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Noise in nearly-single-mode semiconductor lasers
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We report the results of a numerical study of nearly-single-mode semiconductor lasers. The sto-
chastic nonlinear dynamical equations of the field and population inversion are integrated and the
intensity fluctuations and line shapes of the laser are investigated. The second mode affects the
coherence of the light output appreciably, particularly near the laser threshold regime. The accura-
cy of the linearized theory for a single-mode laser is tested from far below to far above threshold. It
is found to be very accurate both far below and far above threshold, but significant discrepancies are
seen in the threshold region. We automatically include the coupling of the intensity and phase fluc-
tuations in the line-shape calculations, resulting in the experimentally observed asymmetry of the
relaxation oscillation sidebands. The numerical technique developed here is easily applicable to
rnultimode lasers and is shown to be a convenient and powerful probe of the coherence properties of
semiconductor lasers.

I. INTRODUCTION

The necessity to develop monochromatic semiconduc-
tor lasers for coherent communications has focused great
interest on the study of semiconductor-laser linewidth.
Numerous papers have investigated experimentally and
theoretically the noise characteristics of these devices.
Until a few years ago, almost all the studies were restrict-
ed to linearized treatments of the semiconductor-laser
rate equations. The linearized treatments were motivated
by a desire to obtain an analytic result for the laser
linewidth or intensity noise spectrum that would provide
an accurate description above threshold. The experimen-
tal and theoretical work on single-mode laser linewidth
has been reviewed recently by Henry. ' Most of the
theoretical treatments used linearized, semiclassical,
Langevin equations to describe the laser behavior. These
equations do an admirable job of explaining most of the
characteristics of semiconductor lasers. This approach to
semicon- ductor-laser noise phenomena is explained
throughly by Agrawal in Ref. 2.

For many purposes, such a linearized treatment is per-
fectly adequate, and works particularly well far above
laser threshold. It is important, however, to assess the
limits of validity of this approach. Such a check requires
that we develop a technique to calculate numerically the
solutions of coupled, nonlinear Langevin equations. Such
a numerical method would allow us to retain the full
complexity of the semiconductor-laser equations and not
assume that the fluctuations represent only small devia-
tions from average steady-state values.

While a linearized treatment of single-mode operation
is fairly simple analytically, multimode operation may
present insurmountable difficulties. Further, there is al-
ways the danger that we may overlook qualitatively
different aspects of laser behavior if we linearize a set of
coupled nonlinear equations. This is particularly true
when examining the effect of external reflections back

into the laser cavity. In this case the equations are intrin-
sically nonlinear, and a linearized version of the theory
will not capture the important aspects of observed behav-
ior. Analytic solutions to such problems can rarely be
obtained if the full nonlinearity is to be retained in the
description.

The solution of the semiconductor-laser equations by
numerical techniques has been studied by several groups.
Marcuse has undertaken a major effort to derive sys-
tematically the Langevin equations from the underlying
quantum theory, and has investigated the photon
number fluctuations of a variety of semiconductor lasers
by the technique of Monte Carlo simulations. Miller has
developed a somewhat different approach to the simula-
tions and has concentrated on design strategies for semi-
conductor lasers. Jensen et al. have studied mode
partition noise by a method similar to that of Marcuse. '

A motivation for the work presented here is to study
aspects of the laser intensity fluctuations that illustrate
the regime where nonlinear effects become important,
i.e., near the threshold region. We compare the numeri-
cal results wherever possible with results of the linearized
theory to delineate its limits of accuracy. The second ma-
jor motive is to develop a technique for the study of the
laser line shape by Monte Carlo simulations. This, to our
knowledge, has not been attempted before.

