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Four-wave mixing in a three-level system interacting
with an intense two-frequency pump wave
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A semiclassical treatment of four-wave mixing is presented for the case for which a two-frequency
pump wave of arbitrary intensity and a weak probe wave interact with a three-level system. Numeri-
cal, as well as analytical, results for the emission spectra are obtained from the steady-state
response. At high pump power, the spectra are strongly modified by the ac Stark effect.

I. INTRODUCTION

Four-wave mixing in a nonlinear medium has a wide
variety of applications in light-wave generation' as well
as spectroscopic techniques. The investigation of the
properties of the generated waves also reveals fundamen-
tal physical phenomena due to higher-order nonlinear
processes ' which cannot be clearly observed by satura-
tion techniques. In this paper we discuss four-wave mix-
ing in a three-level system using a semiclassical theory.

Ducloy and Bloch analyzed four-wave mixing for a
two-frequency pump beam and a probe beam by pertur-
bation calculation to third order in the fields. They ob-
tained a Doppler-free doublet structure which was exper-
imentally demonstrated in iodine. '

A more general discussion on multiresonance four-
wave mixing was given in various multilevel systems for
weak pump fields, "where the ac Stark effect and satura-
tion effects are neglected.

An analysis of degenerate four-wave mixing was
presented in a two-level system for arbitrarily strong
pump fields. ' ' A numerical examination of probe-
wave amplification was discussed for various relaxation
rates of a two-level system.

Saturation behavior in multiresonance four-wave mix-
ing was also analyzed by calculating emission intensity as
a function of the probe detuning. A numerical examina-
tion of the line profile shows ac Stark splitting and shifts
at a higher pump intensity. ' ' Some of the results are
in good agreement with the experimental results. '

We extend the four-wave-mixing theory to a three-level
system when the pump wave has an arbitrary intensity
and is composed of two frequencies of arbitrary frequen-
cy separation. The population in the levels coupled to
the pump wave coherently rings with the frequency sepa-
ration of the wave. This situation is similar to that of an
atom in an intense laser cavity, where an atomic system
interacts with a standing-wave radiation field that can be
decomposed to two frequencies. ' '' Feldman and Feld'
expanded density-matrix elements into spatial Fourier
components with Doppler-shifted frequencies and ob-
tained solutions in terms of continued fractions. The
mathematical treatment may be applied to the atomic in-
teraction with a two-frequency pump wave if the density
matrix is expanded in a Fourier series in terms of the

II. RESPONSE OF A THREE-LEVEL SYSTEM
DRIVEN BY A TWO-FREQUENCY PUMP FIELD

We consider a three-level system coupled to an intense
pump and a weak probe wave. Figure 1 illustrates four-
wave-mixing processes in a three-level-system of an in-
verted V type. The pump waves E, (co

&
+ co ) and

E', (co, —co) interact with the 0-1 transition, and the probe
frequency co2 is tuned near the center frequency of the 1-2
transition. In the process, amplification of the probe
wave and emission of a wave with co3 occur at the 1-2
transition.

At the end of the process, the atom is transferred to
level 2, different from the initial state, level 0. In Figs.
1(a) and 1(b), the probe wave is amplified, while a wave at
co„different from co2 by 2', is generated in the processes
shown in Figs. 1(c) and 1(d).

If the pump waves are assumed to have the same am-
plitude for the simplicity of the calculation, the field is
described as

E=E, si n( cto+t)hc os( cot +f, ) +Ec2os( czot +1'), (1)

where P, f, , and th2 are the initial phases of the waves
which will be set to zero in the calculation.

The three-level system is inAuenced by pumping and
decay processes as well as the interaction with the fields.
The time evolution of the system is described by a density
matrix p which is subject to the Schrodinger equation

Bp
at

=[F1,p]lik . (2)

The total Hamiltonian for the system is

pump-frequency difference.
In Sec. II expressions for the nonlinear response are

given for a three-level system coupled to a two-frequency
pump wave and a weak probe wave. In Sec. III we
present results of the numerical evaluation for special
cases of interest, and display the response graphically,
and then interpret the results that come from different
physical processes. It is found that resonances occur at
the center of the probe detuning and a Rabi frequency
when the pump intensity is considerably high and the fre-
quency separation is small compared with the relaxation
rates of the transition levels.
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when the wave propagated along the z axis. To investi-
gate the features of the generated waves we should calcu-
late the imaginary part of the density-matrix element p2, .

