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We study the steady-state operation and noise properties of a laser (or maser) exhibiting phase
locking when an ordinary vacuum is replaced by a squeezed vacuum. Such a phase-sensitive laser
can be realized by preparing the active medium initially in a coherent superposition of levels in-

volved in the laser transition. We develop a general formalism to treat number-phase Auctuations
and quadrature Auctuations. When applied to a one-photon laser with injected atomic coherence,
we find that not only is a complete quenching of the (spontaneous-emission) quantum noise possible,
but the field can actually be in a squeezed state. The variance in either amplitude or phase quadra-
ture can be below the vacuum noise level by a factor of 2 (50%) at the expense of enhanced fluctua-
tions in the other quadrature.

I. INTRODUCTION

The quantum theory of lasers was developed about two
decades ago. ' It proved to be an important step in un-
derstanding stochastic processes, in general, and statisti-
cal properties and noise performance of systems far from
thermal equilibrium, in particular. Since then it has had
numerous far-reaching generalizations, many of them
outside the area of quantum optics. Originally the theory
was worked out to deal with incoherent atomic pumping.
This means that active atoms are pumped to the upper
levels of the lasing transition with no coherence between
the different levels involved in the lasing operation. In
density-operator language it corresponds to the vanishing
of all off-diagonal elements of the initial atomic density
operator. This approach is natural, if no special care is
taken in the pumping process and the active atoms do not
carry any phase information into the interaction region.
In subsequent extensions of the theory, the assumption of
incoherent pumping has always been tacitly assumed.
This vvas the case in going from the traditional (one-
mode, single-photon transition) laser to multimode lasers
or two-photon lasers. It is not very surprising that the
inherent quantum noise, which is due to spontaneous
emission from the upper lasing level, is the same for all
such systems. It is the phase-diffusion noise and its rate
that was first derived theoretically by Schawlow and
Townes.

In recent works, however, the importance of atomic
coherence has received much attention in connection
with reaching beyond the traditionally accepted noise
limits. In a series of recent papers it has been demon-
strated that complete quenching of the (spontaneous-
emission) quantum noise from the relative phase of a
two-mode laser is possible, if the two-mode lasing action
takes place from two upper levels to a common lower lev-
el in a V-type three-level active medium and active atoms
are prepared in a coherent superposition of two upper

levels. This correlated-spontaneous-emission laser (CEL)
effect shows the significance of atomic coherence in active
systems. Likewise, in passive systems, it has been demon-
strated that the field emitted in spontaneous emission
can be in a squeezed state, ' i.e., the noise in one quadra-
ture can be below the vacuum fluctuation limit. Very re-
cently, we have shown" the intimate relationship be-
tween quantum noise quenching and squeezing. This led
us to the prediction of an active system, the two-photon
correlated-emission laser, which is capable of generating
squeezed light of macroscopic intensity building up from
ordinary vacuum.

Moreover, we have studied' a one-photon laser build-
ing up from an ordinary vacuum when two-level active
atoms are prepared initially in a coherent superposition
of the upper and lower levels. We have shown' that ini-
tial atomic coherence plays an important role in phase
locking and noise reduction (via nonlinear process) in

such a two-level one-photon laser. The photon-number
distribution of the laser field can be exactly Poissonian
and the laser-phase-diffusion coeKcient is greatly reduced
at the same time, leading to a laser field which is very
close to that in a coherent state.

In another interesting series of recent papers' ' a
different line of thought has been pursued. Namely, the
effect of a broadband squeezed vacuum on quantum opti-
cal systems has been studied. In the present context, Ref.
14 is of particular interest where the effect of an injected
squeezed vacuum on laser linewidth has been investigat-
ed. This work directed attention to the possibility of re-
ducing the noise level in active systems (lasers) via the in-
jection of a broadband squeezed vacuum.

