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Transition from quantum-noise-driven dynamics to deterministic dynamics in a multimode laser
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The fluctuation behavior of the mode amplitudes in a multimode dye laser near threshold is inves-

tigated numerically. The laser is modeled by semiclassical, third-order laser theory that includes a
stochastic Langevin force to simulate quantum noise. We find two different limiting types of behav-
ior. Just above the lasing threshold the mode fluctuations are found to be dominated by quantum
noise, while above a certain pump power the fluctuations are found to be essentially deterministic.
The effect of pump fluctuations is also simulated. We find that a multimode laser acts as a low-pass
filter on the pump fluctuations, as is found for a single-mode laser.

I. INTRODUCTION

In a continuous-wave, Fabry-Perot-cavity dye laser
operating in many longitudinal modes, observation shows
that the individual mode intensities fluctuate full scale,
while the total intensity remains essentially constant. '

The correlation time of the fluctuations has been ob-
served to decrease with increasing pump power. '

Theoretical attempts to describe the mode-intensity fluc-
tuations as arising from quantum noise are successful at
predicting full-scale mode-intensity fluctuations, but the
mode-intensity correlation times are predicted to increase
with increasing pump power, in contradiction to the
experiments. ' It is known that deterministic nonlinear
dynamics can also lead to aperiodic fluctuations in
lasers, and when noise is added to these systems an even
richer variety of behavior can be observed. A question
to be resolved is —what processes determine the mode-
intensity correlation times in a multimode dye laser?

This work presents solutions of the third-order semi-
classical Langevin equations for a multimode, homogene-
ously broadened laser near threshold. We show that
there is an above-threshold transition in the nature of the
mode fluctuations as the operating point of the laser is in-
creased. In the regime immediately above the lasing
threshold, quantum-noise-driven fluctuations dominate,
and the mode-intensity correlation time is found to in-
crease with increasing pump power. Above a certain
power, about 0.1% above threshold (or a pump parame-
ter of approximately 100), deterministic processes dom-
inate and the correlation time is found to decrease with
increasing pump power. This illustrates that there is a
maximum correlation time for the individual mode inten-
sities, and that this maximum occurs when the eAects of
quantum noise and deterministic fluctuations are roughly
equal. Understanding the nature and origin of the mode
fluctuations is of crucial importance in the field of intra-
cavity laser spectroscopy, since larger correlation times
are thought to lead to higher sensitivity. '

In experiments on multimode ( & 2) lasers to date, the
observed mode fluctuations have been dominated by
deterministic processes —the quantum-noise-driven fluc-
tuations have not been seen. ' ' This is because in these

experiments, the near-threshold behavior of the laser was
dominated by pump fluctuations. In order to determine
how pump fluctuations alter the behavior of a multimode
laser, we have included them in some of our numerical
simulations. We find that the noise spectrum of the total
intensity of a multimode laser is the same as that derived
by Yu et al. for a single-mode laser. ' The dye laser acts
as a low-pass filter for the pump fluctuations, with a
bandpass that is determined by the cavity decay rate and
the fraction above threshold that the laser is operated.
The modulation of the individual mode intensities simply
follows the modulation of the total intensity; thus if the
pump fluctuations can be made small enough, they will
not wash out the quantum-mechanical effects.

Mandel and co-workers have studied the statistical be-
havior of a two-mode laser, for which the third-order,
semiclassical theory equations of motion for the dimen-
sionless complex mode amplitudes E, are

E, = a, —g g," E E+q(T),

where in this case N =2 and i =1,2. " ' In these equa-
tions T is dimensionless time, a, is the pump parameter of
mode i, and g, are the mode coupling coefficients. The
Langevin noise source q, ( T) has Gaussian statistics, zero
mean, and correlation function

( q;( T)q,*(T') ) =Zn„c( T —T') . (2)

These equations have been studied in detail, ' and have
demonstrated interesting stochastic behavior, some of
which has been experimentally verified. ' ' However, no
deterministic fluctuations are predicted.

