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Properties of squeezed number states and squeezed thermal states
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Much attention has been given in the past to two classes of squeezed states: the squeezed vacuum
and coherent states. Here we study the eAects of squeezing on number states and on thermal field

states. The statistical properties of these various squeezed states are discussed using the second-
order correlation functions. The quasiprobabilities of the Wigner, Q, and positive P representations
are calculated and compared for the squeezed states. The Glauber P representation for the
squeezed thermal state explicitly shows the limit of its applicability. The photon number distribu-
tions of the squeezed number and squeezed thermal states are extensively discussed and new in-

terference eAects in phase space are shown to lead to highly structured number distributions.

I. INTRODUCTION

There has been considerable interest in attempts to
produce purely quantum-mechanical states of light such
as the squeezed states, the sub-Poissonian states, and the
photon number states. ' The amplitude-squeezed states of
the sub-Poissonian field have been observed by using a
negative-amplitude feedback laser incorporating a photon
nondemolition measurement of photon number. The
amplitude-squeezed states are described as having a "ba-
nana" shape in the quadrature operator phase space.
These so-called banana states can ultimately tend to an
annulus in phase space characterizing a number state.
Hong and Mandel have successfully generated a local-
ized one-photon state by use of an optical shutter, in
which "twin" photons (the idler and signal photons) are
produced by parametric down conversion, and the signal
photon opens a photoelectric detection gate to the idler
photon and produces a localized one-photon state.

The precisely defined photon number state can be used
as an input field in a squeezing system, such as a paramet-
ric amplifier. For this reason, we calculate here the sta-
tistical properties of the squeezed number states. Histori-
cally, the squeezed number state was introduced by
Yuen but the properties of the squeezed number state
have not to date been studied in any detail ~ The number
state is determined by its photon number while the phase
is completely random. By squeezing the photon number
state the deterministic photon number is blurred and the
quadrature uncertainty is squeezed in one direction. The
properties of the state become phase dependent.

The thermal state can be expressed in terms of the
Bose-Einstein weighted sum of the photon number
states. We can also consider a thermal input field to a
squeezing device. Yurke and co-workers' have
developed a microwave Josephson junction parametric
oscillator which has already generated substantial noise
reduction in the thermal noise in a microwave cavity.
One aim of such work is to develop nonclassical fields for
interaction studies with Rydberg atoms, where the
thermal noise in input fields is always large.

The plan of this paper is as follows. We review some

II. SUMMARY OF PROPERTIES
OF THE SQUEEZED COHERENT STATE

The squeezed coherent state is defined as'

~/3, r ) =D(/3)S(r) ~0&

where the squeeze operator' S(r) is given by

(2. 1)

S(r) =exp( ,'ra
—,'ra )——

and the Glauber displacement operator' D(/3) by

D (/3) = exp(/3a —/3*a ) .

(2.2)

(2.3)

Here the squeeze parameter r has been assumed real for
convenience. The squeezing operators provide a Bogo-
liubov transformation of the annihilation and creation
operators as

S (r)aS(r) =a coshr —a sinhr,

S (r)a S(r)=a coshr —a sinhr .

(2.4a)

(2.4b)

The displacement operator produces the operator trans-
formations

D (/3)aD(/3) =a+/3,
D (/3)a D(/3) =a +/3* .

(2.5a)

(2.5b)

The quadrature operators are defined by

X, =a+a (2.6a)

(2.6b)

well-known properties of the squeezed coherent state to
compare with those of the squeezed number and the
squeezed thermal states. We then calculate the quasipro-
bability functions of the squeezed states and the Glauber
second-order correlation functions for the various
squeezed states. The photon number distribution is ex-
tensively discussed. The pairwise oscillations resulting
from the two-photon nature of the squeeze operator are
explained in terms of phase-space interference. "
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For the squeezed coherent state, the variances
((b,X;) ) —= (X'; ) —(f;) are, from Eqs. (2.1), (2.4), and
(2.5),

n

Ph—= (1+n) ' g p„
„=p 1+n

(3.2)