It is an idealization to assume that a laser is single
mode. In reality there is always present a small amount
of light emitted by one or more side modes, in addition to
the dominant mode. The coupling between such modes is
through the gain of the laser, which includes self- and
cross-saturation terms. The effect of the side mode on
the intensity fluctuations is appreciable even when the
mode-suppression ratio (ratio of the side mode to main
mode power) is as small as 0.01. The fluctuation charac-
teristics near threshold are rather different from the
single-mode model and are not within the domain of ana-
lytic theory. The calculation of the laser line shape is
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particularly intractable when more than one mode is in-
volved. We show that it is very feasible to obtain line
shapes for the nearly-single-mode laser (or multimode
laser) from computer simulations.

We sketch the derivation of the basic equations utilized
in the simulations in Sec. II. Though the photon number
and phase equations have traditionally been employed in
theory and simulations, we use the field equations here,
since they lead much more naturally to the line shape.

The numerical procedure for the integration of the
equations is described in Sec. III, as well as the calcula-
tion of the correlation functions and spectra.

In Sec. IV we consider the laser intensity noise. Rela-
tive intensity noise spectra, auto- and cross correlations,
and the variance of the intensity fluctuations are obtained
and compared to linearized theory.

Section V is concerned with line shapes and linewidths
of the laser modes. We discuss line shifts as well, and the
question of the power-independent linewidth. The ap-
pearance of satellite peaks due to relaxation oscillations
and their asymmetry are studied. The line shape of the
side mode is investigated.

We conclude with a brief discussion of the results and
topics for further study in Sec. VI ~

II. EQUATIONS FOR A TWO-MODE
SEMICONDUCTOR LASER

The standard procedure for the derivation of the semi-

classical laser equations begins with the Maxwell equa-
tions. The complex electric field is analyzed in terms of
cavity modes, either traveling or standing waves, as is the
polarization of the active medium. An equation is ob-
tained for the slowly varying field amplitude after substi-
tution into the wave equation. In this process, higher-
order derivatives and products of derivatives of the field

and polarization are neglected. The polarization of the
medium is expressed as a product of the electric field and
the complex susceptibility of the semiconductor, which is
dependent on the mode amplitude. The real part of the
susceptibility determines the refractive index while the
imaginary component is responsible for the gain. The
electric field equations for the two-mode laser obtained in

this fashion are

dE,
dt

dE2

dt

=iF E, + —,'(6, —y, )(1 —iI3, )E, ,

=iF E, + —,'(6, —y, )(1—ig, )E, .

(3b)

are the photon numbers of the main and side modes.
F is the angular frequency mismatch between the cavi-

ty modes and the actual laser oscillation frequencies.
These are assumed equal for the main and side modes. y,

E, and E2 are the complex, slowly-varying components
of the electric fields of the main and side modes. These
fields are scaled such that they are dimensionless and

(3a)

and y2 are the losses of the two modes and consist of the
internal loss as well as the output coupling of the modes.

P, is the linewidth enhancement factor usually defined as

dg„/dN
dy;/dN

where y, and g, are the real and imaginary components
of the susceptibility of the semiconductor medium. N is

the electron number in the laser active region. An over-
view of this linewidth enhancement factor, the impor-
tance of which was first realized by Henry, and Yariv and
his co-workers, has recently been given by Qsinski and
Buus. " G, and Gz are the gains associated with the main

and side modes, and are given by the following expres-
sions

6, = A (N —No )
—p„P, —O, ~P2,

G~ = A (N —No) —P~~P~
—

O~, P, —56 .

No is the electron number necessary to achieve tran-

sparency of the active medium. P&& and /3z2 are mode
self-saturation coefficients. |9,2 and 02, are the cross-
saturation coefficients. Spectral hole burning is a physi-
cal mechanism responsible for the gain saturation. The
cross-saturation terms depend on the frequency separa-
tion of the modes. 6G is the gain rolloff', i.e., the decrease
in gain as we depart from the gain peak of the active
medium. 3 is the laser gain coefficient, given by

3 =(I ca/pV),

where a is determined phenomenologically from the slope
of the linear gain versus injected carrier density plot. I is
the mode confinement factor, p is the group refractive
index, V is the volume of the active region, and c is the
velocity of light in vacuum.