Hioe has studied the generalization of Eqs. (1) to many
modes (large N; i =1,2, . . . , N). This amounts to mak-
ing the free-running approximation, in which coherent
mode coupling is neglected. Hioe found that for these
equations, with a, =a and g; =1, the modes all have

equal average intensities and variances, and that the nor-
malized variances approach unity in the limit of large a
and N. It has been shown, however, that the equations in
the free-running approximation in the absence of noise

[q, ( T) =0] do not display deterministic Iluctuations; they
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quickly reach a steady state. ' Hioe's stochastic model
predicts that the mode-intensity correlation time will
continue to increase with increasing pump power, in con-
tradiction with experiment. ' Kovalenko has obtained
essentially the same results by using multimode photon
rate equations with terms added to simulate quantum
noise. Ajvasjan et aI. have extended the rate-equation
model of Kovalenko to include phenomenologically the
effects of nonlinear mode coupling, assumed to arise from
stimulated Brillouin scattering. ' The solutions ob-
tained from this model show quasiperiodic behavior with
fluctuation times that agree with experiment in the region
where deterministic fluctuations dominate. It was also
speculated in this work that sufficiently close to threshold
the mode-intensity fluctuations will be dominated by
quantum noise.

We have shown in Ref. 3 that deterministic fluctua-
tions can arise in a fundamental model of a multimode
dye laser, without the need to postulate the existence of
other processes. In order to obtain these fluctuations it is
necessary to include coherent mode coupling, which in
third-order theory corresponds to four-wave mixing
among the modes. It is also necessary to include the
effects of spatial hole burning, which are especially im-

portant in standing-wave cavities with thin gain media.
These fluctuations, which are driven by four-wave mix-

ing, cannot be seen in free-running, linearized, or photon
rate-equation treatments of the laser.

II. EQUATIONS OF MOTION

The equations that govern the evolution of the complex
mode amplitudes b&(t) for a standing-wave dye laser in
third-order laser theory are ""

4(nj bn bj*bi n+ j +Fi—( t )

j,j Wn n, n&1
(3)

The presence of the four-wave mixing terms, i.e., the
terms in the double summation, is what makes the mul-
timode problem fundamentally different from the one- or
two-mode problem, and is what differentiates our model
from the treatments discussed above. The mode ampli-
tudes are defined by mode expansion of the total electric
field E(r,z, t), in Gaussian units,

ui(, )= 4
mLw (z)

' 1/2
7"

exp
w (z)

k)r2
X S111 kiz +

2R (z
(5)

E(r, z, t)=i g (2mkco&)' b&(t)e '
u&(r, z)+cc.

I

where col is the bare cavity frequency of mode I, and the
ut(r, z) are the TEMOO Hermite-Gaussian modes of a
standing-wave cavity whose mirrors are at z =0 and
z=L

where k&
= co&/c. We have ignored the Guoy phase shift

in order to simplify the mode functions. This is valid be-
cause we have assumed a single transverse mode; all of
the longitudinal modes of the cavity experience the same
phase shift, and their relative phases are not affected.
Since the mirrors are many confocal parameters from the
waist, the phase shift is —~/2 at one mirror, 0 at the
waist (in the thin gain medium), and 1r/2 at the other
mirror. Thus the effect of this phase shift is effectively to
move each of the cavity mirrors by A. /4, which has no
effect on our results.

Given the expansion defined by Eq. (4),
~ bi ~

corre-
sponds to the number of photons in mode l. In Eqs. (3)
y& is the cavity decay rate of mode I,g is the gain
coefficient, and g is the saturation photon number,
11=(Ay13Lwo)/(12cood ), where coo is the center lasing
frequency, d is the lasing transition dipole moment, y is
the population relaxation rate, /3 is the dipole relaxation
rate, and wo is the mode radius in the gain medium. The
assumption that the linewidth P is large made possible
the adiabatic elimination of the atomic variables from the
equations of motion. The mode coupling coefficients are
given by g&&&

= 1 and

kin j 3 Inj + ( )
nj

l COn CO I

(nial) .

