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We use our interpretation of homodyne and heterodyne detection of squeezed states, viz. , quan-
turn correlation between photons as expressed in second-order correlation functions, to study vari-
ous cases. In particular, we introduce the coherence time of the local oscillator and show its
influence on the possible noise reduction. We also study the case in which the local oscillator is not
much stronger than the squeezed state and analyze the influence of phase jitter. This approach
could explain some experimental results and suggest improvements in detection schemes.

I. INTRODUCTION

Squeezed states of light' (SS's) are generally under-
stood as states whose quantum fluctuations in one quad-
rature are reduced under the shot-noise limit (SNL), also
called "vacuum noise. " We recently showed that the
SNL is not a characteristic of the field only but is indeed
related to the measurement process. It is the quantum
noise of measurement of a coherent state (CS) and comes
from the fact that the CS is not an eigenstate of the mea-
sured operator. For this reason, we should avoid speak-
ing about the noise in the field itself but mention only the
noise in the photocurrent. A CS for instance is a perfect-
ly well-defined state that has a well-defined time evolution
and does not Auctuate. However, since it is not an eigen-
state of the number operator, a measurement of the num-
ber of photons gives a random result whose fluctuation is
the SNL. Should we perform another kind of measure-
ment, we should get a completely different noise.

By analyzing the influence of a beam splitter on photon
statistics, we explained why people consider the SNL as
"vacuum noise. " It is in fact related to the zero-
temperature Langevin operator needed to conserve the
commutation relations of the field operator, when pho-
tons are randomly deleted from a beam. Equivalent
treatments of the measured uncertainties can be made ei-
ther with normally ordered operators or with vacuum
Auctuation fields interfering with the local oscillator. We
adopt here the first approach. SS's are states with some
kind of quantum correlation between the photons. These
correlations in the field can be expressed as a noise reduc-
tion in the photocurrent in homodyne or heterodyne ex-
periments. ' They also account for noise reduction in
the differenced photocurrent on twin laser beams"' and
it has also been suggested that they could be detected by
cross correlation between two photodetectors, ' or in in-
terference experiments. '

In our work, we analyzed the two-port heterodyne
detection scheme, and showed that the relevant functions
of the field are the various second-order correlation func-
tions at the detectors. However, we restricted ourselves
to a perfect local oscillator (LO) much stronger than the
SS, and we assumed a given squeezing, without relating it
to its sources. We now want to remove these limitations,

and analyze the cases of homodyne detection of a degen-
erate squeezed vacuum (as created by a degenerate para-
metric amplifier under threshold ' ), and of heterodyne
detection of a nondegenerate squeezed vacuum (as creat-
ed by four-wave mixing ' ). Since the creation of SS's by
these two processes has been studied in great detail in
various papers, ' ' we shall use the simplest models
(classical nonlinear susceptibility of the medium in a cavi-
ty with losses) that still give squeezing, and emphasize the
differences between our results and others for the detec-
tion process. In the usual approach, homodyne and
heterodyne detection is considered to measure the quad-
ratures of the SS and therefore the inAuence of the LO is
neglected. Our approach, ' relating all experimental
quantities to the second-order correlation functions at the
detectors, enables us to analyze this influence and to get
new results, in particular with respect to the bandwidth
of the noise reduction. We recently applied it to study
the photodetection statistics of a number state.

In Sec. II we write the noise in the differenced photo-
current as a function of a certain correlation function of
both the LO and the SS. This enables us to analyze the
case where the LO is not much stronger than the SS. In
Sec. III we shall demonstrate the inAuence of the LO on
the photodetection noise spectrum in two simple exam-
ples. In Sec. IV we introduce phase jitter and suggest
ways of reducing its influence. We summarize our results
and conclude in Sec. V.

