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We present a semiclassical theory of the micromaser by using a consistent multiple-time-scale ex-
pansion of its dynamics. The time scale over which the semiclassical approximation is valid is es-
tablished, and the effects of quantum and thermal fluctuations in the long-time limit are investigat-
ed. A thermodynamical analogy is introduced to interpret the steady-state properties of the micro-
maser, and we show that a simple model allowing for two-phase coexistence provides the best agree-
ment between the semiclassical and quantum theories.

I. INTRODUCTION

The emerging field of cavity QED (quantum electro-
dynamics) makes possible experiments that probe the fine
details of the interaction between the radiation field and
one or a few atoms. ' In particular, by using extremely
high-Q microwave cavities experiments can be performed
in which a single mode of the radiation is essentially iso-
lated from its environment allowing the observation of
genuine quantum features which are normally masked by
environmental fluctuations. This is the case in micro-
masers ' in which a monoenergetic beam of excited Ryd-
berg atoms is injected at such a low rate that at most one
atom at a time is present in the cavity. In such systems
the combined effects of the high-Q cavity and the large
dipole moment of the Rydberg atoms means that the
maser threshold can be reached even for such low injec-
tion rates. Both one-photon and two-photon micro-
masers have been theoretically analyzed ' and have been
shown to exhibit a number of unique characteristics that
are "washed out" by classical and quantum fluctuations
in conventional laser and maser systems.

One of the attractive properties of systems such as mi-
cromasers is that they provide a means to experimentally
investigate the transition between truly microscopic and
macroscopic systems. From this point of view, they
might help shed light on the quantum-classical
correspondence in systems directly amenable to experi-
mental verification.

This paper presents a semiclassical theory of the micro-
maser based on a consistent multiple-time-scale expan-
sion of its dynamics. This approach allows one to distin-
guish a short-time evolution, which is essentially semi-
classical, from the long-time evolution where noise and
quantum diffusion play essential roles. Furthermore, us-
ing this approach, it becomes obvious that the steady-
state and semiclassical limits do not commute. Hence the
steady-state properties of the micromaser exhibit charac-
teristics that can be related immediately to quantum (as
well as thermal) fluctuations. Indeed, we show that pro-
vided subtle effects such as low-temperature trapping
and quantum revivals can be ignored the steady-state
properties of the rnicromaser can be understood as result-

II. QUANTUM THEORY OF THE MICROMASER

We consider a micromaser system consisting of a
high-Q single-mode cavity into which excited two-level
atoms are injected at such a low rate that there is at most
one atom present in the cavity at any given time. The
atomic beam is taken to be monoenergetic, each atom
spending a time t;„, in the cavity which has a damping
time y '. The successive atoms enter the cavity accord-
ing to a Poisson distribution with mean rate R, 1/R be-
ing the mean time between atoms. We further assume
that t,„,«y ', so that damping may be ignored while an
atom is in the cavity. Under these conditions, the statisti-
cally averaged density operator for the field obeys the
master equation

Bpf =Lpf+R [F(t' t) I]pf (2.1)

The Liouvillian L accounts for damping of the cavity

ing from an equal-area Maxwell construction between
multistable semiclassical steady states. Because the time
scale over which this noise-induced equilibration takes
place can be varied almost at will, the micromaser offers
a unique experimental situation to study such transitions
between classical and quantum behavior.

The rest of this paper is organized as follows. Section
II briefly reviews the quantum theory of the micromaser
in order to define the model and introduce our notation.
In Sec. III we derive a Fokker-Planck equation for the
photon statistics, employing the classical Becker-Doring
theory. Section IV then develops a semiclassical theory
of the micromaser based on the Fokker-Planck equation
(3.8). Normally one obtains the underlying deterministic
theory by considering the drift term alone. Our analysis
is based on a multiple-time-scale analysis which sheds
some light on the nature of the semiclassical theory, and,
in particular, shows explicitly why the steady-state and
semiclassical limits do not commute. A thermodynamic
analogy shows how the quantum steady-state properties
of the micromaser can be understood in terms of a
Maxwell construction over the multistable semiclassical
solutions. Finally, Sec. V is a summary and conclusion.
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mode as given by the standard master equation for a
damped harmonic oscillator,