((~, ) ) =exp( —2r), (2.7a)

(8 &
=

& 8 8 ) = iPi'+sinh'r

and the photon number variance

((bn) ) =
iP~ [exp( —2r)cos /+exp(2r)sin P]

+ —,'sinh (2r}

(2.8)

(2.9)

where p=ipie'~. It is a straightforward calculation to
find the Glauber second-order correlation function'

1+ ((b,n)') —(e)
&e&'

using Eqs. (2.8) and (2.9), '

g' '=1 — + [iPi (e "cos P+e "sin P)(2) 1 1

&e) (! &'

(2.10)

((~2) ) =exp(2r) . (2.7b}
The mean photon number for the squeezed coherent state
1s

where n is the average photon number of the thermal in-
put field. Alternatively, the density matrix p, h can be ex-
pressed in a coherent basis as

p,h= f d pexp( —n '~p~ )S(r)~p)(p~S (r) .
m.n

With the use of Eqs. (3.1), (2.4), and (2.5) for the
squeezed number state, the variances of the quadrature
operators are

(3.3)

((bX, ) ) =(2n+1)e

((b,X2) ) =(2n+l)e ".
The variances for the squeezed thermal state are

((bX, ) ) =(2n+1)e

((AXE) ) =(2n+ 1)e " .

(3.4a)

(3.4b)

(3.5a)

(3.5b)

These results for the variances are in agreement with
Fearn and Collett.

The photon number variance ((b,n) ) for the squeezed
number state is

+2sinh r cosh r] . (2.11) ((hn) ) =
—,'(n +n + l)sinh 2r . (3.6)

P+P'tanhr
&2tanhr

where HI is the Hermite polynomial, ' defined by

Hi(x)= g ' (2x)'1!(—1)
m!(1 —2m)!

(2.12)

(2.13)

Throughout the paper the factorials are defined only for
non-negative integers, thus the upper and the lower limits
of the summations, e.g. , in Eq. (2.13), are determined by
this limitation

0(m( —.
I

2
'

III. SQUEEZED NUMBER STATES
AND SQUEEZED THERMAL STATES

We define the squeezed number state density matrix
b 11

p„=S(r)in )(niS (r) . (3.1)

The photon number distribution P(l)=(lip~1) gives
the probability of there being I photons in the field. For
the squeezed coherent state, where the density operator is
p:—iP, r ) (P, ri, the photon distribution P„(1) is, using
Eqs. (2.4) and (2.5)

( —,
' tanhr)'

Psc(l) = exp[ —
~ pi

—
—,
' (p* +p )tanhr]

Itcoshr
2

where

(8') =n cosh(2r)+sinh r . (3 8)

When r =0, we recover the second-order correlation
function for the photon number state and when the
squeezing is not significant, i.e., r small, the second-order
correlation function can be less than unity, which indi-
cates the light field has sub-Poissonian statistics. When
r ))1, the second term of g

' in Eq. (3.7) is negligible
and

(z) 1
2(n +n+1)

(2n +1) (3.9)

For a large-photon number g' ' approaches 1.5. Similar-
ly the second-order correlation function for the squeezed
thermal state is obtained as

Note that for n ) 1, the number uncertainty hn grows
linearly with n. This will determine many of the photon
statistical properties we discuss later. When there is no
squeezing, i.e., r =0, the photon number variance is zero
and the photon number is entirely deterministic for the
photon number state. For r ))1, the photon number
variance grows exponentially as the squeeze parameter
increases. With the use of Eq. (3.6) in Eq. (2.10) we find
for the second-order correlation function

(z( cosh(2r)
g =1-

(@)' n

+ [2n cosh r +2n cosh r +cosh(2r)] (3.7)
sinh r

The squeezed thermal state is the Bose-Einstein weighted
sum of the squeezed number states, with density matrix

(2n+1)g' '=2+ sinh r cosh r
(e&'

(3.10)
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In order not to confuse the parameter a of the Wigner
function with that of the displacement operator we have
employed the notations p for the displacement parameter
and a for the Wigner function argument. Using Eqs.
(2.4) and (2.5) we obtain the characteristic function of the
squeezed coherent state ~p, r ) =—D(p)S(r) ~0)