In addition to the time variation of the electric fields,
we need the rate equation for the population inversion.
The inversion is dependent on the injection current I as
given below

N =(I/q) —},N —6,P
~

—G2P2,

where q is the electron charge, and y, is the carrier
recombination rate. This rate is dependent on several
mechanisms

y, = 3„„+Bn+CA„n

where 3„, is the nonradiative contribution arising from
impurities and traps, B is the radiative decay coefficient,
and CA„ is the decay coefficient due to Auger processes.
n is the electron density I,'N/V).

We will use the three coupled equations (1), (2), and (8)
to determine the time evolution of the laser fields. These
equations are, however, deterministic in nature and pro-
vide no information about the intensity or phase fluctua-
tions. The semiclassical equations have to be augmented
with noise sources in order to obtain statistical fluctua-
tions of the laser field and population inversion. The
derivation of the noise sources and their statistical prop-
erties is quantum mechanical. As Lax' and Marcuse
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have shown, it is necessary to quantize the fields to obtain
the correlation functions of the noise sources. The noise
sources added to the right-hand side of Eqs. (1), (2), and
(8) are F„F~, and F~. F, and F2 are complex noise
sources while F~ is real. All these noise sources are
Gaussian and have zero mean. The correlation functions
for the field sources are

(F, (r)F (r') ) =2D, 5(r —r')5,

E, =QP, e

F., =QP, e

(15a)

(15b)

Pi =(Gi —yi)Pi+R, +Fp (16)

and

where P and g are the phases of the electric fields of the
two modes. The intensity equations thus obtained are

R,p =P,pBN /V, (12)

where P, is a coefficient determined by the lateral guid-
ing mechanism of the laser. The correlation function for
F~ is

where i and j refer to subscripts 1 and 2. The noise
strengths D,~

(which depend only on the steady-state
average values of the variables) are given by

D, i =(R,p/2)=D22 .

R, is the rate of spontaneous emission coupled into each
mode. This is assumed to be equal for the two modes,
since the spontaneous-emission spectrum is extremely
broad compared to the mode spacing. Quantitatively,

P2 =(G2 1 2)P~+R @+A

where

(F~(t)F((t') ) =2D~(5(t t')—, k, l =P„P2,N .

The nonzero diffusion coefficients are

Dp p =R, (P, ),
Dp p =R p(P2 )

Dp ~= —R, (P, ),
Dp ~ ——R,p(P2) .

(17)

(18)

(19a)

(19b)

(19c)

(19d)

(F~(r)F~(&') )

=2[R„((P,)+(P, ) )+y, N]5(r r') . —(13)

The accompanying phase equations are

P=F + —,'P, (G, —y, )+F~,
and

(20)

In addition to these autocorrelation functions, it is found
that the noise sources F, and F~ are correlated as well.
These cross-correlation functions are

R,
(Fg(&)F~(&')) = V (P;)5(& —&'),

2
(14a)

R,
(Fl(&)F/(&')) = v (P;)5(& —r') . (14b)

F;~ and F,I are the real and imaginary components of the
noise sources for the electric fields of the two modes and i
refers to the mode index. In these and later equations,
the strengths of the noise sources are defined by the
steady-state ensemble averages for the variables, indicat-
ed by the angular brackets.

With the inclusion of the noise sources, the Langevin
equations account for the fluctuations of the fields and
population inversion. There are several physical
(quantum-mechanical) origins for the noise sources that
we have just described. The terms F, include the effect of
the commutation relation for the fermion operators of
the electrons, since an adiabatic elimination of the dipole
moment has been performed. The internal loss and out-
put coupling contribute as well to the F;. Pump fluctua-
tions and spontaneous emission are responsible for the
noise source F~, which also has a contribution from the
adiabatic elimination of the dipole moment. This adia-
batic elimination of the dipole moment is thus the cause
of the cross correlation between the F, and F~.

