bwdzlp(zl)dLZIua(rn) . (162)

Here, we can integrate by parts in the second term and
make use of the functional calculus identity

o . 1 8p(2)
p(zz)—fdlp(zl)gl%

=" ' 5p(2)
_f#wdzlp (zl)fdslzap(l) .
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Together with (4a), this reduces the first two terms of
(16a) to

p [ d2p(z,) Az, (r 15,52, =2,)

=p?A¢ys(p) . (16b)
Furthermore, the final term in (16a) is readily evaluated
to be —p*a/2; i.e., (16a) reduces to

p*Adys(p)—p*a/2=p—kTp , (16c)

as required. Thus every WDA density-functional theory
satisfies, by construction, sum rule (13a) expressing force
balance integrated across the interfacial region. For
wall-fluid systems this consistency often places strong
constraints on the density profile in the interfacial region,
indicating that WDA theory is likely to be especially suc-
cessful in predicting density-profile structure. It also sug-
gests that the one-body density is insensitive to the choice
of weight function, in contrast to the situation with
higher-order correlation functions.

The ability of WDA theory to successfully handle
discontinuous density profiles arises from the fact that
p(z) and hence ¢'(z) are continuous functions, even
across a hard wall. For example, consider a system with
fluid occupying the space z >0, bounded by a hard wall.
Then, the derivation leading from (16a) to (16b) has as-
sumed

Zp d _ Zb d _
f_wdzp(z)EAtlst(p(z)):fo dz plz)—~ Adys(p(2)) -

This is fine in the context of WDA theory, but breaks
down in local-density-functional theory because p(z)
reduces to p(z). That is, the failure of local-density-
functional theory to satisfy force-balance consistency in
discontinuous wall-fluid systems arises from unphysical
discontinuities in the one-body direct correlation func-
tion. This conclusion is also interesting in conjunction
with (5a) and (13b); i.e., WDA theory preserves the con-
tinuous nature of the one-body y function, » (z), whereas
this important statistical-mechanical property is violated
by local-density-functional theories applied to systems
with discontinuous wall-fluid potentials. In the latter
case, further functional differentiation of ¢! to yield
higher-order compressibility route sum rules, see (6),
must also propagate this inconsistency. In contrast, for
any reasonable choice of weight function WDA theory is
a self-consistent theory, in that its construction guaran-
tees consistency with statistical-mechanical sum rules
derivable by successive functional differentiation of the
grand potential.

II. RESULTS

A. Wall-fluid density profiles

Well inside the partial wetting region, the numerical
density-functional procedure is straightforward for both
wall-liquid and wall-vapor systems. We found that
40-60 iterations (with a mixing parameter of 0.1)'* start-
ing from any reasonable profile was sufficient to generate
a stable equilibrium profile. Sum rule (13a) proved to be
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of great value as a measure of the amount of numerical
error. That is, for our square-well system (1) any devia-
tion from the integrated force-balance condition

€,/kT

n(oc/2)—p/kT=[n(c/2)—n(0)]e (17)

had to have arisen from numerical error. As a percen-
tage of the bulk liquid density, this numerical error could
readily be kept below 0.1% except close to a wetting
transition where more complex numerical procedures
were required (see Sec. IIC below). In Figs. 1-3 we
present a comparison of the density-functional profiles
with the simulation data of Ref. 4. The simulation sys-
tems belong to the isotherm kT /e=1, which lies about
halfway between the triple-point and critical-point tem-
peratures, and yielded a saturated bulk liquid density of
po®=0.648+0.004. The crudity of the density-
functional equation of state (4b) prevents a truly direct
comparison with the simulation model; i.e., at the same
temperature the bulk liquid density 1is lower
(po®=0.602). We chose to make the comparison at
slightly unequal temperatures in order to enforce agree-
ment between the values for the bulk liquid densities. In
this way, we find that the closest approximation to the
simulation systems is a density-functional isotherm at
T/T.=0.738; T, denotes the bulk critical temperature.?’
The density-functional values of €, are chosen to keep
the comparison at equal values of €, /kT; cf. (13b) and
(17). The agreement shown in Figs. 1 and 2 is remark-
able; clearly WDA theory is an exceptionally accurate
route to the density profiles of moderately wet wall-fluid
interfaces. The only discrepancy that one can observe in
Figs. 1 and 2 is that the oscillatory structure beyond the
range of the wall field is slightly stretched in the case of
the density-functional profiles. This effect has previously
been observed by Tarazona, in systems of hard-sphere
fluid at a hard wall, who suggested that the cause lies in a
suppression of transverse correlations inherent in the
choice for the symmetry of the weight function;
w(ry,1y,p(r))—w(ry,,pl(z;))."* The comparison at