C~(21)=exp(2ir/, /3 +2i21 /3
—

—,'g, e "—~r/ e ') (4.3)

where 21=21 +ir/ and /3=p +ip . Substituting Eq.
(4.3) into the definition of the Wigner function, Eq. (4.2),

Wsc(a) = —exp[ —2e "(a, P, )
——2e "(a —P ) ]

(4.4)

FIG. 1. Second-order correlation function for the squeezed
coherent, the squeezed thermal, and the squeezed number state
when the average photon number is 25, i.e., n =25, n=25, and
0.= 5. r is the squeeze parameter. (a„,a )=(p„p ) . (4.5)

where n and a are the real and the imaginary parts of
e, respectively. This is a Gaussian function with the
maximum 8'sc value at

where

(6') =n cosh2r+sinh r,
((bn) ) =n cosh(4r)+n cosh(4r)+ —,'sinh (2r) .

(3.11)

(3.12)

With use of the Taylor expansion of the Glauber dis-
placement operator we find the transformation of the dis-
placement operator by squeezing generates a similar
operator D, but with a di6'erent coefficient:

S (r)D(2) )S(r)=D(g) (4.6)

For r&0, the second term of g' ' in Eq. (3.10) is larger
than zero so that the second-order correlation function
for the squeezed thermal state is always greater than that
for the thermal state. Squeezing the thermal field is re-
sponsible for larger fluctuations in the field intensity. For
a limiting case, as r &)1, g' '~3. The factor 3 charac-
teristic of super-Poissonicity was earlier discussed by Ek-
ert and Rzyiewski' and Janszky and Yushin' in the
study of the statistical properties of the squeezed vacu-
um. Figure 1 compares the second-order correlation
functions of the squeezed coherent, the squeezed number,
and the squeezed thermal states. The squeezed coherent
state shows sub-Poissonicity when r is small but becomes
super-Poissonian as the squeezing increases. As the pho-
ton number state is squeezed, the photon number distri-
bution is blurred and the photon statistics very rapidly
becomes super-Poissonian, as can be seen in the depen-
dence of g

' ' on the squeeze parameter r in Fig. 1.

g(q) =21 coshr +21*sinhr . (4.7)

If any two noncommuting operators 0, and Oz satisfy
the conditions

[OI [OI O2]] [O2 [Ol O2]]

then with the help of the Baker-Hausdorf theorem '

exp(O, +02)=exp(O, )exp(02)exp( —
—,'[0, , 02])

(4.8)

(4.9)

C~(q) =exp(,' ~g~') & n!,e~' e ~ '~n & . (4.10)

We obtain the Wigner function for the squeezed number
state from the Fourier transform of the characteristic
function (4. 10)

and using Eqs. (3.1), (4.6), and (4.9) in Eq. (4.1) we find for
the squeezed number state the characteristic function

IV. QUASIPROBABILITY FUNCTIONS

A quasiprobability formulation of quantum mechanics
has first been given by Wigner, ' with a characteristic
function, associated with the symmetrical order of the
annihilation and creation operators, defined by

Cg (g)—:Tr[pexp(ga —q*&)]

8 s~(a)= —exp[ —,'(a —a*) e "—
—,'(a+a*) e "]

X (
—1)"X„[(a+a") e'"—(a —a' ) e '"]

(4. 1 1)

where X„ is the Laguerre polynomial

=Tr[pD(21)] . (4.1)
n

X„(x)—= g ( —1) x /m! .
m=0

(4.12)

1W(a) = d r/exp(a21* —a*21)C~(2/) . (4.2)

The Wigner function is defined as the Fourier transform
of the characteristic function C~(21) Similarly, using the definitions of the squeezed thermal

state (3.3) and the characteristic function (4. 1) and the re-
lation (4.6), the Wigner function for the squeezed thermal
state is obtained as
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8'sr(a) = exp[ —2(a e "+a„e ')/(1+2n )] .2/ir
1+2n