These two different ways of reducing the inherent
quantum noise in active optical systems, via correlated
spontaneous emission and injected squeezed vacuum, nat-
urally lead to the investigation of their combined effects
(that is, how the inherent quantum noise is modified in a
laser if the active medium is prepared in a coherent su-
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II. PHOTON-NUMBER, PHASE,
AND QUADRATURE VARIANCES

We present in this section a general formalism for the
variances in terms of the amplitude and phase of the laser
field and in terms of two quadratures of the laser field.
For a single-mode laser (or maser) exhibiting phase lock-
ing, such as a one-photon laser with injected atomic
coherence' addressed in this paper, the master equation
for the reduced field-density operator p in the interaction
picture is obtained. Expanding p in diagonal coherent-
state projection operators' '

p= dvP v, v', t v v (2.1)

where the coherent states ~u ) are eigenstates of the field
annihilation operator a

av =vv (2.2)

perposition of levels involved in the laser transition and
the field builds up from the squeezed vacuum). The
present work is devoted to the study of this problem.

The clarification of the noise performance of lasers is
crucial to optical interferometry. At present, in the
realm of high-precision measurements, optical inter-
ferometry provides one of the tools with the highest reso-
lution. The resolution is often limited by the inherent
quantum noise of the detection system. Any significant
improvement on those traditionally accepted limits
would bear an immediate impact on applications
demanding a higher resolution than the currently accept-
ed one. These applications include the laser gravity-wave
detectors and laser gyroscopes. The main motivation of
our research is the understanding of the ultimate quan-
turn limits of resolution in optical interferometry.

The quantum theory of a traditional laser, as developed
originally, deals with incoherent pumping and buildup of
the field from the ordinary vacuum. ' Recently, we
have generalized' this theory for the case when initial
atomic coherence is involved. These coherently pumped
lasers exhibit phase locking of the laser fields and, besides
photon-number variance, one can speak of the phase vari-
ance of the laser field in such a laser system. In Sec. II,
we study in general the photon-number, phase, and quad-
rature variances of the laser fields exhibiting phase lock-
ing and discuss their relation. In so doing we follow the
works by Drummond et al. ' and find that the complex P
representation is an appropriate tool to deal with the
newly arising situation. Also, if appropriate care is tak-
en, the Glauber-Sudarshan P representation' ' is an ade-
quate tool to describe the noise properties. In Sec. III we
include the possibility of shining a squeezed vacuum into
the cavity and discuss the effects of a squeezed vacuum
on laser operation and the quadrature variances of the
laser field. In Sec. IV we apply this general formalism to
the one-photon laser with two-level active medium (one-
photon CEL). Our main finding is that not only is
quenching of the spontaneous-emission noise of the active
systems possible, but also the light field can actually be in
a squeezed state. Finally, in Sec. V, we briefly summarize
our main results and discuss their physical implications.

we obtain a Fokker-Planck equation in the Glauber-
Sudarshan P representation

P—(v, u*, t)= — d„— d a+2 D,E3

a

a2 a2+ D„+ D, „P(u,u*, t),
Bu B(u*)

(2.3)

where v and v
' are complex conjugate and

d g=(d, )*,

D, e, *=(D„)*.

(2.4a)

(2.4b)

The explicit expressions for the drift coefficient d„and
diffusion coefficients D + and D„do not concern us
here. In order to study the properties of the laser ampli-
tude (or photon number) and phase (for example,
photon-number and phase variances), it is convenient to
rewrite the above Fokker-Planck equation (2.3) in terms
of laser intensity and phase variables I and y via the rela-
tion ''

u =&Ie'+,

p (I rP t)= — dt — d + Dtt+ D

a2
+2 D,„P,(I, rP, t) .

BIBc@
(2.5)

Here

P(v, v*, t)=2PI(I, p, t), (2.6)

so that

P v, v*, t d v = Pl, I,y, t dI dy=1 . (2.7)

(I&=(d, &,
dt

„(q)=(d„& .

(2.8a)

(2.8b)

The photon-number and phase' variances can be ob-
tained by calculating the following mean values with the
distribution P, (I, cp, t):

In Eq. (2.5), dt and d„are laser intensity- and phase-drift
coefficients, D~~ and D are photon-number- and phase-
diffusion coefficients, respectively; and D~ is a cross-
diffusion coefficient representing the correlation between
the intensity and phase. In the absence of initial atomic
coherence, Dz vanishes as in an ordinary laser. ' In the
presence of initial atomic coherence, all of these drift and
diffusion coefficients are, in general, the functions of in-
tensity I and phase cp. Again, their explicit forms are not
important for our general discussion in this section.

