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Quantum dynamics of the nonlinear rotator and the effects of continua& spin measurement
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The quantum and classical dynamics of the nonlinear oscillator are contrasted by comparing the
evolution of the quantum Q function with that of a similar classical probability distribution. The
quantum nonlinear rotator is shown to generate a superposition of two distinct coherent states from
a coherent-state input. Measurements of the angular-momentum components and the signature of a

superposition state are discussed. The effects of a continual measurement of one angular-

momentum component are introduced into the model, and its effects on quantum coherences are
shown to degrade the quantum coherence effects. We present a quantum optical model that obeys
the nonlinear rotator dynamics and can generate superpositions of SU(2) coherent states of the two-

mode electromagnetic field.

I. INTRODUCTION

The quantum nonlinear oscillator possesses important
features which have led to vigorous interest in the mod-
el, ' and the nonlinear rotator, which is investigated
here, is demonstrated to share many important proper-
ties. The exactly solvable dynamics of the nonlinear os-
cillator has led to a revealing investigation of the classical
and quantum dynamics by comparing the joint phase-
space probability density evolutions for the two re-
gimes. ' The classical distribution in phase space un-
dergoes a rotational shear, which leads to a fine-scale
convolution of the original distribution. The quantum
probability density is prevented from developing a fine-
scale structure by the presence of second-order terms in
the differential equation. Instead, quantum coherences
cause the dynamics of the nonlinear oscillator to be
periodic. ' ' ' Furthermore, the quantum nonlinear os-
cillator transforms an initial coherent state into a super-
position of two coherent states which are separated by a
phase of ~. ' ' ' The detection of such superposition
states can be performed via quadrature-phase measure-
ments: the in-phase quadrature-phase eigenvalue distri-
bution is double peaked and the out-of-phase quadrature
distribution displays interference fringes. ' ' '

The nonlinear rotator is a spin system which is subject-
ed to a quadratic precession about one axis. The non-
linear oscillator and the nonlinear rotator appear very
different. The Heisenberg-Weyl group is the symmetry
group for the nonlinear oscillator, whereas SU(2) is the
symmetry group for spin precession. Moreover, physical
examples of the nonlinear oscillator, such as for the self-
interaction of the electromagnetic field, are quite
different from realizations of spin precession in, say, a nu-
clear system. Nevertheless, there exist many common
features between the systems, as we shall observe.

The comparison of the classical and quantum dynamics
of the nonlinear rotator is performed in Sec. II by study-
ing the evolution of a probability density for the system.
For the quantum nonlinear oscillator the Q-function
description is employed as it is a true probability density,

II. CLASSICAL AND QUANTUM DYNAMICS

The Hamiltonian for the nonlinear rotator is

H. =coJ + J2
z 2

~ z (2.1)

where co is the linear precession frequency and A. is a posi-
tive constant. The classical dynamics are described by
the motion of the angular-momentum vector J through
three-dimensional space and

~ J~ =j is a constant. The ini-
tial conditions for the classical nonlinear rotator is

and each quantum state is completely determined by the

Q function. Similarly, the density matrix of the non-
linear rotator is completely determined by the Q function
corresponding to the SU(2) group' and we compare the
classical and quantum dynamics by contrasting an evolv-
ing classical probability distribution with a time-
dependent quantum Q function. We also study the eigen-
value distributions of the angular-momentum operators
for the evolving state and determine the signatures of
quantum coherences.

Continuous measurement is included in the model in
Sec. III. Measurements of an angular-momentum com-
ponent occur by coupling a meter to the component be-
ing measured. " ' The meter is quantized and the quan-
tum fluctuations feed back into the measured nonlinear
rotator, but the measurement scheme is nondissipative.
Continuous measurement of one component of angular
momentum introduces fluctuations into the other com-
ponents. The effects of continuous measurement on the
quantum coherences of the nonlinear rotator are deter-
mined.