(4.13)

squeezed coherent state

This is comparable with the Wigner function (4.4) for the
squeezed coherent state. The squeezed thermal state
signer function is also a Gaussian function with the
maximum at a=(0,0) while the maximum value of the
Gaussian squeezed coherent %igner function is displaced
by p. Both the squeezed thermal and the squeezed
coherent signer functions are seen to be stretched by the
action of the squeezing. As the average photon number n
of the initial thermal state gets larger the %'igner func-
tion WsT(a) of the squeezed thermal state is more widely
stretched so that 8'sr(a) is more slowly varying than
Wsc(a) with phase parameters a„, a . The Wigner func-
tions for the squeezed number, the squeezed thermal, and
the squeezed coherent states are plotted in Fig. 2.

The Q representation is another quasiprobability for-
mulation and is defined as the Fourier transformation of
the antinormal-ordered characteristic function. Alter-
natively, the Q representation can be defined as

(4.14)

squeezed number state

From this definition we see that the Q representation is
always non-negative. Using the definition of the density
matrix of the squeezed coherent state ~p, r ) we obtain
the Q representation Qsc(a) for the squeezed coherent
state

(4.15)

Considering the definition of the squeeze operator in Eq.
(2.2) it is not obvious how to solve for S(r)~0&. We now
factorize the squeeze operator into a product of exponen-
tials following Schumaker and Caves:

S(r)= exp[ ,'(ta—nh—r)& ](coshr)
&coshr

x exp[ —,
' ( tanhr )& ] . (4.16)

squeezed thermal state
Substituting Eq. (4.16) into Eq. (4.15) we find immediately
that

Qsc(a) = exp[ —2(ay —Py) /(1+e ")1

~ coshr
—2(a, —P„) /(1+e ")] .

(4.17)

Similarly the factorization of the squeeze operator (4.16)
enables us to find the Q representation for the squeezed
number state

( e)n —2k

(n —2k)!k!
x

'k =0
n —2k 2

1

coshr

gsN(a ) = n!exp[ —
—,
' tanhr (a +a' ) ]

exp( —a )

m coshr
k

tanhr
2

(4.18)

FIG. 2. signer function 8'(x,y) for (a) squeezed coherent
state when a = 1, (b) squeezed number state when n = 1, and (c)
squeezed thermal state when n=1. The squeeze parameter
r=0.5. Here x =Re(a) andy =Im(u).
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Q,N(a) =—exp( —lal')1

l2
X exp[ —

—,
' tanhr ( a +a* ) ]

(coshr)
(4.19)

As a simple limit we find the Q representation for the
squeezed one-photon number state S(r) l 1 ) as

As Fig. 3(b) shows the cylindrical shape of the Q repre-
sentation for the photon number state is squeezed as the
squeeze parameter r increases. The squeezed thermal
state is described by the integration of the squeezed
coherent states with their appropriate weights given by
Eq. (3.3). Thus we find after straightforward algebra us-

ing Eqs. (3.3) and (4.17) the Q representation QsT(a) for
the squeezed thermal state

QsT(a) = (van coshr)
exp —

—,'tanhr(a +a* ) —lal2 42 2

[(1+1/n) —tanh r]'~

+ [(1+1/n )lal —
—,'(a +a* )tanhr]

1/cosh2r

(1+1/n )
—tanh r

(4.20)

C (q) =exp[ —(e "sinhr +ne ")g„
—(ne ' —e "sinhr)g ] . (4.21)

The Q representations for the squeezed coherent and the
squeezed thermal states are Gaussian as are their signer
functions. The Q representations are plotted in Fig. 3.
The squeezed number state has two peaks with a trough
at (0,0) while the squeezed thermal and the squeezed
coherent states are Gaussian. The peak of the squeezed
coherent state has been displaced by 13 as expected. The
Q representation of the squeezed thermal state is largely
stretched along the y axis (a axis) due to the small
coe%cient of a .