The equations of motion for the intensity I and phase y
are found from Eq. (2.5) as
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( (3 n ) ) = (:(6&):) + ( n ) = ((5I) ) + (I), (2.9a)

(2.9b)

p= f du dwP(u, w)
C, C w v

or in terms of the density-matrix elements

(2. 14a)

—((5I) ) =2(d 5I)+2(Dd
(2.10a)

where:: denotes normally ordered variances, 6I =I—(I ), 5rp=rp —(rp), and (n ) =(a a ) =(I ). Note
that ( (5I) ) and ( (5y)') are just normally ordered
photon-number and phase variances. Along with
(5I5rp), they obey the following equations:

n mp„=f du dwP(v, w)e
C, C n!m!

(2.14b)

where U and w are not complex conjugates and c and c'
are integration contours in the complex phase space of
(v, w). The field master equation is then transformed into
a Fokker-Planck equation in the complex P representa-
tion

d—„((5cp)')=2(d 5g)+2(D ),
dt

(2.10b) B B B2
P(u, w—, t)= — d, — d +2 D „, + D„,

(5I5q ) =(d,5(p)+(d 6I )+2(D ),
dt

(2.10c) a2+,D P(u, w, t) .
BLU

(2.15)

which are obtained by using Eqs. (2.5) and (2.8). In the
steady state, the laser intensity and phase are locked to
the mean values (I ) = n 0 and ( y ) =yp satisfying
dr(no, yo)=0 and d (np, yo)=0, as indicated by Eqs.
(2.8). The steady-state values of ((5I) ) and ((5(p) ) can
be found from Eqs. (2.10) by setting d/dt =0 and ex-
p»d'ng dr d~, Drr D«, and Dr~ around I ="o g=yo
up to first order in 6I and 5cp. Generally one needs to
solve three coupled first-order algebraic equations given
by the three equations in Eqs. (2.10) to obtain ((5I) )ss
and ((5y) )ss as well as (5I5y)ss. When
Bdr(np, cpo)/B@=Bd, (no, yp)/BI =0, however, the stable
laser-operation conditions are

d =d,*(v* w, w*~u),
D =D,*,(v*~w, w*~u) .

(2.16a)

(2. 16b)

Using the complex P representation, the expecta-
tion values of normally ordered operator products (a ) a"
are

((a )'a ) = f du dwP(u, w)w'u" .
C7 C

(2.17)

Here the drift and diffusion coeScients have the same ex-
pressions as those in Eq. (2.3) with v* replaced by w.
This can be seen by comparing Eq. (2.14b) with the
density-matrix-element version of Eq. (2. 1). Consequent-
ly, the following relations hold:

Bdr(np gp) Bd&(np (pp)(0, (0,BI '
By

(2. 1 1)
The equations of motion for the expectation values of the
field operators a and a are found from Eqs. (2.17) and
(2.15) as

and the photon-number and phase variances are simply

Drr(np ~po)
((bn) &ss=no+

r)dr(no rpo /r3I
(2.12a)

1 D „("0I'0)
((&q )')„= + '" '

. (2.12b)
4np Bd& np cpp /B(p

Knowing ( (b,6)), one also know's the normalized
second-order correlation function

((ae)') —(n )
(w)P

(2.13)

A sub-Poissonian distribution ((b,R') ) ((& ) thus im-
plies photon antibunching.

For light fields exhibiting nonclassical behavior such as
sub-Poissonian distribution (i.e., photon antibunching)
and squeezing, however, a well-behaved positive function
for the Glauber-Sudarshan P representation does not ex-
ist. ' In the following we choose the generalized (com-
plex) P representation' to rediscuss the amplitude and
phase noise of the laser field. In particular, for the sake
of rigor, we use quadrature operators to study quadrature
variances in the laser field.