Several possibilities for realizing the nonlinear rotator
exist. The quadratic precession arises for the interaction
of a nucleus interacting with an axially symmetric field
or for an anisotropic crystal in a magnetic field. ' A third
possibility exists for the two-mode field interaction which
is discussed in detail in Sec. IV. In this quantum optical
model the nonlinear rotator dynamics discussed here can,
in principle, be tested.
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specified as a probability distribution of vectors J which
we assume to be of equal magnitude j. Thus, the distri-
bution of vectors can be represented as a distribution of
points on the sphere of radius j and the parametrization

J/j = (sin 9 cosP, sin& sing, cos8) (2.2)

is used. Alternatively, the stereographic projection of the
sphere onto the complex plane is useful. The stereo-
graphic map is given by

y = e '~tan( 8/2 ) . (2.3)

The north pole (J, =j) is mapped to the origin (y=O)
and the south pole is mapped to infinity. The equator is
mapped to the unit circle. The stereographic map is con-
formal and, moreover, maps circles to circles or to axial
lines. Thus, a distribution with circular contours is gen-
erally mapped to a distribution with circular contours.

The distribution of vectors J is given by a distribution
Q (y) over the complex plane. The equations of motion
for the components of J are obtained from (2.1) by em-
ploying the Poisson-bracket relations [J;,J, ]~ = gl, e,,„J&
and dJ;/dt = —[H,J;]t . Thus the equation of motion
for y is

=i co+A y .
1+ Iy I'

(2.4)

As

1 —lyl'
(2.5)

1+lyl'
is a constant of motion, so is

I y I, and Eq. (2.4) is readily
integrated to produce

y(t )=exp —i co+A t y(0) .
1+ Iy I'

(2.6)

The first-order differential equation for the time-
dependent distribution Q (y;t ) is, therefore,

Q, (y;t)= i co+A, — y Q, (y;t)+c.c. ,
1 —lyl' a

2

(2.7)

where c.c. refers to the complex conjugate. The distribu-
tion thus undergoes a linear rotation at the frequency m

and a shear proportional to J, /j occurs in the stereo-
graphic plane. The choice of the nonlinear coefficient
k/2j in (2. 1) ensures that the shearing rate is j indepen-
dent in (2.7). An initial point in the complex plane y is
mapped to itself at the time

t =2~[~+X(1—ly I')/(1+ ly I')]-'
which is independent of j.

The Hamiltonian for the quantum model is given by
(2.1) for A'=1 and J is the angular-momentum operator
which satisfies the commutation relation J XJ=i J, that
is, the algebra of the SU(2) group. The scalar operator
J.J is a constant of motion with eigenvalue j(j+1) for j
henceforth assumed to be an integer. An orthonormal

basis for the Hilbert space can be constructed from the
2j+ I eigenstates of the angular-momentum component
operator

J„—=J-n (2.8)

for n a unit vector. The eigenstates of J„, given by

[ I jm )„I for —j ~ m ~ j, satisfy the eigenvalue equation

J.ljm &,=mljm &„. (2.9)

The SU(2) coherent states provide an alternate, over-
complete basis for the Hilbert space. For J+ —=J„
+iJ =J, the unitary rotation operator is given by'

R(y)=exp[ —
—,'8(J+e '~ —J e'~)] (2.10)

2J 2j
ly&=R(y)jlj &=(1+lyl') ' g

m=0
r ljj m&, —

(2.12)

which is obtained by rotating
I jj ) by the angle 9 about

the vector (sing, —cosP, O).
The density operator p- specifies the quantum state,

and the corresponding Q function on the stereographic
plane is defined by

Q (r t) = &jr IP—J(t) Ijr & (2.13)

which is a true probability density and completely deter-
mines the state p, (t ). Taking the coherent-state expec-
tation value of the master equation

—p = i [H,p,]-a
(2.14)

produces the differential equation
r

—Q (y;t)= —i co+A, — . y
a . 1 —Iyl' x a

1+ lyl'