Glauber and Sudarshan, independently, have intro-
duced the diagonal P representation for the probability
density. The P representation is defined as the Fourier
transform of the normal-ordered characteristic function.
Using the definition (3.3) of the squeezed thermal state we
obtain the characteristic function C (r)) for the squeezed
thermal state as

(2n+1)e ") 1 . (4.24)

The left-hand side of Eq. (4.24) is the variance of the
quadrature operator for the squeezed thermal state [see
Eqs. (3.5)] and the factor 1 of the right-hand side is the
quadrature variance of the vacuum. If the quadrature
variances are larger than the minimum uncertainty limit,
it is possible to describe the squeezed thermal state in
terms of a well-behaved P representation which is posi-
tive everywhere. The squeezed thermal state can show ei-
ther a classical or a quantum behavior depending on the
sizes of n and r.

As a possible way to avoid the limit of the applicability
of the P representation, Drummond and Gardiner have
suggested the so-called positive P representation. The
positive P representation is defined over a double-phase
space. The positive P representation is always positive as
is the Q representation. The density operator can be ex-
pressed in terms of the positive P representation and the
projection operators A(a, y) as

Considering the squeezing in one direction, namely r & 0,
the coeScient of g„ is always negative but that of g can
become positive, which makes the characteristic function
diverge. Thus only when

la= Jd ad y P(a, y)A(a, y} (4.25)

ne '—e "sinhr &0 (4.22)

can we Fourier transform C (g) and find the P represen-
tation PsT(a) for the squeezed thermal state as follows:

where P(a, y) is the positive P representation and the
projection operator A(a, y) is defined as

1/n.
PsT(a)=

[(sinhr +ne")(ne "—sinhr}]'
(y*la &

(4.26)

Xexp[ —a e "/(sinhr+ne')

—a„e"/( —sinhr +ne ")] . (4.23)

After a little algebra we find that a positive P representa-
tion exists for any quantum density operator p in the
form

The diagonal P representation is we11 defined for a classi-
cal state, but either it is negative or does not exist for
states exhibiting nonclassical behavior. The condition
(4.22) can be written as

1P(a, y)= exp
4m

la —y'I' a+@' a+y')
4 2

IPI
2

(4.27)
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1P(a, y)= exp
4m

The positive P representation (4.27) can be rearranged
with the help of the Q representation (4.14):

I

—y*l'
Q

+y (42g)
2

P(a)= Q(a) .= 1

4m.

V. PHOTON NUMBER DISTRIBUTION

(4.29)

For the plane e=y* in the double-phase space of e and
y, the positive-P representation is proportional to Q rep-
resentation,

The photon number distribution, defined in Sec. II, for
the squeezed number state is obtained using the factoriza-
tion of the squeeze operator (4.16):

pent

t

, ( —,'tanhr)" 'S(r, l, n) when ~l
—

n~ is even
PsN(l)= ((l~S(r)~n ) (

= . (coshr) '+'
0 when ~1

—
n~ is odd (5.1)

where

(
—1) (2 'sinhr)'

m!(1 —2m)![m +(n —l)/2]!
(5.2)

The factorials in Eq. (5.1) are valid for non-negative in-
tegers, so that —,'(1 n) ~ m—~

—,'1. The photon number dis-

tribution can, alternatively, be written as

PsN(l) = ' i, ( —,'tanhr)"
(coshr) '+'

XS(r, l, n)c so2
(n —l)~

2
(5.3)

The cosine term is responsible for the vanishing value of
PsN(l) when ~!n

—
l~ is odd. When r =0, we recover the

photon number state result PsN(l) =5,„. Another simple
case of PsN(1) is found for n =1; the photon number dis-
tribution for the squeezed one-photon number state is

PsN(1) = 1!(——,
' tanhr )'

l 1
cosh r ——— !

2 2

2 (1 —l)~
- icos (5.4)

Ps~(1)=(I+n )
' g PsN(l, n)

1+n
(5.5)

For the squeezed thermal state we find, using Eq. (3.2),
the photon distribution Ps~(l) to be given by

'n

cillations of the squeezed number state photon distribu-
tion, analogous to those found by Schleich and Wheeler
for the squeezed coherent state.