We expand the reduced field operator p in nondiagonal
coherent-state projection operators'

„(u&=(d, ),dt
(2.18a)

„(w)=(d,.& .
dt

(2.18b)

Consequently, the steady-state locking values of U and m

(i.e. , uo and top) satisfy the equations d, (uo, wp)=0 and
d„,(wp, uo)=0. With the help of Eq. (2.16a) we conclude
that

o=vo (2.19)

Toward studying laser amplitude and phase Auctua-
tions, we define Hermitian quadrature operators as

a, =
tgp f 1+0ae '+a ~e

(2.20a)

and

a2 =
'+o f '&oae —a e

2E
(2.20b)

which obey the commutation relation [a, , a& ]= 2i Here- .
is a time-independent constant chosen to set

( a z )ss =0. Thus a, and a z are the in-phase and in-
quadrature operators of the laser field in the steady state,
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respectively. Parallel to Eqs. (2.20), we introduce two
complex variables

i CPp I q'p
Ue +we

(2.21a)

V2=

—
imp

Ue —we

2l
(2.21b)

a2
+2 Dlz (vl uz t)

V1BV2
(2.22)

where

d e '+d ed—
1

(2.23a)

thus (a, ) =(u, ), i =1,2. Converting the complex
Fokker-Planck equation (2.15) to the new complex vari-
ables v, and U2, we arrive at

a a2
P(v—, , uz, t)= — d, — dz+ D»+ z Dzz

Bt BV, Cju BU2

&d, (u&o uzo) (0, i =1,2
BU;

(2.27)

and the steady-state variances are simply given by [see
Eqs. (2.25) and (2.26a)]

D;; ( v 10, v 20 )

lad, (v, , v )Zau, [' (2.28)

The condition D, , (v, o, vzo) &0 (i =1 or 2) implies squeez-
ing, since then ( ( ha, ) ) ss & —,'.

In the steady state, since both u& and uz (or u and tv)

are locked and (az)ss=vz0=0, the laser amplitude {or
photon-number) fluctuation is in the a

&
direction mainly

while the laser-phase fluctuation is in the a2 direction
only. Consequently, when ( 8 ) ss

= ( tvv ) ss
=v, o » 1, the

laser-amplitude noise equals the variance of a, in the
steady state [note that r = n, 2r(5r) =5n]

=Bdz(u, o, vz„)/Bu, =0, however, these equations become
uncoupled. The conditions for stable locking at point
(u&o, uzo) are

dqe

12 4
~

'+p ' (t'p
a~e

2l
(2.23b)

(2.23c)

(2.23d)

(2.23e)

&(~ )'& = &(&n)'&„=((&,)')„,1

4&@&„
(2.29a)

(n )„((&y)'),= ((&a, )'), (2.29b)

and the normalized laser-phase noise is equal to the a2's
variance in the steady state

d
(u, ) =(d, ), i =1,2 . (2.24)

We are now ready to calculate the variances of opera-
tors a

&
and az. First we find from Eqs. (2.17), (2.20), and

(2.21),

(:(&;)': ) = ( (&a; )') —
—,
' = ((5v; )'), (2.25)

where 5v, =u, —(u, ) (i =1,2). Then we obtain the equa-
tions of motion for (5v, 5u ) (i j = 1,2) from Eq. (2.22),

d
((5v, ) )=2(d, 5u;)+2(D, , ), i =1,2 (2.26a)

d (5v, 5uz ) = (d, 5uz ) + (dz5u, ) +2(D, z ) .
dt

(2.26b)

In the steady state, (a; )ss=u, o (i =1,2) are real, as can
be seen from Eqs. (2.19) and (2.21). As mentioned above,

yo is chosen to set U20=0. Similar to the previous discus-
sion of steady-state photon-number and phase variances,
the steady-state values of (5u;5v, ) are readily obtained
from Eqs. (2.26) by setting d ldt =0 on the left-hand side
and expanding d;, D, (ij =1,2) on the "right-hand side

up to first order in 6U, and 6U2 around the steady-
state locking point v, o&0, uz0=0. Usually one needs to
solve three coupled first-order algebraic equations to
obtain ((5u, ) ) (i =1,2). When Bd&(v, o, uzo)fBuz

The equations of motion for the expectation values of
quadrature operators are found from Eq. (2.22) as