(Fi(t)Fi* (t') ) =2y 161, 5(t —t') . (8)

The derivation of Eqs. (3) using the mode functions
defined in Eq. (5) proceeds exactly as described in Ref. 3.
In order to do the radial integration it is necessary to use
the fact that the gain medium is thinner than the confo-
cal parameter of the cavity ( =0.5 mm) and is located at
the waist. Inside the gain medium the mode functions
may be approximated as

1/2 r24

Lwo2 (9)ui(r, z) = sin(ktz) .
LUO

exp

It must also be assumed that the excitation by the pump
laser is spatially uniform over the mode volume in the
gain medium, which is not completely valid. In order to
obtain the equations used in Ref. 3 from Eqs. (3),
it is necessary to make the substitution A&(t)
=i (81rhco&/V)' b&(t), where the effective cavity mode
volume is V= —,'~woL (the effective mode volume was

given incorrectly in Ref. 3 as V =awe).
For comparison of our results to previous work, it is

The coefficients C&„are mode spatial overlap integrals

4 z
1
+6z

C&„= I sin(k&z)sin(k„z)
5z zi

X sin(k, z)sin(kt „+,z)dz,

where the integrals extend over the gain medium, which
is located at z =z, and has thickness 5z. The effects of
spatial hole burning are contained in the coefficients C&„, ,

which have the property —,
' CI« ~

—,'. The Langevin
forces F&(t) have Gaussian statistics, zero mean, and
correlation function" '



2412 M BECK, I. McMACKIN, AND M. G. RAYMER

rite E s. (3) in the same scaled, dimension-
'1' D 6 lp oy q.

1/2

a
'

h d fi ition of the scaling timea earing in the e ni ion
me b f hotons in the cavity ex-

Ui h ibl
mean number o p o o

actly at threshold; thus g' ))1. sing
Eq. (3) becomes

dT Po

X X ki.,F-.E,*Ei .+-, +fi(T»
~o j j Cn n, nial

(10)

and the correlation function oof the noise term is
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(f(( T)fi*, ( T') ) =2 5ii 5( T —T') .
yp

In the limit that g =yp, which is valid very near thresh-
old, and y, —yp which is valid when the cavity loss
profile is very broad, these are the same as Eqs. (1) and
(2), except for the presence here of the four-wave mixing
terms.

0
I3

loglo(+)

2
I

4

I

III. INTRINSIC MODE FLUCTUATIONS

(b,I (t)AI, (r +~, )) =
—,'(b,I,') . (12)

In Fig. 2 we present a log-log plot of the calculated
mode-intensity correlation time versus the percentage
above threshold. The correlation times for simulations
without quantum noise are seen to lie nearly on a straight
line of slope —1, as expected from the above scaling ar-

The parameters we have used in our simulations are for
a three-mirror-cavity dye laser: y &

=yp =8.6 X 10
sec ', ' y=5X10 sec ', g=1 1X10', and g was
varied, having a value of 8.7X10 sec ' at 1% above
threshold. The cavity parameters are L =52 cm, z& =5
cm, and 5z =400 pm. We have included 31 modes in the
numerical simulations. The noise F&(t) is included by
adding independent, random numbers to the mode ampli-
tudes after each integration step At of the numerical cal-
culation. The random numbers are Gaussian with zero
mean and a variance of 2y pAt.