Xy Q (y;t)+c.c.a
ay

(2.15)

In the semiclassical limit j~~ and co and k are con-
stant. The classical first-order differential equation (2.7)
is obtained in the semiclassical limit, as required by the
correspondence principle, and is j independent. The
second-order differential terms are responsible for
differences between the classical and quantum evolution
of the probability density Q, (y;t). '

The quantum nonlinear rotator is prepared in the
SU(2) coherent state p=ljyo)& jyol. Thus the initial Q
function for the nonlinear rotator is

Q, (y, O) = (1+ro y )(1+ yor*)
(1+yoro )(1+yy* )

(2.16)

for y the complex parameter in Eq. (2.3). The antinor-
mally ordered rotation operator is'

R(y) =exp(y J )exp[ —J,ln(1+ lyl )]exp( y*J+ )

(2.11)

Expression (2.9) allows us to compute the matrix ele-
ments of the SU(2) coherent state

]. /2
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for

1 y
—

yl, I
=rp

rl = [I (-I ~ "")(I+
l r.l')] '-r. ,

(2.17)

(2. 1 8)

The distribution is localized with a peak at yo and the
circular contours are nonconcentric. The contour of
height h is given by the equation for the circle

cu =0, and A. =3. Whereas the classical distribution in
Fig. 1(b) for t =16vr/15 is sheared and presents a fine-
scale convolution structure, the quantum coherences in
the Q function, evidenced by the ripples, prevent the con-
volutions from occurring.

The Q function for t=r /4, shown in Fig. 1(d), has
evolved into the superposition state

exp( H,—r, /4)l jyo&
the center, and

r, = "
[h '"'(I —a '"i)(l+ ly, l')]'"

3 o
(2.19)

=2-'"[ — "ljr.&+( -I)"™/4lj-y.&]

(2.23)

the radius. The Q function for y0=0. 65 and j=20 is
shown in Fig. 1(a). Let us assume that the classical rota-
tor is prepared in the state (2.16) and compare the classi-
cal and quantum evolutions of the probability density.

The time-dependent classical distribution can be shown
to be Q (y;t)=g'(y( t)) f—or Q~(y, 0) given by (2.16)
and y(t) given by (2.6). The classical distribution for
j=20, y0=0. 65, co =0, A, =3, and t = 16~/15 is shown in
Fig. 1(b) and a rotational shear is evident. For large t the
distribution becomes convoluted about the origin, similar
to the classical distribution evolution for the nonlinear os-
cillator. '

For the quantum nonlinear rotator, the time-dependent
Q function is

2J
Q(y;r)= y s.'(y;t) (2.20)

where

2Js~ (y;r)=—[(1+lyol')(I+ lyl')] ~

2Xexp i . m—(e ' 'yyo)
2J

(2.21)

The Q function (2.18) satisfies the differential equation
(2.13) for Q(y;0) given by (2.16), and the Q function for
t =0 corresponds to that of the initial coherent state
l jyo&. The quantum dynamics is evidently periodic with
a recurrence time of

=4mj /A. . (2.22)

For times small compared with ~ the quantum coher-
ence effects are weak. Thus for small times, the behavior
of the quantum Q function and the classical distribution
are similar. For longer times, on the order of ~, the
quantum and classical evolutions of the Q function diff'er.
In the semiclassical limit the period becomes large and
thus the break time between classical and quantum be-
havior also becomes quite long. The proportionality be-
tween ~ and j is a consequence of the scaling of the non-
linear coefficient k/2j in the Hamiltonian (2.1). Alter-
nately the nonlinear coefficient in (2.1) could be indepen-
dent of j. In this case the recurrence time w would also
be independent of j, but the break time between the clas-
sical and quantum evolutions of the Q function would
scale inversely with j. In Fig. 1(c) the Q function for
t =7 /25 = 16m/15 is presented for j=20, y0=0. 65,