1.0-

Lpf =(y/2)(nb+1)(2apfa —a apf —pfa a)

+(y/2)n b(2a pfa —aa pf —pfaa ), (2.2)

O.S-

nb being the mean number of thermal photons in the
bath. The atom-field interaction is described by

o 0.6-x
A
C
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F(t,„,)pf(t)—:Tr, [U(t,„,)p(t)U (t,„,)] . (2.3)

Here, p(t) is the combined atom-field density operator at
time t, U(t;„, )=exp( iHt;„—, /fi) is the evolution operator
for the Jaynes-Cummings Hamiltonian H describing the
dipole interaction between the cavity mode and a two-
level atom, and Tr, denotes the trace over the atomic
variables. For exact resonance between the cavity mode
and atomic transition frequencies co, the Jaynes-
Cummings Hamiltonian is'

H—:(%co/2)S3+A'cga a+(A'~/2)(S+a +a S ), (2.4)

where S3, S+, and S are the atomic spin operators, a
and a are the usual boson operators obeying [a, a ]=1,
and ~ is the atomic dipole moment.

It is sufficient for our purposes to assume that the field
density matrix is initially diagonal in the number state
representation (e.g. , a thermal field), and that the atoms
are injected in their upper state. It can then be shown
that the field density matrix remains diagonal for all
times during the evolution described by Eq. (2.1). We
concentrate on these diagonal elements, which define the
photon statistics

p„(t)=(n pf(t) n) . (2.5)

+ynb[np„, —(n +1)p„]

+yN, „(P„p„, f3„+@„). — (2.6)

Here, N,„=R/y is the mean number of atoms which
traverse the cavity during a field lifetime y

' and

P„=sin [e(n/N, „)' ] . (2.7)

The parameter 6=at,„,(N,'~ ) /2 plays the role of a

pump parameter, the micromaser threshold occurring at
e=-1.

Equation (2.6) is the starting point for our discussion of
the semiclassical theory of the micromaser. Its steady-
state solution is

The time evolution of p„(t) is given by the master equa-
tion

C)P„
=y(nb+1)[(n +1)p„+, np„]-

at

0.2-

10 15

FIG. 1. Normalized mean photon number (n )/X, „as a
function of the pump parameter 6 for N,„=200, and nI, =1.
The first maser threshold occurs at e=—1, and the higher-order
thresholds appear at e—=2k~, k an integer.

&n)= y kp„.
/c =0

(2.9)

III. FOKKER-PI.ANCK APPROACH

A. Fokker-Planck equation

In Sec. IV we use a multiple-time-scale analysis to iso-
late three fundamental time scales of interest in the dy-
namics of the micromaser. The semiclassical approxima-
tion is introduced in terms of these time scales, which
have a simple interpretation in terms of an effective po-
tential. This effective potential is, in turn, best under-
stood in terms of a Fokker-Planck equation describing
the dynamics of the micromaser photon statistics. In the
present section we derive this Fokker-Planck equation us-
ing the classical Becker-Doring theory as described in
Ref. 8.

We proceed by noting that the master equation (2.6),
which determines the probability p„of finding n photons
in the cavity mode at time t, can be written in the form

The onset of maser oscillations is followed by a succes-
sion of abrupt transitions in the state of the field. This is
illustrated in Fig. 1, where we show (n ) /N, „as a func-
tion of 6 for N„=200, and nb = 1. For smaller values of
N, „ the higher maser thresholds become less pronounced.
The sharpness of the thresholds suggests that in the limit
N,„~~ the first (maser) threshold may be interpreted as
a second-order phase transition, whereas the others are
similar to first-order phase transitions.