The conventional equations for the intensity and phase
of the laser light are obtained from Eqs. (1) and (2) by us-
ing the definitions

g=F + —,'P, (G~ —y, )+F~, (21)

where the noise sources F& and F& are correlated as fol-
lows:

(F&(r)F&(r') ) =(R„/2(P, ) )5(r t'), —

(F&(t)F&(r') ) =(R„/2(P, ) )5(r r') . —
(22)

(23)

III. NUMERICAL SIMULATION PROCEDURE

In order to obtain statistical information on the fluc-
tuations of the laser modes, we perform a numerical in-
tegration of the stochastic differential equations given in
the preceding section. From certain initial conditions, we
follow the trajectory of the fields or intensities in time, in-
troducing random fluctuations at each time step to ac-
count for the Langevin noise sources. Since in this paper
we are interested in the fluctuations of the laser about the
steady state, we first determine the steady-state average
values of the intensities of the modes and the population
inversion. This is accomplished in trial runs in which we
calculate these average values that will serve as input for

In conjunction with the population inversion equation,
either the field or the intensity and phase equations may
be used to determine the fluctuation characteristics of the
laser. However, for the calculation of specific quantities,
one or the other set is more appropriate. We will indicate
in the remaining sections when this is so.

Typical values for In„Ga, As:P lasers whose behav-
ior we wish to model are given in Table I. More exten-
sive tables for laser parameters are contained in Fig. 2.
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Symbol

TABLE I. Typical parameter values for In„Gai As:P.

Parameter Value

L
V

B
CAUg

SP

Pi| (P2z)

12~ 21
F

Rsp

p
Vl~l 2

length
volume

nonradiative recombination rate
radiative recombination coefficient

Auger recombination coefficient
linewidth enhancement factor

gain coefficient
spontaneous-emission factor

mode self-saturation coefficients
mode cross-saturation coefficients

angular frequency mismatch
between cavity mode and laser

frequency
spontaneous-emission rate

group index refraction
loss

250 pm
10 "cm'

10's '

10 ' cm'/s
5X10 cm /s

6
7500 s '

6x10 '
5x10' s-'
5X10 s

10'
2X 10' s

4
7.36X10" s

(for internal loss of 50 cm
and mirror reAectivities of 0.3)

f, =1/2b, (24)

later simulations. In this section we describe the numeri-
cal integration procedure for the simulations and the
techniques for calculating the correlation functions and
various spectral quantities.

A fourth-order Runge-Kutta method was used for the
numerical integration. This method allows us to take
time steps as large as 10 psec. The central processing
unit time taken for each trajectory (of lengths ranging
from 50000 to 250000 steps) is kept reasonably low, at
the same time maintaining a high level of accuracy in the
solution of the deterministic part of the equations over a
time step. On a CYBER 990, this implies a computation
time of less than 100 sec for each trajectory. Ten to fifty
trajectories are necessary to obtain reasonably precise sta-
tistical averages from the simulations.

The noise sources are simulated by the generation of
Gaussian random numbers with noise strengths as stated
in Sec. II. The Box-Mueller algorithm' was used to ob-
tain Gaussian numbers from uniformly distributed ran-
dom numbers. The technique of Marcuse was applied to
establish a cross correlation between noise sources when
necessary. At each integration step the Gaussian random
numbers with the correct variance are added to the deter-
ministic part of the solution. This Monte Carlo pro-
cedure provides us with values of the field or intensity
and phase for each time step. Statistical averages are
then computed from these values.

The correlation functions are determined by taking the
product of variables with the appropriate time delay over
the entire range of the trajectory and then averaging. To
ensure sufficient accuracy in the values of the correlation
functions, the individual trajectories must be many times
longer than the maximum delay for which the correlation
functions are computed.

A fast Fourier transform (FFT) was used to calculate
spectra. The Nyquist frequency

where 6 is the integration time step determines the
highest frequency of the spectrum. The frequency resolu-
tion available from the simulations is given by

b f = I/N, b, (25)

where N, is the total number of time steps in the trajecto-
ry.