€,/kT=1 shows that the simulation data are
o~ 1 I 1
- Ew/KT=15
00,_7“/
o
x
N
T <]
o
o
d T T T
0 1 2 3 4

z/0

FIG. 1. Density profiles of square-well fluid in the region of a
square-well wall for €,/kT=1.5. Comparison of WDA
density-functional theory (solid curve) with MD simulation data
from Ref. 4 (points).
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Ew/kT=1.25
- % T/T.=0.738 i
Ob d -
=
Q
o o
o T T T o T T T T
o} 1 2 3 4 0 1 2 3 4 )

z/0

FIG. 2. Asin Fig. 1, but for €, /kT=1.25.

significantly closer to the drying transition than our
density-functional theory predicts. Thus density-
functional theory and simulation differ significantly on
the position of the drying transition (see Sec. IIB).
Furthermore, this discrepancy may even extend to the or-
der of the drying transition (see Sec. II C). For complete-
ness, we display in Figs. 4 and 5 the full sets of wall-liquid
and wall-vapor profiles generated by the density-
functional theory when mapping out the 7/7,=0.738
isotherm.

B. Interfacial phase behavior

The contact angles obtained from our WDA density-
functional theory applied to wall-liquid, wall-vapor, and
liquid-vapor interfaces are shown in Fig. 6, for three
representative isotherms. The symbols label the actual
systems studied, including the positions of the wetting
and drying transitions. In Fig. 7 we give the comparison
with sum rule (11); i.e., between the slopes of the curves
in Fig. 6 and the values of

kT, ~on
[ dzlpwi(2)—pwv(2)] . (18)
Yiv 70

Deviations from sum rule (11) can arise from two sources:

1.2

p(z)o’

<
[S)

-
[
»

T
2
z/0

FIG. 3. Asin Fig. 1, but for €, /kT=1.

z/o

FIG. 4. Wall-liquid density profiles in the interfacial region,
from WDA density-functional theory, along the isotherm
T/T.=0.738. The partial wetting profiles correspond to
€,/kT.=0.4,0.5,0.7,0.9, 1.1, 1.3, and 1.5. The remaining two
curves show complete drying and complete wétting. Within the
peaks, the profiles are ordered with respect to €,; i.e., the higher
€,, the higher the peak.

(1) numerical errors in carrying out the density-functional
algorithm and (ii) errors arising from the fit to the cos@
data. The latter is clearly responsible for the discrepancy
close to the wetting transition of the lowest-temperature
isotherm (i.e., there are insufficient data points to fit the
rapidly changing slope). In addition, for the same
amount of iterations, numerical error is greatest close to
the wetting transition, because here the equilibrium den-
sity profiles are more structured. Nevertheless, particu-
larly for the isotherm of direct interest to the MD simula-
tion results, Fig. 7 confirms the absence of significant nu-
merical error arising from our numerical procedure, both
in the surface free energies (contact angles) and in the
density profiles [see (18)]. The density profiles were also
tested by confirming consistency with sum rule (17), to a
high level of accuracy. A direct measure of the numeri-

o 1 L 1 1
® \/ T/T.=0.738 L
. o f—
S oe i
N
T+ L
o
-
o -
o
° &
o T T T T
0 1 2 3 4 5
z/o
FIG. 5. Partial wetting wall-vapor density profiles from
WDA  density-functional theory, along the isotherm

T/T.=0.738. The top curve shows the partial wetting wall-
vapor profile at the first-order wetting transition. The other
profiles correspond to €,/kT,.=0.4, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5,
and 1.65.
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0.9+ // ]
8 i ' g
= ’3 L dry // partially wet wet ]
E o
3 ° *) Forhk // -
(8} /
['p]
# ‘% [ ¥4 W
/
? | 0.5 | L J I 1 1 1 1 |
0.2 0.6 1.0 1.4 1.8
Ew /kTe
0.0 04 08 12 16 2.0

Ew/kT.