p„=C (2.&)
Bp„ =J„)—J„, n ~1 .
at

(3.1)

where C is a normalization constant. The features of the
steady-state photon statistics are discussed in Ref. 4,
along with the behavior of the average photon number n $"npn n+1pn+] (3.2)

Here, J„ is the net probability current between states
with photon number n and n + 1, and is given by
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p„ is a gain rate and l„a loss rate. Figure 2 illustrates
how the photon statistics may change due to these rates.
Explicit expressions for y„and I„are easily found by
comparison with Eq. (2.6),

and

G(n) =~(n)+l(n) =yn +2ynbn +ynb+yN, „P„+, .

(3.6b)

$ „=yN,„P„+i+ynb(~+1),
1„=y(1+ nb )n .

(3.3a)

(3.3b)

Note that since the atoms are injected in their excited
state, the field-atom-interaction probability current al-
ways flows from lower to higher photon number states.

The steady-state photon statistics can be obtained from
Eq. (3.1) by setting Bp„/c}t to zero: this gives the recur-
sion relation J„=J„,for the probability currents, which
implies J„=O for all n if the probability current is re-
quired to be zero as n goes to infinity. In this way the
steady-state photon statistics (2.8) are recovered.

A continuous Fokker-Planck can be obtained by
neglecting the discrete nature of n, replacing the
diff'erence terms of the master equation (3.1) by
diff'erentials, and representing p„, l„, and y„by functions
p(n), l(n), and p(n) of the now continuous variable n

Terms like l(n +1)p(n + 1, t) on the right-hand side of
(3.1) are expanded in terms of p(n, t) and l(n) according
to

r=yt, v=n/N, „, P(v, t)=N, „p(v, t), (3.7)

in terms of which the Fokker-Planck equation becomes

clP( vr) B
[ }]

a7- Bv

1+ [g (v)P(v, r)],
2N, „&v2

(3.8)

where

The same Fokker-Planck equation was obtained in Ref. 4
by evaluating the moments for the change in photon
number as a definite number of atoms traverse the cavity.
The diff'usion coefficient G(n) contains not only stochas-
tic fluctuations proportional to y due to the coupling of
the system to a thermal bath, but also a quantum-noise
term proportional to yN, „=R resulting from the quan-
tized atom-field interaction.

For calculational purposes it proves useful to introduce
the scaled quantities

gk
l(n +1)p(n +1, t)= g „ l(n)p(n, t) .

k' Onk
(3.4)

and

q (v) =nb/N, „—v+ sin [e(v+ 1/N, „)'~~] (3.9a)

We obtain a Fokker-Planck equation by truncating all
such expansions at second order. Although the expan-
sion (3.4) is formally exact as k goes to infinity, the validi-
ty of the truncation is questionable. However, the Pawu-
la theorem teHs us that the truncation either stops at
second order, or an infinite number of terms are re-
quired. " We sha11 return to the validity of the Fokker-
Planck equation below, but for the moment we simply
proceed by truncating the expansions to get

Bp (n, t) 8
[Q(n)p (n, t)]

Bi Bn

g ( v) =v+ 2nz v+ n ~ /N, „+sin [0(v+ 1/N, „)'~~] .

(3.9b)

It is easy to verify that the normalization of the photon
number distribution P ( , v)ris

f dvP(v, r)=1 .
0

(3.10)

The moments of the photon distribution can be calculat-
ed from P(v, 7). For example, the continuous version of
Eq. (2.9) is

1+ — [G (n)p (n, t}],
Bn

(3.5)
(v) = f dvvP(v, r) .

0
(3.11}

where

Q (n) =p(n) —1 (n) =ynb —yn +yN, „P„+, (3.6a)

To conclude this section, we remark that, although we
have used the classical Becker-Dorring theory to obtain
the Fokker-Planck equation, the resulting theory is still
intrinsically quantum mechanical. By restricting our in-
terest to the diagonal elements of the field density matrix,
we are dealing with classical-like probabilities which de-
scribe the occupation of the photon number states. How-
ever, the gain and loss rates given by Eqs. (3.3) are ob-
tained from quantum theory and the resulting theory is
therefore quantum mechanical.