IV. INTENSITY FLUCTUATIONS

In this section we will present the results of our simula-
tions on the intensity fluctuations of the two-mode laser.
There are many different measures of intensity noise that
convey information on somewhat different aspects of
laser behavior. The auto- and cross-correlation functions
of the two modes will be calculated first; they specify the
time scales of the coherence properties of the laser. They
also demonstrate how the fluctuations of the main and
side mode are related. The values of the autocorrelation
functions of the modes at zero time delay (the normalized
variance of the intensity) are a measure of the "total
noise" of the laser. The change of this variance with in-
jection current from operation below threshold to above
threshold describes graphically the disorder-order "phase
transition" in the properties of the laser light. The power
spectrum of the intensity Auctuations relative to the
mean steady-state intensity, often called the relative in-
tensity noise (RIN), provides information on the frequen-
cy content of the Auctuations. We will also compare the
results of the linearized theory with the simulations
whenever possible.

In Fig. 1(a) we show part of an intensity time trace for
the main and side modes. A large mode-suppression ra-
tio (M =P2/P, ) of 0.13 has deliberately been chosen to
illustrate the effect of mode partitioning. The value of
the parameter P, (determined by the guiding mechanism
of the laser which varies normally between 10 and
10 for index guided lasers ) was 2 X 10 4; it is this pa-
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FIG. 2. (a) Intensity autocorrelation functions for the total intensity ( . .), main mode intensity ( ), and the cross-
correlation function ( —- —-) between the main and side modes. The injection current is I =24 mA. The mode-suppression ratio M is
=0.001. (b) M =0.01 and only the main mode autocorrelation and cross-correlation between main and side modes are shown. (c)
M =0.2 and only the main mode autocorrelation and cross-correlation between main and side modes are shown. (d) Side mode auto-
correlation function for M =0.01. (e) Side mode autocorrelation function for M =0.2.
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intensity fluctuations. The increased magnitude of the
anticorrelation of the main and side mode demonstrates
the mode-partitioning efFect; in fact the "mode-partition
coefficient" k is defined commonly by'

(6P, (t. +~)oP, (r) )e
R (~)= d7. .

GO P 2
I

(28)

The use of the Wiener-Khinchin theorem allows us to ex-
press the RIN for a stationary stochastic process as'

= —C,2(0) . (27)
+

py 1
At zero time delay, the autocor relation functions

reduce to the normalized variance of the photon number.
The change in this variance with injection current (for
the main mode and total power) as the laser is taken from
below threshold operation to far above threshold
represents the approach to the coherent state. Below
threshold, C» (0) is approximately unity. Far above
threshold, it asymptotically approaches zero. As seen in
Fig. 3(a), with M=0.002, the transition to threshold is
very sharply defined. The limiting value below threshold
of CT(0) is also unity. Above threshold it very closely
foHows the behavior of the main mode variance. The side
mode variance, on the other hand, stays at approximately
unity over the entire range of operation of the laser. It is
well known that the normalized variance for light from a
thermal source is unity. '

If the mode-suppression ratio is increased to 0.1, the
transition across the laser threshold is noticeably
broader. Instead of a sharp decline in C&&(0) and C&(0)
as the injection current is increased, we now have a gra-
dual decrease in the normalized variances. Laser thresh-
old can no longer be precisely defined. Further, the laser
needs to be driven at higher injection currents to reduce
the variance to values below 0.01, even though the total
power output is the same as before for a given injection
current. In contrast to Fig. 3(a), the value of CT(0) is
significantly higher than the corresponding value of
C„(0). This is particularly noticeable at higher injection
currents.

It is important to note that a linearized treatment of
the two-mode laser cannot predict the behavior near the
threshold region. Our computer simulations provide a
technique to quantitatively probe the fluctuations in this
regime, where a transition from a disordered state to an
ordered state occurs. The efFect of the side mode on the
transition across the threshold is significant even when
the side mode is 20 times smaller in power than in the
main mode.