Schleich and Wheeler have interpreted the large-scale
oscillations of the photon number distribution for the
squeezed coherent state using the Bohr-Sommerfeld
phase-space picture. In phase sppce, when the coherent
state is appropriately squeezed the photon number state
annular overlaps twice with the squeezed coherent state
ellipse. According to basic quantum mechanics, the pho-
ton number distribution, which is a probability function,
is not merely the sum of the areas of overlap but the sum
of the probability amplitudes, fixed by the areas of over-
lap, with appropriate phases. It is straightforward to
show that the pairwise oscillation discussed by Yuen for
the squeezed vacuum photon number distribution has a
similar interpretation. The phase-space contour for the
number state is dominated for these purposes by an an-
nulus representing the leading effect of the Laguerre po-
lynomial representation of the appropriate Wigner func-
tion whose radius is determined by the photon number 1,

whereas the Wigner contour for the squeezed vacuum
state is an ellipse centered on, and maximized at the ori-
gin. There can be two areas of overlap or none between
the number state and the squeezed vacuum in the phase
space. The sizes of the two areas are the same due to
their property of symmetry. If the area of each overlap
in the phase space of X, and Xz is At, and the phase is

y&, Schleich and Wheeler show that

The photon number distribution Psv(l) for the squeezed
vacuum is obtained by setting n =0 in PsN(l):

Psv(l) =
~

Ai' exp(i&p, )+ A,' exp( —i pi )!

=4 Ai ~cos(pi ~
(5.7)

Psv(l) = (
—

—,
' tanhr )'1!

cos
( —,'1)! coshr

(5.6)
where

cp, = f dX, ( 21 + 1 —X, )
'

0 4

When 1 is odd Psv(l) is zero, otherwise Psv(l) may be
nonzero. These so-called pairwise oscillations are the re-
sult of the quadratic, or two-photon nature of the squeeze
operator S(r). We have plotted the photon distributions
PsN(1), Ps~(l) as functions of photon number 1 in Fig. 4.
Both the distributions show pair wise oscillations. A
more noticeable feature is the large-scale macroscopic os-

with gi =(21+1)' . [Although the squeezed vacuum is
beyond the original coherent state large P »1 » 1 condi-
tion, under which Schleich and Wheeler obtained the ap-
proximation (5.7), the approximation still works well for
the trend of the photon number distribution of the
squeezed vacuum. ] Calculating Eq. (5.8) we find that the
phase y&=1~/2 for the squeezed vacuum. This agrees
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squcczt-d coherent st.etc with our earlier result (5.6) and shows the pairwise oscil-
lations.

For the squeezed number state, the photon number dis-
tribution PsN(l) in Eq. (5.3) is not easy to analyze so that
we suggest some approximations leading to a tractable
form of the equation. If we squeeze a large-photon num-
ber state, i.e., n &) 1, and consider PsN(l) for 1 & n,

n
2 2
—'(n —1)+m = —&)0 . (5.9)

For I & n, the summation range in Eq. (5.2),

(5.10)

where it has been taken into account that m is a non-
negative integer. Considering the condition (5.9) we ap-
proximate the sum (5.2) as

~(~&~.cv. zv(I. ts ~&~:r& I) c &' s t. w t c

(b) S(r, l, n)= 1

n

2

m!( I —2m )!
(5.11)

, r

''h,
,

',

. r ca ~~+.+-Q, ', - c o ~

().()"')

0.0"0
'J:

0.015
CJ

0.0 I 0

~qiae vz v. d t. , k& v&-irs'. ~1 ~ i.a t. v

0.0()a

0.000

't

¹

:3() (3() t) 0 j '() I;)()

J) l 1 O t.O I 1 I 1 l I I I 1 tl E' I"

/,
'/g

, ,
/

'/
l

/

/

- 0.0()

X
0.04

0.00
.¹ e

¹ 4 ¹ $ e $ ¹ ¹
¹'

¹ a 0 '¹ ¹ ¹ ¹ * a'
¹ y '¹y ¹ e

0 10 '~():30 10 50 (30 )0
I:)110 t. O I 1 I 1 ll I Il b P.. I

FIG. 3. Q representation g(x,y) for (a) squeezed coherent
state when a= 1, (b) squeezed number state when n = 1, and (c)
squeezed thermal state when n=1. The squeeze parameter
r=0.5. Here x =Re(a) and y =Im(a).