B. Steady-state solution

FIG. 2. Schematic representation of the flow of probability
due to the gain and loss rates p„and I„.

The steady-state solution of the Fokker-Planck equa-
tion (3.8) is easily obtained by assuming natural boundary
conditions, which are required to give a normalizable
solution. By setting dP/dr=0 and integrating Eq. (3.8)
we obtain
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P ( v) =P (0) exp[ —2N, „V(v) ],g (0)
g(v)

(3.12a)
zero, from which we obtain

(3.18)

where the "efFective potential" V(v) is given by

y
~ d v'q ( v')

o g (v')
(3.12b)

C. Range of validity

We now return to the question of the range of validity
of the continuous Fokker-Planck approximation. The
obvious requirement is that v=n /N„should represent a
quasicontinuous variable. Since n is a discrete variable
taking on integer values only, we have d v = 1/N, „.
Therefore, the Fokker-Planck equation is only strictly
valid in the limit

N,„»1 . (3.13)

The second requirement concerns the derivation of the
Fokker-Planck equation, in which p (n + 1) is represented
in terms of p(n) and its derivatives. This approximation
is equivalent to considering the expansion

P(v+1/1V, „)=P(v)+ + (3.14)

in terms of the scaled quantities. For the expansion to
truncate, we require that the first-order correction is
much smaller than P (v), or

1 aP
P Bv

(3.15)

Another expression for the left-hand side of Eq. (3.15)
can be obtained from Eqs. (3.12): We assume that
N,„))1, so that the exponential term dominates the be-
havior of P(v). Then by differentiating (3.12a) with
respect to v, we obtain

2X,„lq(v)I/g(v) —.
1 aI
P Bv

(3.16)

We now use Eqs. (3.9) for q (v) and g (v), and consider
the limits 1/N, „~O, nb/N, „~O, to obtain, from Eqs.
(3.15) and (3.16),

v+2nbv+sin (0&v) ))2~v —sin (Ov'v)
~

. (3.17)

In the worst case the left-hand side should be made as
small as possible and the right-hand side as large as possi-
ble for a given v. We therefore set the sin term equal to

Notice that, from Eq. (3.9b), g (v) is nonzero and positive
on the whole range (0, ~ ), so that P(v) is positive
definite and normalizable. The extrema of V(v) are
found by requiring that BV/Bv=0, or q (v) =0. We label
these minima by v =v, rn = 1,2, . . . .

Most of our considerations in the rest of this paper
concern the limit N,„))1.In that limit, the exponential
term in (3.12a) will dominate the behavior of the maser.
In particular, it is clear that the photon-number distribu-
tion P(v) will tend to accumulate in the global minimum
of the effective potential V(v).

Hence the Fokker-Planck equation is only valid at
sufficiently large values of the thermal photon number.

These limitations to the range of validity of the
Fokker-Planck equation can be understood as follows.
The parameter N, „ is the mean number of atoms that
traverse the cavity in a field lifetime. Above the first
maser threshold the mean number of photons in the cavi-
ty is roughly N„, due to the balancing of atomic pump-
ing and field decay. Therefore, a large value of N„gen-
erally means a large value of the mean photon number.
In this regime the gain and loss rates given by Eqs. (3.3)
become relatively insensitive to replacing n by n +1 for
n =-N,„))1,which is certainly required for the Fokker-
Planck approximation to hold. However, we also require
that the photon statistics p„vary slowly with n. In this
regard the presence of thermal photons tends to
smoothen the photon statistics p„since cavity dissipation
leads to the transfer of probability both upward
(n ~n +1) and downward (n + 1~n), as seen from the
master equation (2.6). Therefore, for nb large enough, it
becomes impossible for the photon statistics to become
sharply peaked. Thus, for high enough thermal photon
numbers and N,„))1, the photon statistics may be treat-
ed as smooth and quasicontinuous, and the Fokker-
Planck equation is valid. We note that this is also the
range of parameters for which e6'ects such as collapse and
revival in the mean photon number do not occur. Note
also that for nb ~0 only downward transitions are al-
lowed by the master equation (2.6). This leads to micro-
maser dynamics dominated by the existence of "trapping
states, " as discussed in Ref. 6. Such eAects rely upon the
discrete nature of the radiation-field photon statistics,
and are beyond the scope of the Fokker-Planck approxi-
mation.