Figure 3(c) demonstrates the inadequacy of the linear-
ized theory to predict the fluctuations near threshold of a
purely single-mode laser. Above threshold, the agree-
ment of the simulation results with the linearized theory
is excellent. Near threshold, the deviation is evident.
The variance is obtained from the linearized theory by in-
tegration of the normalized power spectrum over the en-
tire frequency range. ' Also shown for comparison is the
variance of the total power of a two-mode laser
(M —0. 1); this variance is considerably larger than for a
single-mode laser.

The relative intensity noise is an important quantity
that specifies the frequency components in the intensity
fluctuations. It is defined in terms of the Fourier trans-
form of the autocorrelation functions of Eq. (26):

0 5g

CURRENT (mA)
(a)

I

4

&+ ~g + +++

X ++
&X

o&
X

NN
X

OXX
XX

0

0
14

CURRENT (mA)
(b)

0
14.5 CURRENT (mA)

(c)

24.5

FIG. 3. Normalized variance of the main mode { ), side
mode (+), and total intensity (X) vs injection current I. (a)
M =0.002, (b) M =0.1, (c) a comparison of the linearized theory
for a single-mode laser with numerical results for a purely
single-mode laser and for a two-mode laser (M=0. l). Theory
( ), single-mode simulation (U), two-mode simulation ( X ).
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R (co)=
f 5P, (t)e ' 'dr

(P, &'
(29)

(30)

where we have replaced the integral by a discrete sum.
stands for the fast Fourier transform and 6 is the time
step for the integration. Thus we take the FFT of a time
trajectory of the photon number and use Eq. (30) to ob-

g % p z ~ ~ ~ +$ il I 1 ~I
& ly i ~

v 'v ~a J ~ & gg&el ~~ () +gal

Cia.i i,
) s„

where 5P, (co) is the Fourier transform of 5P, (t). The cal-
culation of the RIN from the computer simulations can
then be carried out as follows. In the limit that the total
integration time T~ ~ the RIN is given by

2

+5P;(t„)e ""b,

tain the RIN. The uncertainty associated with the RIN
so calculated can be reduced by averaging over large
numbers of trajectories.

Figures 4(a) and 4(b) show the main mode, side mode,
and total power RIN's for operation well above threshold
and for two different values of M. When M is small
[0.008 in Fig. 4(a)] the main mode and total power RIN's
are essentially identical in the range of frequencies con-
sidered. We can see clear evidence of the relaxation oscil-
lations in the peaks of the spectra, located at about 4
GHz for an injection current of 28 mA. The side mode
RIN, on the other hand, shows no such peak, but decays
from an initial value about six orders of magnitude
higher. In Fig. 4(b) M=0.06. Now the main mode and
total power RIN's are well separated initially in the fre-
quency range below 1 GHz. This is caused by mode-
partition noise, in which the main and side modes fluctu-
ate in an anticorrelated fashion, resulting in much small-
er Auctuations in the total mode power. Both main mode
and total power RIN's still peak at the relaxation oscilla-
tion frequency, and now a small peak is also observed in
the RIN of the side mode at this frequency, correspond-
ing to the relaxation oscillations seen in the side mode in-

tensity in Fig. 1(b). In these figures we have restricted
ourselves to a frequency range below the beat frequency
of the two modes. If we looked at high enough frequen-
cies, there would be a peak in the RIN for the total
power at the beat frequency.

When the laser is operated closer to threshold, the re-
laxation oscillation peak shifts to lower frequencies, as
predicted theoretically. Thus the behavior of the RIN
seen in our simulations is generally as expected from pre-
vious experiments and theory.

0.1 1.0 10.0 V. FIELD FLUCTUATIONS

-9

FREQUENCY (GHz)

' 'ih'

Computer simulation of the stochastic equations (1),
(2), and (8) allow us to obtain information on the field
Auctuations as well as intensity noise. Whereas there
have been previous studies of intensity noise ' that
complement our results reported here, there have been no
direct computations of the field Auctuations to our
knowledge.