FIG. 6. Cosine of the contact angle as a function of the
strength of wall-fluid attractive potential. Density-functional
theory results are plotted for three representative isotherms: W,
T/7T.,=0.93;@, T/T.=0.738; and &, T/T,=0.64. The curves
through the symbols show fits to a ratio of two polynomials,
used in Fig. 7. The open circles with vertical error bars show
the MD simulation data of Ref. 4, corresponding to the same
bulk liquid density as the T/T,=0.738 density-functional iso-
therm. The simulation data also involve a small horizontal er-
ror arising from imprecise knowledge of T, but this is no bigger
than the size of our plotted symbol.

cal stability is obtained by monitoring the change in
grand potential with the number of iterations. Numerical
instabilities brought about by an inappropriate choice of
mixing parameter will first manifest themselves as an in-
crease in the grand potential functional. Furthermore,
one always ensures that the change in grand potential be-
tween successive iterations has fallen to a sufficiently low
value by the end of an iteration run.

Figure 8 displays the wetting and drying phase dia-
gram obtained from our density-functional theory (ap-
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FIG. 7. The derivative with respect to the strength of the
wall-fluid attractive potential, of cosine of the contact angle.
The symbols denote predictions of sum rule [(11) and (18)], for
the same systems plotted in Fig. 6. The curves associated with
the density-functional data show the comparison with deriva-
tives of the cos@ fits plotted in Fig. 6. All three density-
functional isotherms end at first-order wetting transitions and at
second-order drying transitions.

FIG. 8. Surface phase diagram for the interface between a
square-well wall and square-well fluid at bulk liquid-vapor coex-
istence. The symbols label WDA density-functional calcula-
tions. The wetting and drying transition lines are drawn as a
guide to the eye (particularly near T.) and we have dis-
tinguished between first-order wetting (solid curve) and second-
order wetting and drying transitions (dashed curve). The
straight line though the data in the middle of the partial wetting
region denotes a contact angle of 7/2.

plied to a wider range of temperatures than shown in
Figs. 6 and 7). Here, the curve through the points (which
label the actual systems studied) is just a guide to the eye,
in contrast to the fitted curves plotted in Fig. 6. Also
shown in Fig. 8 are the values corresponding to the mid-
point- of the partial wetting region; i.e., defined by
cos@=0. Interestingly, in (T,€,) space, cos8=0 defines
a remarkably straight line. In fact, we did not detect any
deviation from this straight line over the entire physically
relevant temperature range corresponding to liquid-vapor
coexistence (0.55 < T /T, <1). If we use this line to define
the origin of the surface field (A, =0) then a parabolic
shape of the wetting and drying transition curve
(cos@==1) in the region of the bulk critical temperature
would correspond to

hy(cos@==x1)~t'? +=1-T/T, . (19)