We see that, when the steady-state mean photon number
is much larger than unity, squeezing in the a1 quadrature
is equivalent to sub-Poissonian light (i.e., photon anti-
bunching) while squeezing in the az quadrature means
phase squeezing. In addition, the minimum uncertainty
product for the photon number and phase is seen from
Eqs. (2.29) and [a&,az]= ,'i to be—

((&it )'&„&(&y)'&„ (2.30)

III. EFFECTS OF A SQUEEZED VACUUM
ON LASERS EXHIBITING PHASE LOCKING

The vacuum in a laser arises from the leaking of out-
side vacuum through the laser output mirror into the
laser cavity. As suggested by Gea-Banacloche, ' one can
shine a broadband squeezed-vacuum field into the cavity
and, consequently, change the heat bath of the laser field
from the usual vacuum to a squeezed vacuum (also plus
absorption losses). It is our purpose in this section to
study the effects of a squeezed vacuum on lasers exhibit-
ing phase locking. We separate the cavity loss rate y into
two parts, ' ' y=y, +y„with y, (y, ) representing
transmission (absorption) loss of the laser field. The mas-
ter equation for the intracavity field-density operator p
can be written as the sum of the gain-related part and the
loss-related part. In a squeezed vacuum, the 1oss-re1ated
part of the field master equation has been worked out, '
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(ap/at)i „=—
—,
' [y, (pa a —

apa ")

+y, (N + 1)(pa ta —a pa t)

+y, N(paa —a pa)

+y, M(2a pa —a "a p —pa a )]+H.c. ,

Dii =
—,'y, (e "—1), Dzz= (e 2"—1),Vt

when (p„=—,
'

it(, ,' f+—w, (3.5a)

D& —I

y (e 2r I) Dl — (e2r

(3.1) when (p„=—,'(it(+~) . (3.5b)

d,'= yI +—,'y, [N +—lMlcos(2(p—it()], (3.2a)

(3.2b)

where N and M satisfy the inequality N (N + 1)) M~
When N =M =0, ordinary vacuum case is recovered (as-
suming zero thermal photon). Following the general dis-
cussion in Sec. II, we find the loss-related parts (labeled
by superscripts 1) of the drift and diffusion coefficients in
the Glauber-Sudarshan P representation

D, 2 vanishes in both situations. Depending on the phase
difference 2@o—g, either D'» or Dzz can be negative and
thus one of the total diffusion coefficients, either D„or
D22, can be reduced.

Although it has no effect on the first moments of a
laser exhibiting phase locking, a squeezed vacuum
changes the second moments of such a laser. It follows
from Eqs. (2.25), (2.28), and (3.5) that the contributions to
the a, 's variance from the squeezed vacuum are propor-
tional to D,', at the steady-state locking point and read

D,', =y, I [N + ~M cos(2(p —it()],

D' = [N —~M~cos(2@ —P)],

(3.2c)

(3.2d)

y, (e -'"—1)

8[ad, (U„, ,„)/av, )

when (po= —,')t(, ,'g+~, —(3.6a)

DI = —
—,
' y, ~

M~ sin(2(p —g), (3.2e)

where M = ~M~e'~' has been used. Note that d„and DI„
vanish when 2(p=it(. When the mean photon number
no=(I ) ))1, as is generally the case, the loss-related
part of the intensity drift coefficient can be approximated
as di = —yI, same as in the usual vacuum. In lasers with
injected atomic coherence, ~d )) ~d'

~
when no))1, as

shown in Sec. IV, so the loss-related part of the phase-
drift coefficient can be neglected in this case, i.e., d' =0,
again the same as in the usual vacuum. Consequently, we
conclude that the steady-state operation points (no, (po) of
coherently pumped lasers do not change when the ordi-
nary vacuum is replaced by a squeezed vacuum.

In the complex P representation, the loss-related parts
of the drift and diffusion coefficients are found to be

(3.3a)

d,'= z~U2 ~

D i, =
—,'y([N + ~M~cos(2(po —Q)],

D', 2
= ,'y([N —M~cos(2(po —it()—],

D I ~
= —

—,
'
y, IMI»n(2q 0

—
it ) .