FIG. 4. (a) Photon number distribution Ps& ( I ) of the
squeezed number state when the squeeze parameter «=2 and
the initial photon number n =20. This photon number distribu-
tion is valid only for even integers, i.e., 1=0,2, 4, . . . . (b) Pho-
ton number distribution PsT(I) of the squeezed thermal state
when r= 3 and the initial average photon number n =2.
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where

1

sinhr
(5.12)

In terms of the Hermite polynomial (2.13), Eq. (5.11) is
simply written as

Hl(g)
S ( r, I, n ) =

t l t2(2()2l
2

(5.13)

PsN(l)

n
n~ 2'

—,
' tanhrl!coshr

n+I

(5.14)

Substituting Eq. (5.13) into Eq. (5.3) we find an approxi-
mation of PsN(l) as

—2

(5.19) we see that there are two phases, (n —l)m/2 and

P, , in the photon number distribution for the squeezed
number state. The pairwise oscillations are determined
by the former and the large-scale oscillations are fixed by
the latter. The size of the phase P& depends on the
squeeze parameter r. As r~ ~, the integration range of
Pl is between 0 and gl, which is the same for the photon
number distribution of the squeezed vacuum in Eq. (5.8).

As in Fig. S, there are zero, two, or four areas of over-
lap between the annular phase-space contour of the num-
ber state and the compressed annulus of the squeezed
number state phase-space contour. The areas are the
same but the phases are different. Extending the work of
Schleich and Wheeler, where the phase is determined
by the enclosed area to the right of the intersections, we

may say that the two overlaps on the right have the phase

P& while the other two on the left have the diff'erent phase
The photon number distribution is governed by the

areas A I and phases PI, Pi so that

Schleich and Wheeler have found an improved asymp-
totic formula for the Hermite polynomial, for I ))1,

' 1/4

H (g) =(41T)' (2 l!)'

PsN(l) =4A& ~costi +cosP& ~

Assuming P'I =(n 1)mPI—we o. b—tain

~cosP, +cosP,
~

=cos (!)1[1+cos(l—n)m]

(5.21)

X 3, (
—tI)e px(g l2) (5.15) z (l —n)m=cos Q I cos

2
(5.22)

where A, (
—

t&) is an Airy function and tl an integral
function of g, defined as

0(
t( —= —', dX, pl(Xi )

2/3
(5.16)

and we have assumed (sinhr) '=(~(I. The parameter,
which has been introduced in Eq. (5.15), is defined as

(5.17)

Substituting Eq. (5.22) into Eq. (5.21) we find that PsN(1)
has pairwise oscillations and large-scale macroscopic os-
cillations. This agrees with the argument of the approxi-
mation discussed in Eq. (5.19).

If l is appropriately larger than g, the Airy function
simplifies to'

A;( —t&)=~ t& cos t&—(5.18)
numbe

st
Using Eqs. (5.15) and (5.18), the photon number distribu-
tion becomes

2 2 "n! (tanhr)" +'

v'~ „' cosh r
2'

1/2

~ (n —l)m.
X exp(g )cos cos $1 (5.19)

where
squee
numbe

(5.20)

This approximation has been derived when n ) l )) 1 and
the squeeze parameter r is appropriately large. From Eq.

FIG. 5. Phase-space representation of the mean values and
uncertainty contours for the squeezed number state together
with the number state. The amplitude of the photon distribu-
tion is proportional to the dotted area.
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E . (5.20) can be written asThe phase $1 in Eq.