The comparison with the MD simulation results shown
in Fig. 6 indicates that our particular WDA density-
functional theory cannot quite reproduce the phase be-
havior of the underlying Hamiltonian, even deep inside
the partial wetting region. The slope of the cosf iso-
therm at T/T,=0.738 is in good agreement (see also Fig.
7) but all the density-functional isotherms in Fig. 6 lie to
the left of the simulation results. In particular, by con-
sidering the values of €,, at cos@ =0 one can remove any
error arising from the mismatch in the liquid-vapor sur-
face tensions [see (10)]. Accordingly, we note from Fig. 6
that there is no temperature (or saturated liquid density)
for which the density-functional theory would fit the true
position of the midpoint of the partial wetting region at
kT =e. This arises because the wall-liquid interfacial
grand potentials predicted by our density-functional
theory are consistently lower than the measured values,
even for systems such as the one featured in Fig. 1 where
the density profile shows an almost perfect match to the
simulated profile. Presumably one is paying a price for
the crude manner in which attractive fluid-fluid interac-
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tions are taken into account by the functional (2). For
wall-fluid interfaces involving significant packing struc-
ture, it is perhaps reasonable to expect that attractive
fluid-fluid interactions will have less effect on the density
profile than on the interfacial free energy. Before con-
cluding this discussion of surface grand potentials in the
partial wetting region, it is prudent to inquire if density-
functional theory confirms the validity of an approxima-
tion used to generate the simulation results. Namely, in
Ref. 4, which confines attention to the drying side of the
phase diagram, it was assumed that Q{J}, could be calcu-
lated from a weak-gas limit to an exact sum rule for the
surface grand potential, without inducing significant loss
of accuracy in the measured contact angle. This then
avoided the need for undertaking simulations of wall-
vapor interfaces in the partial drying region. When we
tested this procedure on our corresponding density-
functional systems,21 it was found to be an accurate ap-
proximation throughout the entire partial drying region;
in particular, for the T /T,=0.738 isotherm the error in
the wall-vapor surface grand potential is less than 5% for
all cos8 <0. Thus our density-functional theory vindi-
cates the method adopted in Ref. 4 to study the wetting
behavior of partially dry systems, at the temperature of
interest.

C. Wetting and drying transitions

For all three isotherms plotted in Figs. 6 and 7,
density-functional theory yields a first-order wetting tran-
sition and a second-order drying transition. Second-
order behavior corresponds to continuous changes in ad-
sorption and in other field derivatives of the grand poten-
tial, so that in Fig. 7 the continuous nature of the drying
transitions is evidenced by the fact that d cos8/d¢,, tends
smoothly to zero at the transition points. In contrast, at
the first-order wetting transitions the slopes of the cosf-
versus-€,, isotherms change discontinuously. In the
neighborhood of a wetting or drying transition, the WDA
density-functional procedure needs to be modified in or-
der to accommodate the large changes in adsorption.
The approach pioneered by Tarazona and Evans? is
based on a separation of “time” scales between the rapid
convergence of local wall-fluid structure and the slow
convergence towards an equilibrium involving a substan-
tially different amount of adsorption. In this way, the be-
havior of the grand potential functional at nonequilibri-
um values of the adsorption can be mapped out, directly
analogous to following a van der Waals loop across a
mean-field bulk liquid-vapor phase transition. In prac-
tice, the numerical procedure is split up into a series of
iteration runs, each run beginning from an initial profile
corresponding to a different adsorption (i.e., film thick-
ness). Each run rapidly converges towards local equilib-
rium (40 iterations at a mixing parameter of 0.1 is ample)
without significantly altering the film thickness. Instead
of continuing to iterate towards the absolute minimum
one simply starts again at a different thickness, thereby
obtaining a density profile and a grand potential belong-
ing to a particular adsorption. The true equilibrium
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thickness is of course defined by the global minimum of
the grand potential. At a first-order wetting transition
our grand potential displays classic mean-field behavior
involving a double minimum, one minimum at a finite ad-
sorption and the other at infinite adsorption, separated by
a barrier. On either side of such a transition the barrier
begins to shrink in size, but persists for some distance.
The height of the barrier at the transition is a measure of
the first-order nature of the transition. In an approach to
a tricritical point, where the first-order behavior becomes
second order, the barrier height will shrink continuously
to zero. In the neighborhood of a second-order wetting
transition there is never more than one turning point in
the grand potential as a function of film thickness. In our
program, initial profiles for wall-vapor systems contain-
ing an adsorbed film of liquid were obtained by using a
tanh function (involving the width of the liquid-vapor
profile) to smoothly match the relevant wall-liquid profile
to bulk vapor, at chosen values of the film thickness. The
same approach was also used near a drying transition.
To locate the precise position of a wetting or drying tran-
sition we calculated the grand potential (}) for a large
number of initial thicknesses (i.e., adsorptions, I') at vari-
ous values of €, on either side of the transition. The
shape of the Q(TI')-versus-I" curves told us the order of
the transition and the behavior of the global minima
could readily be interpolated to accurately pinpoint the
positions of the transitions. The sizes of the systems were
taken to be the smallest compatible with negligible finite-
size effects; i.e., compatible with the requirement that
doubling the length of the system did not significantly
alter the numerical results (e.g., for the T/T,=0.738 iso-
therm we used a box length of 100; i.e., everything to the
right of z=100 was treated as bulk fluid).