(3.3b)

(3.3c)

(3.3d)

(3.3e)

N =sinh r, ~M~ =sinhr coshr, (3.4)

where r &0 is the usual squeezing parameter. Substitut-
ing Eq. (3.4) into Eqs. (3.3c)—(3.3e), one obtains

Equations (3.3a) and (3.3b) also indicate that the steady-
state locking value (vo, tvo) is not influenced by the pa-
rameter N or M of the squeezed vacuum.

The diffusion coefficients, however, change with A' and
M and are phase sensitive. In the following we consider a
squeezed vacuum having a minimum-uncertainty product
N (N + 1)= ~M~ . In this case we can set

y, (e +'"—1)

8)ad, (.„,.„)/a., (

'

when (po
= ,

'
( P+ rr ) . —(3.6b)

A coherently pumped two-level laser in an ordinary
vacuum has been studied in Ref. 12. We consider a
coherently pumped two-level laser' in a squeezed vacu-
urn in this section. We are interested in the case where
the jth atom is injected into the laser cavity at time t
with its initial density matrix in the Schrodinger picture

—I Vt.
pabe

p'(&, )= (4.1)i~t- 7

Pba e Pbb

where a and b refer to the upper and lower levels, respec-
tively; v is the laser frequency; and p„, pbb and p, b =p b,
are the same for all atoms. The nonlinear master equa-
tion for the reduced field density operator p (in the in-
teraction picture) and the corresponding Fokker-Planck
equation in the Cxlauber-Sudarshan P representation,
have been obtained in Ref. 12 for an ordinary vacuum.
Based on the discussion in Sec. II and the properties of
the squeezed vacuum given in Sec. III we get, for a
squeezed vacuum now, total drift and diffusion
coefficients in the complex P representation under the ini-
tial atomic condition (4.1),

Here the upper signs are for i =1 and the lower ones for
i =2. One sees that the squeezed vacuum can reduce one
quadrature variance with the expense of an increase in
the other quadrature. A proper choice for 2(po —

1(( will
enable us to reduce the field's noise in either amplitude or
phase quadrature.

IV. COHERENTLY PUMPED TWO-LEVEL LASER
IN A SQUEEZED VACUUM
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a(p„p—bb )(1 i—5)
d = —' —y+2i(v —0)

2 1+wu/3/a

U1

1

a(P o Pbb )

1+(u, +uz)/3/a

ISp, b Isin(0 —
&po)—y +

1+(u, +vz)/3/a

2g MU

I (I —ib. )

2 2

+S~ 2g v
P"' r(1.+is) 1+wu/3/a '

ap..+ ,'/3(1+—52)(p„+pbb )wv

D, =
2(1+wuP/a)

(4.2a)

vz ISp.b I/3/a+
1+( v, + u z )/3/a

(4.4a)

a(P Pbb )

2 2 y
2 1+( u, + u z )/3/a

v1ISp.b I/3/a

1+( u, + u z )f3/a

X [u 1 cos(0 —yo)+uz sin(0 —1po)],

I Sp,„I
cos(0 —go)

1+(u, + v z )P/a

X [v, cos( 0 —yo) + u 2 sin( 0—
1P0)], (4.4b)

lSpab LU

+
I (I —ib, )

ES* U 2
E Pb U + —',N,r(r+ 1 a) 1+wu/3/a 2 YE

/3(p„pbb )w—v (iSp, bw
—iS*pb, u)/3/ a

4(1+wv/3/a) 2(1+wv/3/a)
+ where O=argp, b. In the steady state, U, and U2 are

locked to real values U1
= U]o, v 2

=
U2o satisfying

d, (u, o, uzo)=0 and dz(u, o, vzo)=0 (cf. Sec. II). As dis-

cussed in Sec. II, gp is chosen such that U2p=0. In the
present case we find

(4.2b) gp=0 ~7T (4.5)

/3(p pbb )(i/z 1)u /3(p +pbb )(1+5 )v
D„,= 4(1+wv/3/a)2 8(1+wu/3/a )

+ 1+lSp bU 2g wv /3/2a
I+wu/3/a I (I i b, ) 1+wu—/3/a

(another solution go=0+ ,'n is not —stable). The mean

photon number n p:—U, p is determined by the equation

a(p.. Pbb ) — 2ISP.b I—y+
I +n 0/3/a +no(1+no/3/a)