II. TWO-PORT HOMGDYNE
AND HETERODYNE DETECTION

The well-known experimental scheme is shown in Fig.
1. One mixes the LO field and the SS at a beam splitter
(BS), gets current (i, ) and (i2) at the two photomulti-
pliers (PM1 and PM2), subtracts them, and sends them to
a frequency analyzer in order to get the noise spectrum.
Following our previous approach, we write all experi-
mental quantities in terms of normally ordered (NO)
averages. Therefore, as explained in our previous work,
we do not need to introduce any "vacuum field" at the
BS, and the relevant part of the fields after splitting is
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E', +'(t) =SE'+'(t)+Re'+'(t),

E~+'(t) = R—E'+'(t)+SE'+'(t),
(la)

(lb)

(3)

Then, from Eqs. (13) and (15) of Ref. 4, we get the spec-
trum of the noise in the current

where S (respectively, R) is the real transmission
(refiection) coefficient. E(t) is the squeezed field before
splitting and E(t) is the coherent LO. Let us again em-
phasize that we can use these fields only in NO expres-
sions. In all this work, we shall deal only with steady
states, for both the LO and the SS, and therefore the time
enters only via the time differences in the various correla-
tion functions.

In order to find the noise in the current, we need the
three correlation functions g ) '(r), gz '(r), gIz'(r):

(E', (t)E', '(t +r)E()+)(t +r)EI+'(t) )g(2)(r)—
(E'i '(t)E')+'(t) &&E'i (t+r)EI+'(t+r))

(2)

[and similarly for gz '(r)],

(E', '(t)E,' '(t+~)E', +'(t+r)EI+)(t))
g(2)( )—

(Ei '(t)E')+'(t))(Ep '(t+r)Ep+'(t+r))

~'(~)=', ((i, )+(i, ))

+ g', ' r —1 e '"'dr

&t, )' (, )+ gz' r —1 e '"'dr

(i, &(i, & „(,)2 g)p r 1 e lr (4)

g()') (r) —1 =g,")(~)—1 = [g0 ) (r) —1]+gt("(r),

gP)(r) 1
—[g(~)(r) 1] g(2)(r)

(sa)

(5b)

where

where (i, ) and (iz ) are the currents at detectors 1 and
2, and G is the gain of both detectors.

To calculate the various correlation functions, we now
specialize to the case of a 50/50 beam splitter
(R =S =1/&2), and of a squeezed vacuum (the coherent
part of the SS is zero). This type of SS is the one that has
been created experimentally. ' In this case all the odd
powers of the SS operators have zero expectation value
(this result is valid for all models of creation of SS's' ' ).
After simple calculations, we get

and

/

(p) (s (t)E (t +7 )E'+'(t +r)s'+'(t) ) —(e( )(t)E(+'(t))'(2) (r)
((E' '(t)s'+'(t))+(E' '(t)E'+'(t)))'

(E' '(t)E' '(t +r)E'+ '(t +r)E'+'(t) ) —(E' '(t)E'+'(t) )'
+

[&. -'(t)""(t)&+ &
E'-'(t)E'"(t) &]'

(p) (E' '(t)E' '(t+r))(E +'(t+r)E"'(t) &+(E' '(t)e'+'(t -+r))(E' '(t+r)E'+'(t))g(&)(r)— +c.c.
[(E' '(t)E'+'(t) ) + (E' '(t)E'+'(t) ) ]'

An important point here is that, since all odd powers of the SS vanish, there are no interference (phase dependent)
terms in the intensity, so that for a 50/50 BS we get

(, )=&,&-: (i)
2

(8)

therefore there is no contribution of g0
) (r) —1 in the noise:

X (co) = (i ) + (i ) [gt( )(r) —l]e '"'dreG . 1

2n 277 oo

Since gt( )(r) is normalized, it does not depend on the normalization constant of the field, and we choose it in such a
way that the field represents a flux. Then

(i ) =eGa[(e' '(t)e'+'(t))+(E' '(t)E'+'(t))],
where a is the dimensionless quantum efficiency of the detectors, and

X (co)= (i ) 1+ac g, (r)e ' 'dreG
277 oo

(10)

where C = (e' 'c.'+') /(( c( )c.'+) ) + (E( 'E'+') ) is a correction factor that enters when the LO is not much stronger
than the SS, and

(e' '(t)c' '(t +r) ) (E' '(t +r)E'+'(t) )+ (s' '(t)s'+'(t +r) ) (E' '(t +r)E'+'(t) )
g, (r)= ( —) (+) +C.C.