Numerical calculations show that the range of validity
of the Fokker-Planck approximation is not as stringent as
indicated by Eqs. (3.13) and (3.18). We have found that
the Fokker-Planck equation provides accurate results for
nb as low as 1, and N„as low as 20. This is illustrated in
the numerical examples presented in later sections.

IV. SEMICLASSICAL THEORY

A. Semiclassical rate equation

In this section we develop a semiclassical theory of the
micromaser based on the Fokker-Planck equation (3.8).
Normally one obtains the underlying deterministic theory
by considering the drift term q (v) alone. [In the presence
of multiplicative noise one also has noise-induced drift
arising from g(v).] Rather than following this path, we
give an analysis based on a multiple-time-scale analysis,
which sheds some light on the nature of the semiclassical
theory.

Filipowicz et al. and Davidovich et al. have previ-
ously discussed the approach to equilibrium in micro-
masers. They identified two main time scales, namely ~&,
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which governs the redistribution of the photon-number
distribution around a local minimum v (not necessarily
the global minimum) of the effective potential V(v), and
a second one, ~g, which gives the passage time of the sys-
tem towards the global minimum of the effective poten-
tial. The passage time behaves qualitatively like

rg =—exp(aN, „), where a) 0 is of order unity, and is
therefore very large in the limit N„»1. In contrast, the
approach to quasiequilibrium inside a local minimum
occurs on a time scale ~I —= 1. Filipowicz et al. obtained a
Gaussian approximation,

N,„ is large enough (cr small enough) that 5 (x) behaves
in all respects like 5(x) for our calculations. This notion
is required since we know that, if we start from a
photon-number distribution P(v, O)=6(v —(v(0) ) ),
which has zero dispersion, then for ~ 1 the distribution
will become of the form (4.4). In this way our analysis
acknowledges the time scale ~1.

We proceed by substituting Eq. (4.4) into (4.3) to obtain
the semiclassical rate equation

d&v) =q(( ))
d~

1P(v)= exp[ —(v —v ) /2o. ],v'2mo
(4.1a) = —(& ) —., /N, „)

to the quasiequilibrium solution P(v) around v, where
the rms spread o. is given by

cr =g(v )/2N, „~q'(v )~ . (4.1b)

In general, g (v ) —= ~q'(v )
~

-=1, and it follows that
cr -=N,„' . In general terms, the message from these re-
sults is very clear: any initial photon-number distribution
evolves towards a distribution with dispersion cr on a rel-
atively short time scale ~&. In the case N, „&&1,o. can be
made arbitrarily small, in which case P ( v, t ) represents a
well-defined number of photons. This notion is central to
the semiclassical theory of the micromaser.

To proceed with our analysis, we return to Eq. (3.8)
and introduce the successive time scales ~ =e ~, where
E = 1 /N, „«1. Here, ~p is the fastest or fundamental
time scale, ~& is the lowest-order slow time scale, and so
on for m & 1. In the usual manner, the ~ are then taken
as independent variables, with

8
87 B7 87 Br

(4.2a)

We accordingly expand P (v, r) as

P(v, ~)= g e P' '(v, ~o, ~, , . . . ) .
m=0

(4.2b)

By substituting Eqs. (4.2) into (3.8), we obtain a hierarchy
of equations for the P™by comparing terms in powers
of e. To lowest order, e, we obtain

aP'"(v, r, )
[q(v)P' '(v, ~ )] .