(4.6)

It is eas~to see from Eqs. (4.4) that at the locking point
u10= +no, v20=0, with yo given by Eq. (4.5),

g
r(r —i~)

ad, (v„,v„) adz(v„, v„) =0,
BU2 BU]

(4.7)

+iSP b, + —' M' I (I +1~) (1+wu/3/a)'

where

(4.2c)

~d 2 ( u 10 & v 20 ) /~ v 2 I
sperh I /v 10 (—0

Substituting Eqs. (4.2b), (4.2c), and (2.16b) into Eqs.
(2.23c)—(2.23e) and using Eqs. (2.21), we find at the lock-
ing point with yo given by Eq. (4.5),

2». g' 8r. g' r. g

I +b, (I"2+62)2 I +id,
(4.3)

D (v, u )=
11 10~ 20 4(1+ P/ )2

1/2
no/3 no/3

X P..+pbb —2Ip.bl

r, is the atomic injection rate, g is the coupling constant,
I is the atomic decay rates (taken to be the same for both
levels), Ace, b is the energy difference between levels a and
b, and Q is the empty cavity mode frequency. Note that
in deriving Eqs. (4.2) 1 is neglected as compared with wu.

Also d and D are given by Eqs. (2.16) and (4.2).
We focus on the resonant case 0=co,b in the following

discussion. From symmetry consideration we can set
v=0, thus b, =0, as in an ordinary two-level laser (i.e.,
p,b=0). Substituting Eqs. (4.2a) and (2.16a) into Eqs.
(2.23) and using Eqs. (2.21), one finds that when b, =0,

+ ,' y, [N +
I
M

I
cos(2—yo—1/ ) ], (4.8a)

+ —,
' y, [N —

I
M

I
cos( 2yo —

1/ )], (4.8b)

D12(vlo v20) —
—,'y, IMI»n(2+0 1/') . (4.8c)

no/3
Dzz(vio vzo) 4(l+n la) P«P«Pbb 2a

+( + )

1/2
tl p

Pab
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Because of Eqs. (4.7) we can use Eqs. (2.28) to obtain the
steady-state variances of the operators a, and a2 in which
D, , (v, o, v20) (i =1,2) is given by Eqs. (4.8) and
Bd, ( v, o, v 20 ) /Bv, is readily obtainable from Eqs. (4.4)
with the help of Eqs. (4.5) and (4.6). Moreover,
D, , (vio, v20) &0 (i =1 or 2) means squeezing. The vari-
ances depend on the squeeze angle i)r of the squeezed vac-
uum since D;;(v,„,v20) does so too.

Before we proceed to give an example, it is worthwhile
here to compare quadrature variances with photon-
number and phase variances for b, =0. At the lock-
ing point v

1
=+no, v2 =0 or, in terms of laser intensity

and phase, I = no, cp=yo=O —
—,'~. A comparison of Eqs.

(4.8) with Eqs. (3.2) plus Eqs. (4. 17) in Ref. 12 gives

11("o &po) 4noDrr(v10 v2o)

(no vo) no D (vlo v20)
—1

Dr~("o cpo) 2Di2(v io v2o)

(4.9a)

(4.9b)

(4.9c)

and a comparison of Eqs. (4.4) with Eqs. (4.5) in Ref. 12,
with little algebra, shows

~d
1 ( v10 v20 ) ~dl( 0 po)

Bv) BI
(4.10a)

Bd, (v, , v,„) Bd (n, g ) (Sp, (

(4.10b)

Combining Eqs. (4.10) with Eqs. (2.12) and (2.28), one ar-
rives at

(4.11a)

(4.11b)

Pvv 1 Pbb & ~Pvb (PvvPbb )a (4. 12)

and correspondingly [satisfying Eq. (4.6) and being stable]

n —y
y f3

(4.13)

Using Eqs. (4.3), (4.5), (4.12), and (4.13), we find from
Eqs. (4.4)

~di(vio v2o)

(3V )

Bd2(v 111,v211 )

Bv2
(4.14)

Substituting Eqs. (4.14), (4.8), (3.4), (4.12), and (4.13) into
Eqs. (2.28), we get

which are just Eqs. (2.29) obtained from simple physical
arguments.