We first solve poo, p, o, and p» to all orders of E, . Then
the solutions can be obtained by iteration between the di-
agonal and off-diagonal elements. When the atoms have
initially diagonal elements, the off-diagonal elements have
Fourier components at co through V, . Then, the diagonal
elements oscillate at 2~ through the interaction V, , and
so forth. In this way, the off-diagonal elements oscillate
at (2n + 1)co, where n is an integer.

Thus the matrix elements can be expanded as

pg(pe 2tnnt

+pe

2tntot�
) (6a)

~ ( p 2tnntt+ pe —2tntnt
)p» ne (6b)

P,o=exP( —itu)t)&(q2 +le' "+' "'

(c)
FIG. 1. Schematic representation of various four-wave-

mixing processes in which a three-level system interacts with a
two-frequency pump wave at ~]+co, and a probe wave at co2.

+q
—i(2n+ ] )t~t)(2„+]]e

Combining Eqs. (4) and (6), we have the expressions

P20= exp[ —i(to, + t02)t ]g(s2„+ )
e'

(6c)

(7a)

H=H —p.E (3) +s —t(2n+1)t~t) (7b)—(2n +1)

where Ho is the unperturbed Hamiltonian and p is the
transition dipole moment.

In the electric dipole approximation, the density-
matrix elements follow the equation of motion,

Inserting Eqs. (6) and (7) into Eqs. (4a) —(4b), we have
coupled equations for the Fourier amplitudes. These
coupled equations may be rearranged by using the follow-
ing notation:

poo yo(poo +0)+'V1(p)o plo)

P'll = —y 1P, ,
—'V1(P10—P10)+ 'V2(P21 —

P2, ),
P22 y2P 22 V2(P21 P21)

Plo (y)o+ filo)plo Vl(P11 Poo)+ l V2P20

P21
— (3 21+ l 021)P21 l V2(P22 P1 1 ) l V1P20 &

P20 (y20+ +20)P20 1 V1P21 1 V2P10

p,, =p*, (i,j =0, 1,2),
V1 = ()Lt)OE1/A)sin(cot + 1(t)cos(co) t +1(t)),

V2 —(ttt2, E2 /fi)cos(co2t +$2),

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

a, =p, —P„, n even

a, =q, —
q „n odd

p„ =r„, n even

P„=s„, n odd .

Thus we obtain a set of coupled linear equations

n+]+ n+n ~n —J n~nO &

p„+,+b„/3„—p„
(4g)

where
(4h)

(4i) a„= [ 1/[ y)0i+( b, )n+)t]t)

„a=[1/( yoi+n )co+1 ( /y+into)] '/V, o, n even

(10a)

(10b)

where 0; is the atomic resonance frequency for the i-j
transition, y, is the decay rate of level i, y, is the dephas-
ing rate of the polarization for the levels i and j, and
nonzero transition dipole moments are p, o and p2&.

We have an interest in the optical wave generation by
four-wave mixing near frequency co2. The Geld strength
of the wave E, (i=2, 3), in the slowly varying field en-

velope approximation, is given by

+1/[y, +i0(A, —nto)]) 'V, o, n odd

b„=—[y2, +i(b2+n co)]/ V ,0n even

[y20+ l'( t-) 3+ n to) ] / V)o n odd

tt), = —i( V20/V, o)P„, n even

l( V2o/V)o)q. n odd

(12)

(13)
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where Pe=0. (17)

n 10 ct) ] A2 n2] c02 A3

~lo 810 I/~ ~20 I 2lE2/~ '

Equation (10a) may be rewritten in the form

un =
an +un+1

(14)

1po=
bo+Ui + U

N

$o+ g( —I)'(P;u, P—, u, )

Inserting Eq. (17) into Eq. (10b) and taking the itera-
tion procedure, we obtain the Fourier amplitudes of p2]
as

where u„=a„+]/a„.
Using successively the same relation as Eq. (14) for

n+1, n+2, . . . , we have a continued fraction

(15)

where

N

P, =P u, —g ( —1)jg, u

(18)