A superposition of two distinct coherent states, separated
by a phase of m. , has been generated from an initial
coherent state, analogous to the superposition state of the
nonlinear oscillator. ' ' ' However, the phase difference
of the coefficients in (2.20) depends on whether j is even
or odd. At the later time, t =~ /2 the coherent state
( —1)~lj —

yo& is generated.
The superposition of two coherent states generated by

the nonlinear oscillator is detected via ideal quadrature-
phase measurements. ' ' For example, the superposition
of the two Glauber coherent states la & and

l

—a &, for a
real, produces a double-peaked distribution for measure-
ments of the in-phase quadrature and the peaks are local-
ized at +a. The out-of-phase quadrature measurements
conform to a distribution with a mean of zero and strong
interference fringes are evident. An analogous approach
is adopted below to detect the superposition of

l jyo & and

jlro&—
For a spin system, the components of the angular

momentum J, J, and J, are measured. Unlike the
quadrature-phase spectrum, which is continuous and un-
bounded, the angular-momentum spectra are discrete and
bounded. The eigenvalue distribution of the state p for
the angular-momentum operator component J n is given
by „™pljm &„, —j~m ~j. The statistics of ideal
measurements of J.n for the state p - conform to the
J n eigenvalue distribution. For the coherent state
lj=20, y0=0. 65&, the eigenvalue probability distribu-
tions for J~, J~, and J, are shown in Fig. 2. The eigen-
value distributions are localized about (J &/j=0. 91,
(J. & /j =0, and (J, & /j =0.41, respectively, which cor-
responds to the mean of the coherent state
lj=20, y0=0. 65&. In Fig. 3 the J and J eigenvalue
distributions for the superposition state (2.20), where
j=20 and yo=0. 65, are shown. A double-peaked distri-
bution is observed in the J distribution and interference
fringes are present in the zero-centered J distribution.
These two distributions characterize a coherent superpo-
sition of two SU(2) coherent states. ' In the J, basis the
distribution for the superposition state is identical to the
J, eigenvalue distribution of

l jyo& shown in Fig. 3(c).
The J, eigenvalue distribution is unchanged because J, is
a constant of motion. The superposition state (2.23) in-
volves coefficients which are separated in phase by ~/2,
but a more general superposition of ljyo& and lj —yo&
for which the coe%cients have an arbitrary phase separa-
tion, would be expected to produce a J, eigenvalue distri-
bution diff'erent from that of

l jyo&.
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(3.1)
III. THE EFFECTS OF

CONTINUAL SPIN MEASUREMENT

The J, eigenvalue distributio, wwhich corresponds to
f erfect J measurements for the state, isthe statistics oI per ec
time. In this section we assume t at a me-

ter, which continually measures J„is coup e o e
tor. A general class of nondissiptor. i ative continual measure-
ments of J, is given by the master equation'

Ia, ~H ~ tJ„[J„),11

for 0 the Hamiltonian (2.1). The p arameter I fixes theJ
f h J, measurements. The scaling r/2j isresolution of t e, measu

that the resolution scales linear yintroduced to ensure a
with t e wih 'dth of the eigenvalue spectrum. ssen ia y,

andmeasurements o, in rof J, ' t duce fluctuations into the J
i 1 J remains a constant of motion.I components, w ie, rem

g
IL

~ l ~ J J ~ s
I I l ~ ~ ~ ~ ~ ~

I
'~ E E a ~

\ \ \\

~ ~ l ~

=0

Q = 3z/2

ereo ra hic plane for j=20, @0=0.65 co==0 and X=3.'lit densit (y;t) on the complex stereograp ic p
hs. The initial probabilityp = d$=3 i di do hFor =re'~ the domain is restricted to r 1~ 1 and the hases /=0 an

non inear rotators, is shown in (a) and thhe maximum value isidentical for the classical and quantum non inear ro a o
f (b) th 1 i 1 ot to (Q,„=1.00

(Q =0.23). The quantum density Q(y;t =20vr/3 is s own inmax
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p„(t ) =exp —i co(n —m )+ (n —m )
2j

r
. (n —m) p„(0) . (3.2)

Thus strong measurements of J, destroy the off-diagonal
elements in the J, basis.