We now look at an interesting case examined in Ref.
12,

)') = ——
1 ss 4

$=2cpo+ rr =29, (4.15a)

((Aa2)'), s=
8y

$=2cp0=20 —rr . (4.15b)

V. SUMMARY

The quantum theory of lasers was originally developed
for incoherent pumping (i.e., with no initial atomic coher-
ence between the lasing levels, which is reflected in the
fact that the initial atomic density operator is diagonal)
and for buildup of the laser field from an ordinary vacu-
um. In the present paper we have generalized this "stan-
dard" quantum theory to include the effects of the atomic
coherence and squeezed vacuum. In so doing our main
theoretical tool has been the reduced density operator for
the field only. As is often the case in laser physics and
quantum optics a c-number representation of the density
matrix is more favorable. When squeezing is present the
complex P representation turns out to be very useful,
since the distribution function P(v, w, t) satisfies a
Fokker-Planck equation which can be obtained from the
Fokker-Planck equation for the Glauber-Sudarshan rep-
resentation P ( v, v *,t) by just replacing v

* with w. This
correspondence at the same time indicates that the
Glauber-Sudarshan (or diagonal) P representation can

The first terms in Eqs. (4.15) have been found in the case
of an ordinary vacuum (see Ref. 12), whereas the second
terms (proportional to y, ) represent the effect of the
squeezed vacuum, in agreement with Eqs. (3.6) and (4. 14).
Squeezing occurs when either ( ( b,a, ) ) ss & —,

' or
((ha2) )ss& —,'. We recall that y=y, +y, . In the limit

y, «y, , e '«1, Eqs. (4.15) and (4.11) yield (1) for
$=2rpo+rr, (, (b,ai ) )ss= —„', i.e., 50% squeezing in the
laser amplitude and sub-Poissonian photon statistics
((bn ) )ss= 1no, a—nd (2) for $=2cpo, ((ba2) )ss=a/8y,
(, (b rp) ) ss =a/(8noy ), i.e., phase squeezing occurs if
o, (2y, with a maximum of nearly 50% phase squeezing
if o. =y. For example, for a hypothetical case with
y, =0.05y, , e "=0.2 (80% squeezing in the squeezed
vacuum), and a = l.2y, one obtains (1) for f=2go+ rr,
((b,a, ) )ss= —,

' X0.62, i.e., 38% laser amplitude squeez-
ing; and (2) for iir=21po, ((b,a2) )ss= —,

' X0.72, i.e. , 28%
laser phase squeezing.

Thus we have shown that one can obtain a squeezed
laser field in a two-level laser if the atoms are initially
prepared in a coherent superposition of the upper and
lower levels and the laser operation builds up from a
squeezed vacuum. Without the initial atomic coherence
a squeezed input vacuum is able, at best, to reduce the
diffusion coefficient in one quadrature (phase or ampli-
tude diffusion) by a factor of 2, but never produces a
squeezed field (see Ref. 14). Thus the role of atomic
coherence is crucial in reducing fluctuations below the
vacuum level.
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also be used to calculate variances if the resulting
P (v, v*, t) is not interpreted as a quasiprobability distri-
bution function.

In the next step, we included the effect of a squeezed
vacuum into the Fokker-Planck equation which now
simultaneously accounts for initial atomic coherence and
the buildup from the squeezed vacuum. The squeezed
vacuum changes the diffusion coefficients and quadrature
variances, but does not affect the laser intensity Io and
phase ego.

As an application, we have investigated the case of a
traditional one-photon laser with two-level active atoms
when initial atomic coherence between the lasing levels is
present and the laser oscillation builds up from the
squeezed vacuum. We have found that with the help of

atomic coherence a significant part of the spontaneous-
emission noise can be eliminated and a correlated-
emission laser operation is possible. ' With the further
inclusion of a squeezed vacuum we have found that the
field can actually be in a squeezed state with stable
squeezing in the amplitude or phase quadrature. With a
realistic choice of parameter values, nearly 50% squeez-
ing in either quadrature is possible in the intracavity field.
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