TQ ()V
(4.3)

To this order there is no diffusion effect as described by
g(v). Equation (4.3) is valid for times ~ less than the
characteristic slow time scale, which we denote by

Under the restriction that we are considering times
~(w„, we can now use Eq. (4.3) to obtain a semiclassical
theory. For simplicity in notation we replace vp~7,
P' '~P. We consider a solution of (4.3) of the form

P(v, ~) =5 (v (v(r) ) ) . — (4.4)

Here the subscript cr indicates that we are using a repre-
sentation of the delta function with dispersion cr which
becomes exact as o.~O, e.g. , Eq. (4.1a). We assume that'

+sin [8((v)+1/N, „)'~ ] . (4.5)

+R sin [B[((n )+1)/N, „]' (4.6)

We have compared the results from Eq. (4.5) with those
from the full quantum theory and have found reasonable
agreement between the two within the range of validity of
the theory and for short enough times. The results of
these dynamical calculations will be the subject of a fu-
ture publication. In this paper we concentrate on the
steady-state solution of Eq. (4.5), with d ( v ) /dt =0.
From Eq. (4.5), it is clear that the steady-state solutions
obey q( ( v) ) =0, which, in turn, correspond to the extre-
ma of the effective potential V in Eq. (3.12b). They can
be found graphically by solving (4.5) for 0 as a function
of &v):

arcsin( ( v) —
nb /N, „)e=

((v)+1/N, „)'" (4.7)

Figure 3 shows the steady-state normalized "mean pho-
ton number" ( v) versus 6 for n& = 1, N, „=100. Several
features are immediately apparent. For e ~ 5 the curve is
very similar to that obtained from quantum mechanics,
showing, in particular, the sharp first maser threshold,
but for e ~ 5 large deviations are obvious. In particular,
it is seen that (v) becomes a multivalued function of B.
This is in sharp contrast to the quantum-mechanical re-
sult, where (n )/N„ is uniquely determined by 6; see,
e.g. , Fig. l. (Note that (v) corresponds directly to the
quantity (n )/N, „ in the quantum theory. ) The dotted
portion of the curve indicates those solutions which are
unstable according to the semiclassical equation (4.5).
The stability is determined in the usual way by linearizing
around the steady-state solution and checking the growth
rate of perturbations. In this semiclassical picture the
micromaser displays the classic characteristics of a mul-
tistable system in which the negative-slope regions of the
"input-output" curve are unstable.

This same equation was also obtained by Filipowicz
et al. , although they did not discuss its range of validity.
From the preceding discussion it is clear that, in dimen-
sional units, t„=—N„y is the time scale on which the
semiclassical rate equation is valid.

In these same dimensional units Eq. (4.5) becomes

d(n)
dt

= —y((n ) n,)—
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0 10 15

FIG. 3. Semiclassical mean photon number (v) vs 0 for
N„, =100, and Irz =1. The dotted line indicates the unstable
branches according to the semiclassical rate equation (4.S).

Figure 4 shows a comparison of the semiclassical
steady states and the corresponding quantum-mechanical
calculation. The quantum result shows a series of
higher-order thresholds characterized by a transition
from one branch of the semiclassical solution to the next
highest. Our semiclassical theory cannot, however„pro-
vide any indication of when these transitions occur.

B. Quantum diffusion

The reason for the inadequacy of the semiclassical rate
equation to properly reproduce the steady-state quantum
results is that to describe the steady-state one must con-
sider the limit w~ ~. This implies that Eq. (4.5} is inade-
quate since it is restricted to ~& ~„. For ~& ~,„., higher-
order corrections PI ' must be kept in Eq. (4.2b). It is
straightforward to show that all these higher-order terms
depend on the diffusion term g (v) in the Fokker-Planck
equation. Physically, the appearance of the diffusion
term for large times leads to broadening and redistribu-
tion of the initial photon-number distribution. We have
seen that in the regime of the semiclassical approxima-
tion the photon-number distribution (4.4) is sharply
peaked with dispersion o. =—N, „' . In contrast, times