(19)
a„+

1a„+1+ a +2+'' and

From Eq. (10) for n =0 and Eq. (15), we have

ao
CZ0-

ao+2 Imu 1

(16)
and

N

P2=(Po+P, )v2+a, g (
—1) P u

J=2
(20a)

Other a„may be obtained combining Eqs. (15) and (16).
Next, we solve Eqs. (10b) using a„obtained above. Be-

cause the solution with physical meaning converges as
n~ ~, we will have for large N

N

P 2=(P +of, )u ~+a, g (
—1)'P, v

J =2

where

(20b)

1
b. +i+ b„+,+-

b. +i+
1

b„+,+ b„+3+

(21)

Imp2, =ImPo+1m[(Pz —P* 2)e ' ']

+Im[(P4 —P'4)e ' ']+ (22)

Inserting Eqs. (18) and (20) into Eq. (10b), we have suc-
cessive Fourier amplitudes at higher frequencies.

To obtain the emission intensity, we need to calculate
the imaginary part of p2, which is written from Eqs. (7a)
and (9) as

a„=R"o,'0, n even

a„=R" 'o.„n odd .

Inserting Eqs. (23) into Eqs. (10), we obtain

R = [2+[aoa, (aoa, +4)]' I /2,
~0~ 1

aoa& = (y&o+~&)
2]0 V2io

(24)

(25)

(26)

Inserting Eqs. (18) and (20) into Eq. (22) we have the line
shape for the generated wave as a function of the probe
frequency.

The continued fractions, Eqs. (15) and (21), have simple
forms for small cg( « yo, y, , yz). In this case, the
coefficients in Eq. (11)will be independent of n as

and

ao = 1/(1+ 4 V, o /yoy i
)' (27)

ai =(yoy i/2y io~io)[1 —1/(I+41'io/yoy 1)'"] . (28)

In a similar way, the continued fraction in Eq. (21) is
solved at 6]=62=0 as

a„=

a„=

1'03'1 —:ao, n even
2V10 10

2
V]0 :—ai, n odd.

2+ 10 10

(23)

and

U„=r "vo, n even

U„—r U 1, n odd

(29a)

(29b)

Thus we have recurring continued fractions for u, . The
coupled equations (10) are solved by setting

r = [2+b b~+o[b b, (ob b, +o4)]' } /2, (30)

where bo=y2i/Vio and bi =y20~Vio Combining Eqs.
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—1A 1/B)p =i

(31)

O

E
0.2

tU

Z

and

2, ( 1- V„/2r 10V10
—1/2

p p, = ro ~"
, A)(1+2/A)-(A —B) [ 1+

)-'"]I1+B)(1+2/B

(32

where

p2g =2g2Q 21

and

(33a)

(33b)/2 1 p
p2
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FIG. 4. The response modulated at 2' is shown as a function
of the probe-wave detuning for the pump frequencies
c0&+co= Q]o+0.01&~o in the case where the phase diA'erence be-
tween the pump field envelope and the signal is zero.
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FIG. 5. The response modulated at 2' is shown as a function
of the probe detuning for the same pump frequencies as those in

Fig. 4 in the case where the phase dift'erence is ~/2.

Im[(p2 —p* 2)e
' ']=

~ p2
—p"

2 i
cos(2cot +g ), (35)

where the power-dependent phase g is

p~ =tan '[Im(p2 —p* 2)/Re(p2 —p' 2)] . (36)

The signal consists of two components that vary as
cos2cot and sin2cot. To measure the beat note, we adopt a
phase-sensitive detection in which amplitudes of the two
components can be detected separately. As typical exam-
ples, we illustrate the numerical results for the imaginary
and the real parts of p2

—p*
2 in Figs. 4 and 5, respective-

ly. The former is proportional to the amplitude of the
cosine component, while the latter is to the amplitude of
the sine component.

The line profile of the cosine component is a Lorentzi-
an curve with a narrow width at a low pump intensity.
As the intensity increases, the profile shows saturation
with a broadened linewidth and then peak splitting. For
V]p =0.3p &p the sign of the value at Az =0 is reversed
with respect to the value for a lower pump intensity.

For the sine component, the line profile has smaller
peak value and narrower width compared with the cosine
component. The linewidth becomes broader and the sign
of the value at the line center is reversed as the pump in-
tensity is increased. The linewidths can be estimated by
the calculation in two limiting cases as discussed in the
following.