(e (t)s (t) )
(12)
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is the relevant correlation function of the fields. g, (r) is
normalized with respect to the LO strength, so that Eq.
(11) enables us to study its influence on the possible noise
reduction. We write

N (co) =No[1+aCy(co)] (13)

III. CALCULATION OF NOISE SPECTRUM

Our aim in this section is to show the influence of the
coherence time of the LO on the noise spectrum. For
this purpose, we make use of we11-known methods
developed by others, and we omit the detailed calcula-
tions.

A. The LO

To calculate y(co) or g, (~), we need two kinds of first-
order correlation function (for both the LO and the SS):
(c.' '(t)s'+'(t+a)) and (s' '(t)E' '(t+r)), where all
the fields are for the moment taken in free space, before
the BS. We assume that the LO is a laser much above
threshold, and neglect the intensity fluctuations. We also
make all our calculations in the rotating frame of the LO
so as to cancel all dependence in the frequency of the LO:
Q. Therefore we find

'(r)s'+'(r+r))=e " &E' '(r)E' (r)&, (14a)

where No=eG(i )(2') ' corresponds to the so-called
zero line or "vacuum noise, " y(co)—:f g, (r)e ' 'dr
characterizes the squeezing spectrum, and is independent
of the LO intensity. However, let us already mention
that the LO still enters via its first-order correlation func-
tions, as we shall emphasize in Secs. III and IV. As men-
tioned in our previous works, ' and as we shall see again
in Sec. III, the variation domain of y(co) is [—1, &x ], so
that the noise can decrease till zero for a strong LO
(C =1) and perfect detection (a= 1).

We now summarize the results of this section.
The two-port detection scheme with 50/50 BS enables

one to subtract away all the LO and all the SS noise, since
the corresponding correlation function go(~) does not
contribute.

The only remaining noise is due to the interference be-
tween the LO and the SS, and is therefore dependent on
the relative phase of the two.

The so-called zero-line No depends on the intensities of
both the LO and the SS. Therefore the standard way of
experimentally determining it, by blocking the SS, is
correct only when the LO is much stronger than the SS.

The best possible noise reduction is obtained with a
strong LO (C = 1). A relatively weak LO degrades it ac-
cording to the correction factor C defined in Eq. (11)
(0& C &1).

This section has shown us that, in some cases, the LO
intensity has to be kept as an important parameter in the
detection process. We now turn to calculating the func-
tion y (co) in two simple cases, and we shall show that the
coherence time of the LO can also be a relevant parame-
ter.

(s' '(r)E' '(r +r) & =e ''e "~'"(s' '(r)s'+'(r)),

B. Degenerate SS created
by parametric amplification

We take the simple model of a parametric amplifier in
a cavity below threshold, pumped by a nondepleted clas-
sical field, and allow for losses, so as to get a steady state.

The Hamiltonian in the cavity is

H =Rfla a+ y[8(t)a —6(t)'a ]+aI +a I +Hz,iA

(15)

where y is the real nonlinear susceptibility, D(t) is the
pumping field at frequency 0 that we assume real in ac-
cordance with Sec. II (this choice amounts to fixing the
origin of the phases), I and I are the loss operators, and
Hz is the Hamiltonian of the reservoir.

The mathematical techniques leading to the two-time
averages that we need in order to find g, (r) [Eq. (12)] are
standard. ' ' We first use the complex P representa-
tion developed by Drummond and Gardiner to trans-
form the equation of evolution of the density matrix into
a c-number Fokker-Planck equation (FPE), and, by writ-
ing the corresponding stochastic equations of motion, ob-
tain the diffusion and drift matrices. For a cavity under
threshold (p =—~6 & y, where p is the pumping rate and y
is the overall damping rate of the field) we get the
steady-state solution

(16)

[this result has already been used in Sec. II in order to get
Eq. (5)].