The evolution of the Q function in the measured sys-
tem is obtained by determining the coherent-state expec-
tation value of (3.1). The master equation

Q, (y;t )
—= i co+—A.

1+ (y)'
B

2j By

Xy Q, (y;t )+c.c.

r B, B
yz

—y* „Q(y t)
y Br*

This is seen clearly in the solution of (3.1) in the J eigen-Z

basts. For p„=(jn p jm ), the density-matrix elements
are given by

r B'
Q, (y)=,Qj(r, g), (3.4)

r B . B

2j Bp By*

which corresponds to phase diffusion with a diffusion
coefficient I /2j. The phase diffusion coefficient I /2j
and the quantum coherence coefficient k/2j both scale
inversely with j and become very small in the semiclassi-
cal limit. In the semiclassical limit (j~ ~ ), the quantum
coherences and the phase diffusion terms become very
small and the classical equation (2.7) is restored.
Equivalently the classical and quantum evolutions of the

Q function are similar for short times such that t ((2j/A,
and t &(2j/I .

The nonlinear rotator is prepared in the coherent state
jyo); hence (2. 11) serves as the initial condition for

(3.3). The solution to (3.3) is given by

includes the differential terms from Eq. (2.15) and there
are second-order differentials which are responsible for
the modification of Q due to measurement. The effects of
the measurement can be better understood by introduc-
ing the polar coordinates r and P such that y=re'~.
Thus the measurement-induced modification in the
diff'erential equation (3.3) is given by

2

Q = 3rr/2

Q = 3z/2

( Continued)
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2J

Q, (y;&)= g [~„'(y;&)][&'(y;r)]'
n, m =0

T

Xexp — (n —m )
I t

2J
(3.5)

~ ~~ t T'M ~~ j

(a)
~ 1 +M~ i f V I M i

for SJ (y; t ) defined by (2.21) and Q(y;r ) reduces to (2.20)
for I =0. For t &)2j/I, the Q function approaches

Q, (y; r ) =[(I+ly. l')(I+ ly I')]-"
'2

2J 2J
lyl'"ly, l'", &»2j/I

n=0
(3.6)

where phase diffusion has destroyed the phase depen-
dence of Q. The Q function (3.6) is shown in Fig. 4(a) and
the phase diffusion of the initial state (2.16), shown in Fig.
1, is evident. Each contour of the Q function is an an-
nulus with the origin at the center y=0. In fact, the Q
function (3.6) is also the solution to the classical equation
of motion,

Qj(y—;t) = i —co+A, y Q (y;t)
B . 1 —lyl' B

Bt ~ '
1+lyl By

C4
O I B „B

2J BP

2

(3.7)

—20 -10 10 15 20

for the initial condition (2.16) and t ))2j/I . Equation
(3.7) describes the evolution of a classical nonlinear rota-
tor given by the Hamiltonian (2.1) with phase diffusion
incorporated into the dynamics. Thus, in addition to the
semiclassical regime where, for short times, the classical
and quantum evolutions of the Q function are similar,

~ ~ '7 ~ ~ ~V T~~~ t Ifl

(0)

O .-
IA
O .
O

O
-20 —15

~ ~i i a i $ .a .I
—10 —5 0 10

t

15 20
—20 —15 —10 10 15 20

(c)
~j L r~~ 1 "T

(b)

O
I

iA
O y

CL

O

IAO--
O

O—20
I

—15 —10
j

10 20
O
-20

I

-15
I

—10 —5 0 5 10
I

15 20

FIG. 2. The (a) J„, (b) J~, and (c) J, eigenvalue distributions
for the coherent state lj=20, y0=0. 65).