We first examine the behavior of the beat at a low
pump intensity. The calculation of Eqs. (20a) and (20b)
for lowest order in V, gives

p+2=+i V, OV20 [2[(y,0+ice)l(y, +2ico)]l[y, o
—i(&1+~)]

+ I Y[r20+i(~3+~)] I [r 10+i(~1+~)] '[r»+ i(~2+2~)] (37)

in which the first term in the square brackets comes from a coherent population oscillation. ' Inserting Eq. (37) into
Eq. (35), we have at b, , =0 analytical forms of the line shapes for the cosine and the sine components of the beat notes as

Im(p2 p —2) 2V10V20[(y20l 21 ~2)(r20+~2)+(~2+y20y21)~ l~[y10(r21+~2)[( Y20 ~ ~2) +4~ r20] I

and

«(p2 —p*—2)= —2~V10V20[(r21 —2r20)~z —r21(r20+~')]~[2y10(y21+~2)[(Y20 ~ ~2) + ~ r20]l

(38a)

(38b)

In the limiting case ~&&yzp, the linewidth for the
cosine component is ppp while that for the sine com-
ponent is reduced to 0.41&pp which is smaller than the
two-photon resonance linewidth yap.

In the other limiting case of a small pump-frequency
separation, cu«yzp, the analytical expressions for the

line shape can be obtained by solving pz&. For the latter
case, the atomic response follows the slowly varying en-

velope of the pump field as if the amplitude were constant
at every moment.

Then, we may use the density-matrix element ' pz],
which is given by (see Appendix A)
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(Pzl) 1o

2iyo V1 Vzo(I + id 2)exp( —i cozt )

y1o(yoy1+4V, )[ V1+(y21+ihz)(yzo+ihz)]

(39)

with V, =V10sincot. The envelope of (pz, ),1,„can be
decomposed into a Fourier series as

(p21),1,„=(CQ+Czcos2cot+ C4cos4cot+ )

X exp( —i cozt )

where

(40)

C„=(co/2m. ) I (pz, ),1,„cos2ncot dt . (41)
7T/N

In the limit co « yzo and V&o &)yzo, the imaginary part
of the Fourier amplitude C„are given by (see Appendix
B)
ImCo = —ImCz =(yol Vzo/2 y 1o V1o)

X [(g2+y2 )(g2+y2 )]1/4

s ~1 k~Uz (43)

where k ]
=~

&
/c.

The probe frequency becomes, in the copropagation
configuration,

the pump intensity increases. For the sinusoidal varia-
tion of the pump intensity, the signal intensity changes as
follows. When the pump intensity has a maximum value,
pz

—p"
z at 62=0 is lowered in its magnitude due to a

large deviation from the resonant condition, while
pz —f3" z at b,2=0 is large for a lower pump intensity.
Thus the beat intensity at 2' varies as if it had a phase
shifted by m. /2 from the sinusoidal time variation of the
pump intensity.

We next consider four-wave mixing in a gaseous medi-
um composed of a Doppler-broadened atomic system, in
the case where the propagation directions of the waves
influence the emission intensity. Then we assume that
the pump and the probe waves either copropagate or
counterpropagate in the z axis.

For an atom moving with V„ the z component of the
velocity, the frequency of the pump wave in the atomic
rest frame, becomes

and

ImCQ ——ImCz ——(ypI V10 Vzo/2y 10)

for
I ~21 & yzo (42a)

co —co~ kz U

and, in the counterpropagation configuration,

co& Q)~+ k~ Uz

(44a)

(44b)

X l ( V 10 ~2) 10(y20 Y21 )']

for id, zi
—V, o . (42b)

These expressions show the heights and the positions
of the resonances for the amplified probe wave and the
generated wave at co&+2'. The Fourier amplitudes Co
and Cz have resonances at Ay=0 + V&o ~ The resonances
are due to the time variations of the pump field amplitude
in the beat note. The resonance at hz=0 comes from the
generation at the time region t=n~/co(m=0, 1,2, . . . )

when the pump-wave amplitude is at a low-intensity lev-
el, while the resonances at Az =+ V~o are due to wave
generation at time t =(2n+1)vr/2co, when the field inten-
sity of the pump wave is high.