If p )y, our simple model is no longer correct, since
the pumping field cannot be considered as an external pa-
rameter, but is fixed by the interactions in the cavity.
This case has been treated by Collet and Walls, ' but
since we are interested only in the squeezed vacuum (that
has been produced experimentally) we shall not treat it
here. We now follow the approach of Lax and Holm
and Sargent' [Eqs. (29) and (35) of Ref. 18] and find the
two-times averages inside the cavity:

r'
(a(t +r)a (t) ) =

4

ep p'T

+
r~a+ &

(17a)

(a (t+r)a(t))=
4

eP7

X~S —1 X~p+ &

(17b)

These equations generally do not appear in the litera-
ture, since most authors are directly interested in the
squeezing spectrum outside the cavity. Here we want to

(14b)

where yo=(T, ) ', T, is the coherence time of the LO,
and P(t) is its phase. If we neglect for the moment phase
jitter, and remember that the same laser is used for the
pumping of the nonlinear medium and for the LO, we
can assume that P(t) is constant. We choose it to be zero
in the squeezing cavity, so as to get a real pumping field.
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N, „(co)=No[1+aCy+(co)] (22)

The noise reduction is a Lorentzian centered at m=O
and its width is yo+y+p. The noise can be reduced till
zero for perfect detection (a= 1); strong LO (C =1); no
losses inside the squeezing cavity except through the mir-
ror (y,„,=y); pump strength approaching threshold
(p=y); long coherence time of the LO (yo«y). When
the last approximation is valid (yo«y), our expression
of y (co) is similar to the one obtained by other au-
thors. ' ' If we now consider the maximum of the noise
(/=0), we find

study the influence of the LO coherence time, and there-
fore we should perform the Fourier transform only after
adding the LO. Since the two expressions are NO, we
just have to multiply every operator by the transmission
coefficient of the semireflecting mirror between the cavity
and the free space to get the operators outside the cavi-
ty. ' Remembering that (a a ) is a number of photons,
and that we choose (E( )E(+) ) to represent a flux, we
get

(~(—)g(+)) —2y (a1'a ) (18)

where y,„, is the field loss rate through the mirror (2y, „„
is the photon loss rate), 2y, „,=(cA /V)t (A, area of the
beam; V, volume of the cavity, ' t transmission coefficient
of the semireflecting mirror, chosen as real). It is now
straightforward to calculate g, (r) and y(co) from Eqs.
(12), (13), (14), (17), and (18). We get

FIG. 1. Detection of a squeezed state by two-port homodyn-
ing (or heterodyning). c.(t) is the output field of the coherent lo-
cal oscillator (LO). E(t) is the output squeezed field (M is the
semireAecting output mirror). These fields are mixed by the
beam splitter (BS). The two resulting fields El(t) and E,(t) are
detected by two photomultipliers (PM1 and PM2), The
difference in the two currents i

&
and i2 is sent to a spectrum

analyzer.

so that the noise is still a Lorentzian centered at zero, but
its width is yo+y —p so that it reduces to yo close to
threshold. This shows that even if yo((y, it can still
have an influence on the detection process. A more de-
tailed analysis of our results is given in Sec. III D.

C. Nondegenerate SS created by four-wave mixing

We take again a simple model, but we now need to
consider two modes at frequencies Il +p (created by
operator a+) and 0—p (created by operator a ). The
Hamiltonian is therefore'

H =Pi(O, +p)a+a++))i(0 —)Lc)a a

+if& [8 (t)a—+a —8 (t)*a+a ]2

+ [a+ I ++a I +H. c. ]+H~ . (23)

By using the same methods as in Sec. IIIB, we can
write a FPE, find the diffusion and drift matrices, and use
them to calculate the required expressions. This calcula-
tion gives exactly the same results as Sec. III B with the
only difference that one has to replace co by co —p in

y (co) and y+(co) [Eq. (20)] and define the pump rate p
by p =—(y/2)( . Therefore we from now on concentrate
on the degenerate case, knowing that all the results are
equally valid for the nondegenerate case, once we
translate the frequency about p.