FIG. 3. The (a) J and (b) J~ eigenvalue distributions for the
t =20~/3 where j=20, yo=0. 65, co=0, and k=3.
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for

S=—,'(a a+b b), (4.2b)

and S commutes with the operators J, J, and J, . In
this section we shall prepare an SU(2) coherent state from
the two modes. The two modes will then interact in a
medium for which the Hamiltonian is given by (2.1) and
measurements of Jz Jy and J, are discussed.

The Dicke state !jj ) is an eigenstate of J and J, with
eigenvalues j (j + 1) and jr,espectively, where we take j
to be a positive integer. The J, eigenbasis for the Hilbert
space is obtained by repeatedly applying the lowering
operator J =ab to the state! jj). The 2j+1 J, eigen-
states !jm ) can therefore be expressed in the a and b
modes as'

!jm & =!2j—m &, I3!m &b . (4.3)

Therefore, the Dicke state !jm ) corresponds to the a
mode in the Fock number state !2j—m ), and the b
mode in the state !m )b. The preparation of the Fock
states of the electromagnetic field requires the use of
selective measurements. Examples of Fock-state genera-
tion schemes include the micromaser' and the paramet-

ric amplifier. ' We assume that photon detectors with
unit efficiency are used to generate SU(2) coherent-
coherent states: the effects of nonunit quantum efficiency
in the photon detectors on the SU(2) coherent states re-
quire further investigation.

The SU(2) coherent state !jy ) is obtained by applying
the rotation operator (2.6a) to the state !jj ), as shown in
Eq. (2.6c). In the a and b modes, the rotation operator is
given by

R (y ) =exp[ —,'8(e'~ab —e '~a b )] (4.4)

for y given by (2.3). The interaction necessary to gen-
erate the rotation (4.4) involves using a y' ' medium as a
parametric frequency converter. The pump field is treat-
ed classically and 6I is proportional to the pump-field
strength, the nonlinearity, and the length of the y' '

medium. The phase parameter y is controlled by passing
the pump field through a phase shifter prior to the fre-
quency converter interaction. The SU(2) coherent state is
therefore obtained by injecting the state!2j), !0)b into
the frequency converter where the pump-field strength
and the phase are chosen to select the appropriate state.

The existence of a coherent state can be verified by
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FIG. 6. The (a) J and (b) J~ eigenvalue distributions for the
measured rotator where j=20, F0=0.65, co=0, k=3, I =1,
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FI&. 7. The (a) J„and (b) J eigenvalue distributions for the
measured rotator where j=40, yo=0. 65, ~=0, X=3, I =1,
and t =40m/3.
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measuring J„,J, and J, . The distribution of readings of
the J, J, and J, operators should correspond to those
of the coherent state, as shown, for example, in Fig. 4.
Here we establish physical measurements of the J; quan-
tities. To measure J„and J, an apparatus similar to that
of a balanced quantum homodyne detector is used and
is described below. The a mode can be identified with the
signal field and mode b with the local oscillator.

The b mode encounters a phase shifter which induces a
phase shift of g on the b field. The a mode and
the phase-shifted b mode are then obtained by a —,", beam
splitter and the output fields are given by

c =2 ' (1+ibe'~), d =2 ' (be'~+ia ) . (4.5)

=J,sing+ J~ cosit . (4.6)

Thus a beam splitter to combine the a and b modes fol-
lowed by a photon-count difference measurement allows
the direct measurement of any combination of J„and J
depending on the b-mode phase-shift parameter f.

A measurement of J, is very straightforward. The a
and b modes are not combined by a beam splitter. In-
stead, a photon-counter measures the quanta in each
mode and the half-difference of quanta is recorded. In
this way measurements of J, are performed as J, corre-

sponds to the operator —,'(a a b'b). The—statistics for
ideal measurements of J„,J, and J, conform to the ei-
genvalue distributions of the angular-momentum com-
ponents for the SU(2) coherent state. A measurement of
J can be obtained by measuring the average photon
number in the two modes given by the quantity 5 defined
in (4.2b).