Typical solutions of Eqs. (3) are shown in Fig. 1, where
1(a) and 1(b) show the time evolution of the center mode
for the laser operating 0.03% above threshold. We define
p=(g —yo)/yo to be the fraction above threshold that
the laser is operated; at 0.03% above threshold
p=0. 0003. The pump parameter a, which is the same for
all modes (a, =a), is equal to 32 at 0.03% above thresh-
old. Figures 1(c) and 1(d) show solutions for the laser
operating 0.3% above threshold. In 1(a) and 1(c) we have
set the Langevin noise term F&(t) equal to zero. It can be
seen from these two figures that the solutions do not scale
exactly, due to the small difference between g and yp in
Eq. (10). At 0.03% above threshold one can see that the
addition of noise dramatically affects the time evolution
[Fig. 1(b)]; the solution with noise shows more rapid fluc-
tuations. It may be surprising that noise has such a large
effect when the average number of photons per mode is
about 10, while the average number of noise photons per
mode is 1. It is notable that the total intensity remains
nearly constant, even in this region where the individual
mode fluctuations are driven by noise. At 0.3% above
threshold [Fig. 1(d)], the addition of noise perturbs the
temporal evolution, but the time scales of the large Auc-
tuations with and without noise appear to be the same.

In order to quantify the mode-fluctuation time scale,
we have calculated the intensity autocorrelation function
( b Io(t)b Io(t + r) ) /(I ) 0where bIo =

~ bo I

—( I ho I ),
and ( ) indicates a time average. To do this averaging
we have used time series that are approximately seven
times longer than those shown in Fig. 1. We have defined
the correlation time to be the time ~, at which

tO

E 1—
bO
O

0— 9'

log 0(V)

FIG. 2. A log-log plot of the mode-intensity correlation time
vs p, the fraction that the laser is operated above threshold, for
solutions with quantum noise (circles) and without quantum
noise (triangles). The solid line has slope-1 and is drawn
through the points without noise. The dashed line is a plot of
the predictions of Kovalenko's stochastic rate-equation model
[Eq. (13)]. Also plotted along the upper axis is the log of the
pump parameter, a.

(13)

In Fig. 2 the dashed line is a plot of Eq. (13); the average
photon number is calculated by using the approximate
rate-equation expression ( ~bo~ ) =3g(g —yo)/(2'),
where %=31. This expression is obtained from Eq. (3)
by dropping the four-wave mixing and Langevin terms,
replacing g&„„by its average value, —,', and assuming all
mode intensities ~b„~ are equal. The average photon
number in Eq. (13) can also be evaluated by time averag-
ing the numerical solution for

~ bo ~, with the two
methods yielding the same result to within 50%. This re-
markably simple behavior seems to indicate that very
near threshold the effects of the coherent mode coupling
become unimportant, allowing Kovalenko's treatment to
be approximately correct.

guments. The solid line in Fig. 2 has slope —1, and is ad-
justed to fit the data points, as no simple expression for it
is presently known. At 0.3% above threshold (a =320)
and higher, the correlation time decreases with increasing
power and is the same with and without quantum noise.
Thus in this region the dynamics are dominated by deter-
ministic processes. For pump powers 0.1% above thresh-
old and lower, the correlation time is significantly smaller
when quantum noise is included and increases with in-
creasing pump power. As threshold is approached the
behavior of the correlation time begins to agree with the
prediction of Kovalenko's stochastic rate-equation mod-
el, which is
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IU. EFFECTS OF PUMP FLUCTUATIONS

g(t)=g[1+ ,'M —(cu)cos(cot+/ )] . (14)

The resulting peak-to-peak modulaation M (co) of the dye

In order to stu y owd how pump fluctuations influence the
r ain to be timelaser behavior, we have taken the laser gain to e time

the pump laser at frequency co, .~i, co, as e r
peak-to-pea powk- - eak ower excursion to the average power, we
can express a sinusosinusoidal modulation of the gain as

laser is defined analogously. This method of simulating
pump fluctuations is somewhat diFerent from most previ-
ous mo els' ' ' in that both the gain and saturation lev-
el fluctuate when we apply Eq. (14), not just the gain.
The total intensity is defined as

and can be approximately represented as

I (t) =I[1+,'Md(c—u)cos(cut +Pd )] .