The phase behavior at wall-vapor interfaces summa-
rized by the right-hand side of Fig. 8 is of the generic
form originally proposed for simple wall-fluid systems;!
namely, first-order wetting transitions are found at low
temperatures but at some temperature below the bulk
critical temperature the behavior switches to second or-
der. The point on the phase diagram of Fig. 8 at which
this change in the nature of the wetting transitions is lo-
cated can be regarded as a tricritical point. In a mean-
field density-functional theory, such a tricritical point can
be defined by following the gradual disappearance of the
barrier in the grand potential functional at positions
along the first-order section of the transition curve (i.e.,
by observing the disappearance of a van der Waals loop).
Our density-functional data for the barrier height are
plotted in Fig. 9. Clearly, an accurate determination of
the tricritical point would be very time consuming be-
cause of the strong curvature displayed by the barrier
heights as the tricritical point is approached. In addition,
our numerical method is not easily suited to measuring
barrier heights smaller than about 107 kT,. Fortunately,
we can get an idea of the size of the extrapolation in-
volved, from the detailed analytic analysis published by
Aukrust and Hauge,?® for a highly simplified density-
functional theory concerning films of Yukawa fluid ad-
sorbed on an exponential wall. In particular, Fig. 4 of
Ref. 23 indicates that in our temperature region one
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FIG. 9. Density-functional theory data for the grand poten-
tial barrier height (B) at first-order wetting transitions, in the
approach to the tricritical point at 7/7,~=0.955+0.005. The
curve is a guide to the eye, based on the explicit example dis-
cussed in Ref. 23. The symbols denote the systems studied (only
the lowest-temperature value has a numerical error observable
on the plotted scale) plus our estimate of the tricritical point.
The measured barrier height at 7T/7,=0.93 is
(1.040.05) X 107 °kT.. The extrapolation to the tricritical point
assumes behavior similar to the work of Ref. 23.

should expect the true tricritical point to lie approximate-
ly (0.0251+0.005)T /T, beyond the temperature at which
the barrier height has fallen to 107 °kT,. From this we
conclude that the tricritical point on the line of wetting
transitions obtained from our density-functional theory
lies at about (0.9551+0.005)7 /T,.. Below this tempera-
ture, the wetting transition curve of Fig. 8 defines a set of
partial wetting wall-vapor profiles that coexist with com-
plete wetting. The behavior of these special partial wet-
ting density profiles is shown in Fig. 10.

Over the entire temperature range covered in our
density-functional theory (T /T, 20.6), no hint of first-
order behavior was detected along the drying transition
boundary. Thus the drying tricritical point, if it exists at
all, is predicted by density-functional theory to lie below
the triple point of the true Hamiltonian system (or possi-
bly just above it). In addition to the behavior of the
grand potential, we found that another route to the posi-
tion of the equilibrium state in the vicinity of a second-
order drying transition is to note the deviations from the
force-balance sum rule (17); i.e., the deviation passes
through zero very close to the global minimum in the
grand potential. Thus we have no reason to doubt the
ability of our numerical procedures to faithfully derive
the drying transition behavior belonging to the WDA
density functional (2). In light of these results it is clearly
necessary to reassess the MD computer-simulation data
of Ref. 4. In particular, one of the reported indications
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FIG. 10. The interfacial regions of partial wetting wall-vapor
density profiles, that coexist with complete wetting along the
first-order section of the wetting transition curve, obtained from
WDA density-functional theory. The profiles belong to the iso-
therms T /T, =0.64, 0.738, 0.85, and 0.93 (in order of increasing
vapor density). Inside the range of the wall-fluid potential
(z<0/2) the T/T,=0.738 profile is the most dense and the
remaining profiles appear in reverse order (highest temperature
is least dense).
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FIG. 11. Comparison between WDA density-functional