We have established the procedure for generating an
SU(2) coherent state by subjecting an a-mode even-
number state and the b-mode vacuum state to a y' ' in-
teraction. The pump-field phase and intensity are select-
ed to produce the desired coherent state. We have also
established the method for producing ideal measurements
of J, J, and J, in this quantum optical model. Now we
require a method for generating the nonlinear Hamiltoni-
an (2.1).

In a g' ' medium the Hamiltonian which describes the
dynamics is given by '
H/A'=co, a a+cot, b b+2y, taab b+ —,'y, (a a)

+ i~ (bib)2 (4.7)

where the nonlinear coefficients g, are the components of
the g' ' tensor for the medium. In practice, the con-
straint g=—g, =g,&=g& is generally true. We let the a
and b modes then pass and interact in the medium for a
time T. Let us then pass the a and b modes through two
separable Kerr media where the a and b modes do not in-
teract. In these two sections of Kerr medium a and b

A photon counter is placed at each of the two beam-
splitter output ports and the half-difference of photon
counts from the two ports is measured. Thus, the mea-
sured quantity corresponds to the operator

—'(dtd —c c ) = 'i (ab e— '~ —a be'~)
2 2

,'iy—[(a a) +(b b) ](T+t)
—2iya ab bTI

Let us define the constants

a—:(co, + cot, )( T+ t ),
a) =(co, —

coi, )(T+t),
P=y(t+3T),

(4.8)

(4.9a)

(4.9b)

(4.9c)

and

A, =2jy(t —T), (4.9d)

where j is given by the constant of motion
S=

—,'(a a+ b b ) =j. Hence the unitary evolution opera-
tor (4.8) can be expressed in the angular momentum alge-
bra as

U=exp —i aS+/3S +coJ, + . J,2
2j

=exp[ —i(aj +Pj )]exp —i cuJ, + . J,
2J

(4.10)

The unitary evolution operator (4.10) corresponds to the
evolution operator for the nonlinear rotator Hamiltonian
(2. 1) for a unit time interval and there is an unimportant
j-dependent phase factor. Thus a careful choice of Kerr
medium interaction times T and t allows for the construc-
tion of the nonlinear rotator evolution.

To summarize this section, a quantum optical model of
the nonlinear rotator is prepared as follows. The Dicke

~jj ) state corresponds to the two-mode field state, where
one mode is in the number state with 2j photons and the
other mode is in the vacuum state. An SU(2) coherent
state is generated by a g' ' frequency converter and the
pump-field intensity and phase are adjusted to obtain the
desired SU(2) coherent state. The nonlinear rotator in-
teraction is obtained by first causing the two modes to in-
teract in a nonlinear Kerr medium and then subjecting
the two modes to two separate Kerr media, in which the
two modes undergo a nonlinear self-phase shift but do
not interact with each other. To measure J, and J, one
mode passes through an adjustable phase shifter and the
two modes are combined at a beam splitter. The
difference between the quanta emitted at the two beam-
splitter output ports corresponds to a measurement of J
or J depending on the phase-shifter parameter. A J,
measurement corresponds to simply counting the
difference of quanta in the two modes, a and b.

There are several difficulties with realizing a quantum
optical model for the nonlinear rotator. First, the
preparation of an SU(2) coherent state requires selective
measurement techniques, with very efficient photon
detectors. Second, the generation of superposition states

undergo nonlinear self-phase shifts but interaction be-
tween the a and b modes does not occur. The duration
for these interactions is t. Thus the unitary evolution
operator for the system is given by

U=expI —i(co, a a+cot, b b)(T+t)
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would be degraded by losses in the Kerr medium which
destroy the necessary quantum coherences. Furthermore
measurements of J„,J, and J, are degraded by imper-
fect photon-counting measurements. However, we are
currently investigating the eff'ects of losses and imperfect
photon-counting devices on the dynamics. It is our hope
that the model presented here will allow for the experi-

mental generation of SU(2) coherent states and of super-
positions of distinct SU(2) coherent states.
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