Figure 3 shows the total intensity of the dye laser operat-
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FIG. 3. The total intensity I of a multirnode'mode laser when sub-
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FICx. 4. The number of photons ~bo~ in the center mode of a
31-mode dye laser at 1% above thresho d pl lotted vs time. In (a)
there is no pump modulation. In pb) the arameters are the
same as those in Fig. 3(a) [I kHz modulation, M~(co) =0.004].
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ing at l%%uo above threshold for two diff'erent modulation
frequencies co, but the same value of the modulation
depth M (co). It can be seen that the dye laser cannot as
easily follow the higher-frequency modulation. In addi-
tion to the decreased modulation depth of the dye laser,
there is also a phase shift between the pump and dye laser
intensities (PdA(() ), showing that the dye laser is acting
as a low-pass filter on the pump.

If it is assumed that the dye laser follows the pump
laser linearly, i.e., the modulation frequency is small, then
the peak-to-peak modulation of the dye laser is given by

M (co)(1+p)
Md(co) = (17)

M~ (cu)( I+p )
Md(tu) = r„

( 2+I 2 )1/2
d

(18)

where I d =2pyo is the effective bandpass of the dye laser
response. If the power spectrum of the pump fluctua-
tions is much broader than I d, the power spectrum of
the dye laser fluctuations described by Eq. (18) is a
Lorentzian of width I d. By performing simulations at
several different fractions above threshold and several
different modulation depths and frequencies, we have
found Eq. (18) to predict the peak-to-peak dye laser
modulation to better than 0.5%.

We have also found that the individual mode intensi-
ties simply follow the modulation of the total intensity.
This can be seen in Fig. 4, where we show the intensity of
the center lasing mode at 1% above threshold. In Fig.
4(a) there is no pump modulation, while in Fig. 4(b) it can
be seen that modulating the pump merely causes a ][nodu-
lation around the solution obtained with no pump modu-
lation. This demonstrates that if the low-frequency pump

where p is the fraction that the laser is operated above
threshold (p « 1). Equation (17) is valid for
M~(co) & 2p/( I+p), i.e., when the pump fluctuations are
not large enough to cause the laser to go below threshold.
If Eq. (17) is modified to account for the frequency-
dependent behavior derived by Yu et al. for the case of a
single-mode laser, ' the peak-to-peak modulation of the
dye laser is

noise can be kept small enough, it will be experimentally
possible to observe the effects of quantum noise in a mul-
timode laser. In order to extract accurately correlation
times from the time series, it will probably be necessary
to keep the dye laser fluctuations below 10%. Thus, at
p=0.001, where the noise transition occurs, one would
need a pump laser whose peak-to-peak intensity stability
at low frequencies is better than 0.01%%uo in order to begin
to see the effects of quantum noise in the laser we are
describing.

V. CGNCI. USIONS

We have demonstrated that there are two different lim-
iting regimes of operation for a multimode, standing-
wave dye laser. Just above the lasing threshold the indi-
vidual mode-intensity fluctuations are driven by quantum
noise. Higher above threshold ( &0. 1%) the noise plays
little role, and the resulting fluctuations are deterministic.
This has a dramatic effect on the behavior of the mode-
intensity correlation time as a function of power. In the
noise-driven regime the correlation time increases with
power, while in the region where deterministic fluctua-
tions dominate, the correlation time decreases with
power.

We have also shown, using numerical simulations, that
a multimode dye laser acts as a low-pass filter for the fluc-
tuations of the pump laser. The bandpass is determined
by the cavity decay rate and how far above threshold the
laser is operated. Close to threshold the laser can follow
only the low-frequency fluctuations of the pump. This is
an example of critical slowing down near a phase transi-
tion, and has previously been observed in a single-mode
laser. ' Pump fluctuations do not preclude seeing the
effects of quantum noise in a multimode laser if they are
kept to sufficiently small levels.
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