The lineshape or field spectrum of the laser is the
Fourier transform of the complex field autocorrelation
function defined mathematically as

L, (co)= I (E,*(t+w)E, (t))e ' 'dr, (31)

0.1 1.0 10.0

FREQUENCY (0Hz)

(b)

FIG. 4. Relative intensity noise spectra (RIN) for I =28 mA
for the main mode ( ), side mode (. . - .), and total intensi-
ty( —- —-). (a) M=0.0008. (b) M=0.06.

where the subscript i denotes the main or side mode. The
line shape of the laser can be experimentally determined
with the Fabry-Perot interferometer or by an optical
heterodyne method which results in a beat spectrum be-
tween the test laser and a reference laser field. The field
spectrum may be calculated in a linearized approach a
restriction of this procedure is that the contribution of in-
tensity Auctuations to the line shape must be neglected.
Also, the method is prohibitively complicated if more
than one mode is considered.

An advantage of our technique is the ability to calcu-
late the line shape including the effect of the intensity
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fluctuations. The technique also works equally well for a
multirnode laser as it does for a single-mode laser. The
simplicity of our technique for computation of the line
shapes is due to the use of the electric field equations for
the integration. The absolute value squared of the FFT
of the electric field [analogous to Eq. (29)] directly results
in the line shape.

Figure 5 shows the main and side mode line shapes for
M=8X10 . The main mode spectrum is Lorentzian in
the center, as is shown by the least-squares-fit curve
(dashed line). The two prominent satellite peaks are due
to the relaxation oscillations. Their frequency shift rela-
tive to the central peak is proportional to the square root
of the power in the main mode. ' A faint trace of two
higher-order satellite peaks is seen in the wings of the
main mode line shape. The side mode spectrum is
Lorentzian, and shifted from the cavity resonance by
about 3 GHz. A simple calculation for a laser below
threshold that neglects fluctuations in the population in-
version gives the following result for the line shape

R,
L, (co) =

[coo+ (P, /2 )( G —
y )

—co] + ( G —
y ) /2

(32)

From this equation the frequency shift is seen to be

5„= (G —y)-f3,4~ ' 4nP
(33)

where in the last step we have replaced G —y by its
steady-state value R,„/P from Eq. (16). It accurately
predicts the shift of the side mode or of the main mode as
a function of its power. The shift (measured from the
high power limit central frequency) is large below thresh-
old and decreases to zero as the photon number in the
mode grows.

Figure 6 is an expanded view of the satellite peaks that
shows clearly the asymmetry in their size. As has been
discussed by Vahala, Harder, and Yariv, ' this asym-
metry is the result of the coupling between the amplitude

3-
xlO

I I

0
FREQUENCY (GHz)

FIG. 6. Relaxation oscillations for the main mode line shape
for I =24 mA and M =0.001. Note the asymmetry of the side-
bands which arises from the coupling of the phase and intensity
fluctuations.

and phase fluctuations. Our computations reveal this
effect naturally since we automatically incorporate this
coupling in our equations. This asyrnrnetry is found over
the wide range of M values that we have investigated.

In Fig. 7, we have shown the main mode spectrum of a
laser slightly above threshold. Multiple relaxation oscil-
lation peaks are seen in this regime of operation, which
cannot be treated accurately with a linearized theory.