y (co) =y (co)sin (I)+y+ (co)cos ))(, (19)
D. Analysis of the results

where P is the phase of the LO (relative to the SS) and

y (co)=

y+ (co)=

—4y..& ro+y+p
y/p +1 (y, +y+p)'+co'

4y..& yo+y —p
y/&+ ' (yo+y ~)'+~'

(20a)

(20b)

N;„(co)=N()[1+aCy (co)] . (21)

These expressions are correct under threshold:
y/p ) 1, and with the condition that yo (y: the phase of
the pump has to be constant for times longer than the
lifetime of a squeezed photon inside the cavity.

The noise in the photocurrent oscillates according to
the phase of the LO and is minimum for P=ir/2, as is
well known. Its value is

We first analyze the noise power at co=0 (degenerate
case): N;„(0) and N, „(0) [Eqs. (21) and (22)] as a func-
tion of the pump strength for various values of the LO
coherence time (Fig. 2). We see that a small coherence
time (with respect to the squeezed photons' lifetime in the
cavity) does indeed decrease in a significant way the best
possible noise reduction. Therefore it seems preferable to
use a strong pump in a low-quality squeezing cavity
(shorter photon lifetime), as has been done by Wu
et al. ' for the degenerate case. Let us emphasize that
the dependence on the LO coherence time is only for the
noise reduction in the photocurrent and not for the
squeezing itself. Another interesting point is that the
noise reduction is practically constant for pumping power
larger than half of the threshold power, so that there is
no need to increase it further above this point (see also
Sec. IV).
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the noise decrease N;„(Fig. 2). Therefore the mixing of
y+(co) and y (co) due to phase jitter introduces a real
maximum in the noise reduction (Fig. 5). If we also look
at the noise reduction bandwidth, we see that, close to
threshold (Fig. 4), it is much wider than the bandwidth of
the corresponding noise increase. Therefore the best
noise reduction is now obtained at a certain frequency
shift from the center (which is co=0 for the degenerate
case) (Fig. 6).

V. CONCLUSION

The usual interpretation of squeezing as the reduction
1of the noise in one of the quadratures of the field is not

complete. By considering homodyne and heterodyne
detection only as a way of measuring the quadratures,
most authors have not paid enough attention to the role
of the LO. Our approach of the detection process, advo-
cating the use of second-order correlation functions of
the mixed field (LO plus SS), enables us to introduce
straightforwardly the properties of the LO, and get the
following two kinds of new results.

The influence of the strength of the LO: we showed
that the "zero line" in the experiments is fixed by the sum
of the LO and of the SS power, and that the best possible

noise reduction is degraded when the LO is not much
stronger than the SS.

The influence of the LO coherence time: we have
shown that the noise reduction depends strongly on the
LO coherence time, both in its maximum (Fig. 2) and in
its bandwidth (Figs. 3 and 4). If it is much longer than
the coherence time of the SS (yp«y), our approach
reproduces the well-known results ' for most cases, and15, 16

the influence of a finite yo can be neglected. However,
once we arrive close to threshold (p =y ), this is not
correct anymore, since even for this case (yp «p) ) p

fixes the bandwidth and enters in the magnitude of the
noise increase N, „[Eqs. (20b) and (22)]. This effect be-
comes important experimentally if we introduce phase ji-
tter that mixes N, „and N, „(Sec.IV). This phase jitter
reduces the best noise reduction, but also has the interest-
ing property of flattening the noise spectrum, and shifting
the maximum from co=0 (or co =@ for nondegenerate SS).
This effect occurs only for high pumping power, so that it
should be difficult to detect it in the present experiments.
However, it could become important if we arrive at a
very good squeezing. The effect of the coherence time of
the LO has been described here with the simplest con-
sistent model for squeezing, but could also be derived
with more detailed models in Secs. III B and III C.
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