theory and MD simulation data for an adsorption isotherm at
bulk liquid-vapor coexistence, showing a wall-liquid interface
approaching complete drying. The comparison is made by
choosing (T,u) such that our density-functional theory gives the
same bulk liquid density as obtained from the simulation sys-
tems. The points lying on the solid curve (drawn as a guide to
the eye) label density-functional results for the isotherm
T/T.=0.738. The open circles with error bars show the simu-
lation results obtained from the profiles plotted in Figs. 1-3. By
choosing the abscissa to be €, /kT, rather than €, /kT,, we have
avoided any error arising from imprecise knowledge of the
simulation value of 7.. The dashed line at €,/k7=0.344
denotes the position of the second-order drying transition pre-
dicted by our density-functional theory. The dashed line at
€,/kT=0.85 labels the largest value of €, for which complete
drying was observed in the simulations of Ref. 4.
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supporting a first-order drying transition in the simula-
tion study was the sharpness of the transition; for exam-
ple, in a plot of n(c /2)—p /kT versus exp(€, /kT). In
fact, the density functional at the temperature of interest
shows a rapid second-order drying transition that is just
steep enough to fit into the gap between the two simula-
tion points on either side of the transition. However,
there is an unambiguous disagreement over the position
of the drying transition. Namely, as one can begin to see
in Fig. 3, the wall-liquid partial drying profiles obtained
from density-functional theory start to deviate
significantly from the simulation results in the region of
the simulation drying transition, such that density-
functional theory predicts a significantly larger region of
partial drying. The above comments concerning the dry-
ing transition are summarized by the comparison shown
in Fig. 11, which plots wall-liquid adsorptions inside the
partial drying region, along the relevant isotherms (i.e.,
for identical values of the saturated liquid density). From
the point of view of Fig. 11, it can now be seen that the
MD simulation results are not inconsistent with a
second-order drying transition, but that the position of
the transition lies at a much larger value of €, than our
density-functional theory predicts. In the light of these
surprises, the following section presents a detailed discus-
sion of the problems and weaknesses of the two ap-
proaches.

III. WDA DENSITY-FUNCTIONAL THEORY
VERSUS MD COMPUTER SIMULATION —
DISCUSSION

A. Shared problems

Both methods possess shortcomings associated with
the restriction to a finite system size and the neglect of
certain fluctuation phenomena. Finite-size effects can be
studied by observing the changes that accompany an in-
crease in system size. Computational and numerical
efficiency demands the minimum size system compatible
with an acceptably small level of finite-size effects. Here,
we were significantly helped by the strict finite-range na-
ture of our potentials, (1), but this still leaves effects asso-
ciated with a loss of fluctuation phenomena. The MD
simulation procedure correctly treats short-time fluctua-
tions with wavelengths smaller than the system size, but
collective fluctuations (e.g., capillary waves) with periods
longer than the total simulation time or with wavelengths
too large to fit in the simulation “box” are absent. It is
more problematical to assess the situation with regard to
density-functional theory; in particular, it is not obvious
precisely what damage is being done by the mean-field
nature of the grand potential, but only that some fluctua-
tion phenomena are being mistreated.”* In both ap-
proaches it is conceivable that the neglect or mistreat-
ment of fluctuation phenomena could alter the order of a
wetting or drying transition.