In Figs. 4 and 5, the sign of Cz at b z=O becomes re-
versed as the pump intensity increases. The imaginary
and the real parts of f32

—p'z are estimated by the
Fourier amplitudes in Eqs. (38) for the limiting case
co « yzo. The origin of the peak-value change at Az=0 is
the ac Stark shift in the energy levels 0 and 1 ~ Because of
the shift, the probe field with co& is deviated from the res-
onance condition co&

—
Qz& =0. The deviation increases as

I

00

(p21) = — dv, exp( —
U, /u )p21(U, ),

aalu
(45)

when we assume the Maxwellian distribution with the
mean thermal velocity u.

In the Doppler limit (y, , y,~
&&k, u, kzu), we perform

the integral in Eq. (45) using the residue technique, hav-
ing

(p., ) = 2&sr V10Lt 20 1

ekzu b, , +co+er~[62 —iI 0(e)]

x 1

b, , +co+ (er„—2)[b,z
—i I,(e) ]

and

We have a density matrix for the moving atom, replac-
ing co, and coz in Eqs. (6) and (7) by co, and co~(co~ ), re-
spectively. To find the intensity of the generated wave in
the atomic ensemble, we integrate over the velocity distri-
bution for po and pz in Eqs. (34) and (37) as

2+m. V1o 1 I(p., ) =
Ekzu 61+(2Erk+1)co+ark[bz —iI 0(e)] y1+2ico

l

6,+(2er„—1) +c(per„—2)[h —il, (e)]
(47)

where
I Q(~) =«1,y1p+y21

and

r, (e)= [(1 Erg )y21+Erky 2—0]/(1 —2Erl, ),

I

with rk = kg /k
&

and E' = + 1. Here e = 1 for copropagat-
ing waves and e = —1 for counterpropagating waves.

From Eqs. (46) and (47) we have curves of emission in-
tensity versus the probe detuning Az. The linewidths of
the curves depend on dephasing rates, wave propagation
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FIG. 6. Intensity of the generated wave for a Doppler-
broadened atomic system as a function of the probe detuning

The line shapes are calculated in the Doppler limit for
several pump intensities, using the following parameters:
k, lk, =0.8, At=0, and co/y, o=0.01. (a) The cosine com-

ponent, Im((Pz) —(P*z) ), for I~ lr, o=0.2, 0.25, 0.3, and 0.4;
(b) the sine comPonent, Re((Pz) —(P*z) ) f'or I, /r, 0=0. 1, 02,
0.25, and 0.3.

with a negative value appears at 62=0, as in the case of
atoms at rest.

IV. CONCLUSION

The saturation characteristics of four-wave mixing
were investigated in a three-level system coupled to a
two-frequency pump wave and a weak probe wave. Espe-
cially the line shape of the emitted field was examined at
high pump intensities, where the line shape reveals power
broadening, phase shifts, and peak splitting.

A wave emitted in the direction of the probe beam
makes a beat against the probe wave. The beat signal can
be obtained by a lockin amplifier with reference signal at
the modulation frequency of the pump field amplitude.
The line shape obtained for the probe detunings is, there-
fore, modified by the phase difference between the detec-
tion system and the modulation frequency. The
linewidth which is narrower than that for the two-photon
absorption is obtained when the phase of the detection

stem is adjusted to be a/2 shifted from the reference
1signa1 of the pump-wave envelope. The subnatura

linewidth predicted by our calculation will be useful for
the frequency stabilization as well as high-resolution
spectroscopy.

The response in a Doppler-broadened system was ob-
tained by integrating over its velocity distribution. In the
copropagation configuration of the pump and the probe
waves, the emission line shape has a narrow width due to
partial Doppler compensation. As the pump power in-
creases, the line shape changes into a two-peaked spec-
trum similar to that for atoms at rest.

Hackel and Ezekiel reported, in a two-step scattering
of iodine, a split structure due to the ac Stark effect at
much higher saturating pump power. The central dip of
the observed line shape will have the same origin as the
one we discussed.

The generated wave also shows multiphoton scattering
characteristics. As the pump intensity increases, the
waves at frequencies co2+4~, co2+6cu, . . . , are generated
simultaneously due to higher-order processes. The prop-
erties of the waves could be obtained by the analysis of
higher-frequency Fourier components of P2, in such a
way as that discussed above.

directions, and wave-number ratio of the pump and the
probe waves.