are characterized by the onset of quantum
diffusion, which causes the passage of the system towards
the global minimum of the effective potential. The
photon-number distribution reshapes and may become
multipeaked. Alternatively, one may view Eq. (4.5) as the
lowest-order approximation to a stochastic differential
equation in which the fluctuating noise source may be
neglected for ~(~s, . This interpretation relies on the fact
that, in the distribution sense, the Fokker-Planck equa-
tion is equivalent to a stochastic differential equation, the
noise being related to the diffusion coefficient g (v). From
either point of view, in the asymptotic limit r~ ~ the
photon statistics must always evolve to the solution given
by Eq. (3.12), so that in steady-state quantum (and
thermal) diffusion effects are always present.

To understand the role of quantum diffusion, we return
to Eqs. (3.12) for the steady-state photon-number distri-
bution, which we reproduce here for clarity in presenta-
tion,

P ( v) =P (0) — exp[ —2N„V(v) j,g(0)
g(v)

(4.8)

V( ) 1' &'dv tI(v )

0 g(v) (4.9)

0 5

0

~~ ~~
~ ~~~~~

~y~~ ~ y ~ ~ ~ ~

~y~ ~

~~~~ ~g ~ ~~g ~o
~y~ ~ ~ ~ey~

Aoosy+ ~ g ~ ~ ~ ~ ~ ~ ~ 0 ~ +~+woe~tOto ~ ~~

0 10 15

FIG. 4. Comparison of quantum and semiclassical steady-
state results for the mean photon number as a function of 0, for
N„, =100, and n& =1. The solid line is the result from the full
quantum calculation, and the dot ted lines are the stable
branches according to the Fokker-Planck approach. The verti-
cal dashed lines shows the transition between the first and
second branches predicted by Eq. (4.10b).

In the limit N,„))1, the behavior of P(v) is dominated
by the exponential term in (4.8). As noted earlier, the
photon-number distribution then tends to accumulate in
the global minimum of the effective potential. The extre-
ma of the effective potential are found by requiring that
c) V/t)v=0, or q (v) =0. This reproduces the semiclassical
steady-state solutions given by Eq. (4.5). (Note that the
semiclassical unstable solutions shown in Fig. 3 corre-
spond to the maxima of the potential. ) Figure 5 shows
the effective potential as a function of v for three values
of 0 in the region of the second maser threshold; see Fig.
1. In each case shown here V( v) exhibits two minima.
For 0= 5 the global minimum occurs at v, —=0 24,
whereas for 0=7 it appears at v, —=0.6. At 0=6 the
minima are degenerate. Therefore, just below 0, =6, v,
is the global minimum, whereas, for 0)0, , v, takes over
as the global minimum. The mechanism for the higher-
order thresholds is clearly always the same, with a
minimum v of V(v) losing its global character and be-
ing replaced by the next one v +, . The rnth maser
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0

—0.05

—0.10

tems the transition between two phases occurs when their
Ginzburg-Landau potentials are equal, V( v„,)
= V(v ). In the semiclassical theory the various (stable)
branches of the steady-state curve are distinguished by
the fact that they correspond to different numbers of
Rabi oscillations of the atomic Bloch vector as the atoms
traverse the cavity. For the mth minimum of the
effective potential the Bloch vector undergoes 2m com-
plete Rabi oscillations. This feature also serves to identi-
fy the different "phases" of the micromaser. In this pic-
ture the various minima of the effective potential play the
role of the different phases which are possible
configurations of the system, and the Ginzburg-Landau
potential determines which phase is observed.

C. Two-phase coexistence

—0.15
0.0 0.2 0.4 0.8 1.0

FIG. 5. EAective potential V( v) as a function of v for
0=5,6, 7. The left-hand minimum is the global minimum for
O(6, whereas for 6) 6 the right-hand-side minimum is the
global minimum.

In the preceding subsection we considered a theory in
which the branches of the semiclassical steady states are
connected discontinuously according to the equal-area
rule (4.10b). In our thermodynamical analogy the vari-
ous branches are interpreted as different phases of the
system. Our assumption was that for ~~ ~ only one