Looking back at Fig. 5, we note that the wings of the
main mode spectrum fall far below the Lorentzian profile
that fits the central portion of the line shape. This falloff
of the line shape is caused by the damping of the relaxa-
tion oscillations' (which depend on the gain saturation
terms and the decay rate of the population inversion). If
we neglect the nonlinear gain or saturation terms [i.e. , we
set the P and 0 factors to zero in Eqs. (5) and (6)] then the
relaxation oscillations are much less damped and the line
shape fits the Lorentzian slightly better in the wings.
This is shown in Fig. 8.
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FIG. 5. Line shapes for the main mode (centered at 0) and
side mode for I =24 mA and M=0.0008. Also shown are
Lorentzian fits for the main mode ( ———) and for the side
mode( . - .)
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FIG. 7. Main mode line shape for I =18 Ma (I,h =16 mA)
for M =0.001.
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theory. Our results show that the linearized theory is ac-
curate to within a few percent far below threshold (out-
put power in the microwatt regime), as well as above
threshold (output power greater than a milliwatt). Con-

100-

FIG. 8. Main mode line shape with self- and cross-saturation
coefficients set to zero. Note the underdamped relaxation oscil-
lations and the Lorentzian fit to the central peak (

———).

The laser main mode linewidth can be determined by a
Lorentzian least-squares fit to the line shape obtained
from the simulations. Only the portion of the line shape
within a GHz of the line center was included for these
fits. Thus the eAect of the relaxation oscillation satellite
peaks was negligible in the determination of the
linewidth, which is defined as the full width at half max-
imum of the Lorentzian fit. A weighting procedure that
attributes a higher weight to the wings was used; this
gave us less uncertainty in the final linewidth.

In Figs. 9(a) —9(c) we show the variation of the
linewidth as a function of the inverse power of the main
mode. The Schawlow- Townes formula for the
semiconductor-laser linewidth, as modified by Henry, ' is

5CO-

NZ

0

b, v= ( I+@,),
4~P,

(34) INVERSE POWER (1/mW)
(b)

where all the quantities involved have been previously
defined. A linear plot is expected from this equation, and
is shown as a dashed line for the parameter values used in
the simulations. The solid line is a linear least-squares fit
to the data points (squares) obtained from the simula-
tions. The mode-suppression ratio increases from 0.001
[Fig. 9(a)] to 0.01 [Fig. 9(b)] and finally, to 0.15 [Fig. 9(c)].
The plots remain very linear through this progression,
but deviate more from the straight lines obtained from
Eq. (34). Furthermore, the intercept on the vertical axis
as obtained from the linear regression becomes noticeably
nonzero for the mode-suppression ratio of 0.15. In Fig.
9(c), this intercept is 7.7+5.4 MHz. This would seem to
indicate that a contribution to the power-independent
linewidth may arise from the existence of a second mode.
This conclusion has also been reached earlier by Elsasser
and Goebel and by Miller ' by diA'erent techniques.

800-

I

0
INVERSE POWER (1/mW)

1.?

(c)

VI. DISCUSSION

The study presented here defines the limits of applica-
bility of the linearized single-mode semiconductor-laser

FIG. 9. Linewidth of the main mode vs inverse power for
three diA'erent mode-suppression ratios. The computed values
are shown by the squares. The solid line is a linear least-squares
fit to the computed values, while the dashed line is from Eq.
(34). (a) M =0.001. (b) M =0.01. (c) M =0.15.
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siderable discrepancies of the numerical calculations with
the analytic theory are found in the intermediate regime.
The agreement of the Monte Carlo results above thresh-
old with both experimental results and linearized theory
emphasizes the correctness and accuracy of the technique
and lends credence to the results obtained in the thresh-
old regime.

Though the single-mode theory of the semiconductor
laser is adequate for many purposes, it is important to
realize that a "single-mode" laser often has a second
mode of smaller intensity which contributes appreciably
to the fluctuations of the main mode. It is much more
dificult to account for this situation with an analytic
theory. Our numerical technique allows us to consider
arbitrary mode-suppression ratios and compute the
e8'ects of mode partition on both the intensity and field
fluctuations. We have demonstrated here the ability of

the Monte Carlo procedure to provide accurate results on
the laser line shape, accounting for the coupling between
the intensity and phase fluctuations in a two-mode laser.

In the future, we will apply this method of calculation
to problems that involve noise and the nonlinear dynam-
ics of semiconductor lasers, including the important prac-
tical question of external reflections into the laser cavity.
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