One of the interesting cases is copropag ation
configuration, where the Doppler cancellation occurs for
k, =k2 and @=1. The effect of the cancellation can be
predominantly observed in the sine component of the
emission intensity modulated at 2'. At a low pump in-
tensity the linewidth of the sine component is approxi-
mately equal to @20.

For an arbitrary pump intensity, we calculate numeri-
cally for copropagating waves with 6, =0, m=O. yio,=0.01
and k /k =0.8. The results are plotted in Fig. 6. Com-2 1

pared with the cosine component, the sine component
has a narrower linewidth. As the pump intensity in-
creases, line shapes become double peaked, and then in
the line shape of the sine component, a sharp resonance
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APPENDIX A

(A1)

P11 2'V071 ~1 /2

pin= —&ror i 1'i(r io &~»~D—

(A2)

(A3)

We solve the density-matrix elements in Eqs. (4a) —(4i)
for a strong pump wave with constant amplitude, when
the probe wave is assumed to be of small perturbation.
Under the assumption, we calculate the density-matrix
elements, neglecting the probe wave E2, as

Izoo=ri(ro~rto+z~i ~'+2r iud't )~D
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with D =yoy&Iy)o+ih&I +4y)oV].
Inserting Eqs. (Al) —(A3) into Eqs. (4e) and (4f}, we

have the density-matrix element p2, , to the first order in
E2

2i y o V, V2 ( I + i b 2)exp( i—cozt )

P2&
y] o(y oy&+4V1 }[Vi +(y2]+&'~2)(y2o+& ~&)]2 2

1 —e & dx
fo(A~) = dxI+e t (x E)2 +52

=( I/151)(1 —e)/( I+ e) (85)

Second, fo hz y20/2& d ~2 ~)o th g'o
lx —el &5 contributes dominantly to the integral. Equa-
tions (82) are

APPENDIX 8

(A4) and

f2(~2}=fo(~z) . (86)

We deduce approximate analytical forms for the
Fourier components of the induced polarization at the
probe frequency for the case where the pump wave has a
slowly varying amplitude.

We consider the limiting case, V, »y20y2„ for n =0
and 2 in the following. If we replace the imaginary part
of the Fourier amplitudes in Eq. (40) by

f (& )=(2' '/ ) —
& (x+1) +(a+I) +5 (1+x)'

=—,'[(e+ I) +5 ] (87)

Third, for b,z-—V fo, especially V,o(yzo+ y2, )»
I V,o

—b, I, where the contribution from the region
—1+ I el & x & —1 is dominant, we get

ImC =(yol V2o/gy)oV(o)f

and perform the integration in Eq. (41), we have

n/2

f„(b,z) = f dx, n =0,2—1 (x —g)~+ 52 1+x

(81)

(82)

and

fp(&p)=fo(&p) .

with @=1 —(bz yzoy2&)/Vio and

5= [(y20+1 21)~21/Vfo

Fourth, for 5 » V,o, Eq. (82} is approximately as

The evaluation of the integral in Eq. (82) can be per-
formed analytically in four regions of detuning,
~2 ++ 72+ 21 720Y2] ++ ~2 ++4 V&0 ~2= ~&0

2 2 2 2 2

~2» ~ia.2 2

First, for bz«yz&yz&, we have e= 1 and I5I «1. The
region of the dominant contribution to the integral in Eq.
(82) is lx eI & I5I. The int—egral is evaluated as

(1 —x)'i
0 2 2 2dX

v 2 —i (x —1) +(e—1)2+5

and

p1 1 1 —x
o(&2)= f dx—

& [x+(e +5 )] 1+x
=I/(e +5 ),

fz(bz)=1/[2(e +5 )] .

(89)

(810}

and

i [(& 1)2+52]—1/4
2

fz=fo .

(83)

(84)

From Eqs. (83)—(810), we see that Eq. (82) has extrema
at 52=0 and +V,o, noting that Eq. (82) is a smooth
function of 52.

Inserting Eqs. (83), (84), (87), and (88) into Eq. (Bl),
we obtain Eqs. (42).
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