phase remains for a given O. This model may be extend-
ed by considering the statistical average

(v) = g v P(v,„),1

Z.,
(4.11a)

threshold occurs when P(v, =, )=P(v„, ). Then, assum-
ing N„))1 so that the exponential term in Eq. (4.8)
dominates, we obtain the condition

where

Z =g P(v,„) (4. 11b)

or

m —I dv q(v ) f m dv q(v )

o g (v') o g (v')

dv'q (v')

g (v')

(4. 10a)

(4.10b)

is a normalization constant analogous to the partition
function. P(v,„) is the probability that v= v„, according
to Eq. (4.8), and the index m runs over the minima of the
effective potential. A comparison between the exact

Equation (4.10b) can be used to find that value of 6 at
which the mth threshold occurs. The vertical dotted line
in Fig. 4 indicates the transition from the first to the
second branch (second maser threshold) as predicted by
Eq. (4.10b). This is in good quantitative agreement with
the quantum analysis. Similar results are obtained for the
higher-order maser thresholds.

These results indicate that we can obtain a reasonable
approximation to the full quantum calculations by sup-
plementing the semiclassical steady states given by
q(v )=0 by rule (4.10b) to calculate the transition be-
tween the various semiclassical branches. Equation
(4.10b) always predicts a vertical transition between
branches, which also occurs in the quantum calculations
in the limit N„~ ~. This suggests that, in the language
of equilibrium thermodynamics, N„~ ~ is analogous to
the thermodynamic limit. The first maser threshold is
like a second-order phase transition, whereas the higher-
order transitions are like first-order phase transitions.
This interpretation is further strengthened by recognizing
that V plays the role of a generalized Ginzburg-Landau
potential, and that Eq. (4. 10a) is an equal-area rule akin
to the Maxwell construction. This construction is a
consequence of the condition that in homogeneous sys-

0 5
V

0 15

FIG. 6. Comparison of the normalized mean photon number
( v) as calculated using the full quantum theory (solid line} and
the statistical average of the semiclassical steady states given by
Eqs. (4. 11) (dashed line).
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quantum calculation and Eq. (4.11) is shown in Fig. 6,
and excellent agreement is observed. The new ingredient
introduced by the averaging procedure (4.11) is that we
now allow for more than one phase to be present for any
given value of 6. In particular, around any one maser
threshold the system changes between two phases. Equa-
tion (4.11) allows for two-phase coexistence with the ap-
propriate statistical mixture of the two participating
phases. This leads to smoothing out of the maser thresh-
olds as is observed in the full quantum calculations.

V. CONCLUSION

In this paper we have presented a consistent semiclassi-
cal theory of the micromaser based on a multiple-time-
scale analysis. Such an approach presents the consider-
able advantage of unambiguously isolating the time scales
over which semiclassical and (quantum-) fluctuation-
dominated dynamics take place. It also explicitly shows
that semiclassical and long-time limits do not commute.

We have shown that a reasonable approximation to the
full quantum calculations can be achieved by supplement-
ing the semiclassical steady states by an equal-area

Maxwell rule to calculate the transition between the vari-
ous semiclassical branches. This interpretation is based
on the observation that the effective potential V describ-
ing the micromaser plays the role of a generalized
Ginzburg-Landau potential. In this picture the various
minima of the effective potential corresponds to the
different phases which are possible configurations of the
system, and the Ginzburg-Landau potential determines
which phase is observed. This paper concentrated on
steady-state properties of the micromaser. Future work
will show how the multiple-time-scale approach can be
used to identify the remnants of classical features such as
instabilities and chaos in the approach to the quantum-
mechanical steady state.
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