(5.23)

n number distributions for qthe s ueezed
number states. For S(5) l100~ PsN(
S(5) 99 sN), P (1)=0 when l is even.

where
S(S)~100)

PsN(l)
S(5)~99)

(5.24)

cos Pt

sinhr

fmed r ))1. Using Stirling s or-E . (5.24) we have assumed r ))
u 1 E . (5.19) becomesmula and r ))1, q.

2/(gicoshr) („cos
&~(2l +1)

2/&~ z (n —l)n.
cos

(2l + 1)coshr

0
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12
14
16
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0.000 30
0.000 25
0.000 22
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15
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0.000 019
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0.000 056
0.000 058
0.000 060

l~
X COS COSA/

2
(5.25)

. 4(a).l) for n ==20 and r =2 in Fig.We have plotted PsN(
When n and l are even,

1 p &21+ I
PsN(l) ~ —cos (5.26)

nal to 1/l and asillations is proportionap
l grows the oscillaations slow down. is

nd when n and l are odd,ed in Fig. a.4( ). On the other hand w en n

where l is odd. When the squeezed odd-
d ven- hoton numberor the squeezed even-pphoton number or

'
h he even-photon or the1 overlaps wit t e ev

te the inter erencodd- hoton number state c0 -p
and ives PsN(l) =0.laps is destructive an g

the Bose-Einsteinthermal state is t eq
ueezed num er s aweig e
mber is small, i.e., ninput average photon num er

'

1 . p &21+ I

1 sinhr
(5.27)

S(r) I 2k &
S(r)l 2k+1&

and (5.27) have been obtobtained for
h hoond r ))1. When r =5 we corn

ith S( )~99) i T bln of S(r) 100) wit rnumber distribution o
(l) decreases as l in-I. For S(r) 100, , we see that PsN

- hoton number sta e.te.e s ueezed even-p o on
in-

creases for the q
P (l) increases as

d- hoto umber state. s

r )'
,
99 ) shows that

e. Asqs ueezed odd-p oton n

1 to
the s ueezed even-photon num

H l,
ezed odd-p o on

2 F r=5po
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important contribution of the sum is from the squeezed
number state n =0 (squeezed vacuum). Thus the photon
number distribution for the squeezed thermal state of
n ~ 1 is similar to the squeezed vacuum and oscillates be-
tween zero and nonzeroes in a pairwise pattern. However
when n is large we cannot disregard the contributions
from the squeezed number states with n large. Eventual-
ly the contributions from appropriately large photon
number states are more important. When n is appropri-
ately large and I & n, the approximation (5.25) is applic-
able and the photon distribution will show a similar pat-
tern to Table I. The sum of odd- and even-number pho-
ton states will show the pairwise oscillation as in Fig.
4(b).

VI. CONCLUSIONS

We have discussed properties of the squeezed number
and the squeezed thermal states in the paper. The
second-order correlation functions for the squeezed
thermal and the squeezed number states are calculated
and compared with that of the squeezed coherent state.
The we11-defined intensity of the photon number state
gets blurred at the expense of the phase squeeze and the
sub-Poissonian statistics of the photon number state be-
comes super-Poissonian. The squeezed thermal state is
always super-Poissonian. For the squeezed thermal state,
as r ~ ~, the second-order correlation function g' '~ 3.

The Glauber P representation is calculated for the

squeezed thermal state. When a quadrature variance is
less than the minimum uncertainty limit, the squeezed
thermal state of the super-Poissonian statistics does not
have a well-behaved P representation and cannot be de-
scribed by classical theory. The Wigner functions and Q
representations are obtained for the various squeezed
states. The Gaussian thermal state Wigner function is
stretched by the action of the squeezing.

The explicit expression of the photon number distribu-
tion is obtained for the squeezed number state, based on
which the photon number distribution for the squeezed
thermal state is calculated and plotted. Pairwise oscilla-
tions of the photon number distribution for the squeezed
thermal state are explained with the overlaps between the
photon number state and the squeezed state in phase
space. The photon number distribution for the squeezed
number state has large-scale oscillations as well as pair-
wise oscillations, which is due to the presence of four
overlap areas, which makes two phase parameters impor-
tant in the photon number distribution.
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