B. Difficulties with the WDA density-functional theory

Let us concentrate on the nature of the drying transi-
tion in our square-well system. Well away from this tran-
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sition, the density-functional theory shows remarkable
agreement with our simulation data, particularly with
respect to the density profile. However, this agreement
breaks down in the approach to the drying transition.
One immediate complication arises from the crudity of
the assumed bulk equation of state, (4b). This has arisen
from the more general problem concerning the primitive
nature of the attractive part of the WDA functional (2);
i.e., the second term on the right-hand side of (2a). One
might expect the attractive fluid-fluid interactions to play
a more important role in determining the structure of a
dry interface, in contrast to the oscillatory profiles seen at
wet interfaces whose structure is therefore dominated by
the packing effects of repulsive fluid-wall and fluid-fluid
interactions. Thus one would like to incorporate a more
realistic treatment of attractive fluid-fluid interactions
into WDA theory, to ascertain whether or not this would
remove the predicted shift in the position of the drying
transition. One obvious approach, under active con-
sideration at the present time, would be to use WDA
theory to evaluate both contributions to the excess free
energy; e.g., by adopting the leading-order weight func-
tion (9), or the analogous result if a separate coarse-
grained density is used to evaluate the attractive fluid-
fluid contribution.

In addition, it is prudent, but not obviously of direct
relevance to our present discussion, to note that the use
of a coarse-grained density makes the grand potential
functional highly insensitive to oscillatory structure.?

C. Difficulties with the MD simulation procedure

The contrast between the comparison shown in Fig. 3
and that obtained in Figs. 1 and 2 is strong evidence that
the MD simulation is unambiguously yielding a drying
transition at a significantly higher value of €, than is pre-
dicted by our density-functional theory. On the other
hand, the rapid change in structure occurring in the vi-
cinity of the drying transition seen in WDA density-
functional theory shows that the MD simulation data are
insufficient to base a conclusive judgment on the order of
the drying transition observed in Ref. 4. That is, the gap
between 0.85 <€, /kT <1 is just wide enough to be able
to accommodate a second-order drying transition similar
to that predicted by density-functional theory. However,
the comparison of, say, Fig. 11 shows that only two more
simulation data points would be needed to plug the gap;
i.e., the density-functional phase behavior, if qualitatively
correct, does not present serious difficulties preventing
verification by computer simulation. Thus future work is
planned to upgrade the simulation data of Ref. 4.

Reference 4 reports direct observations supporting a
first-order drying transition that need to be reexamined in
the light of the above discussion. In particular, the simu-
lation runs close to the drying transition showed strong
signs of metastability and the profile structure was ob-
served to collapse catastrophically when crossing the
transition. Although these observations are clearly
significant, caution is demanded by the nonequilibrium
procedure used to set up the initial unequilibrated simula-
tion systems; namely, the systems were generated by re-
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ducing the value of €, in a series of steps, equilibrating
after each step. This procedure could turn second-order
behavior into pseudo-first-order behavior, by pushing the
system beyond the second-order drying transition. How-
ever, since we now know precisely where to look for a
possible second-order drying transition, there does not
appear to be any problem preventing a definitive simula-
tion experiment.

IV. CONCLUSIONS

This paper has presented a direct comparison between
the prediction of WDA density-functional theory and
MD computer-simulation data for the nature of a drying
transition. In addition, the density-functional theory has
been used to map out the global wetting phase diagram
for square-well fluid adsorbed at a square-well wall, to fa-
cilitate more extensive comparison at a later date. This
preliminary comparison has enabled us to learn much
concerning the strengths and weaknesses of both ap-
proaches, without being able to definitively test one set of
results against the other. Two apparently straightfor-
ward but time-consuming extensions of this work are
called for. (i) Additional MD simulation data are re-
quired close to the drying transition of Ref. 4, to test for
second-order behavior within a transition region of the
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size predicted by density-functional theory. Also of some
interest would be a simulation study of the wetting transi-
tion region of the same isotherm, to confirm the likeli-
hood that MD simulation would presumably agree with
the first-order wetting prediction of density-functional
theory. (ii) Modification of our density-functional theory
to take better account of the role of attractive fluid-fluid
interactions is needed to test for possible large effects on
the nature and position of drying transitions. For exam-
ple, by making use of (9) and comparing results with the
density-functional theory used above; e.g., Fig. 3. At
least one would then be able to use the correct bulk fluid
equation of state.” We have recently begun work on these
extensions.
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