PHYSICAL REVIEW A

VOLUME 40, NUMBER 1

Quantum theory of a laser with injected atomic coherence:
Quantum noise quenching via nonlinear processes
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A quantum theory of a two-level single-mode laser with injected atomic coherence is developed
by generalizing the Scully-Lamb laser theory to a form appropriate for the analysis of a coherently
pumped laser. We assume that the active atoms are prepared initially in a coherent superposition of
the upper and lower levels, and we derive the master equation for the field density operator by treat-
ing the interaction of the laser field with many active atoms simultaneously. It is shown that the
photon-number distribution can be exactly Poissonian. The laser operation is analyzed in terms of
the Fokker-Planck equation for the laser field. Both the intensity and phase diffusion coefficients
are phase sensitive and, for stable laser operation, become much smaller than those of an ordinary
laser. Consequently, the injected atomic coherence reduces both the photon-number noise and
phase noise simultaneously. The intensity diffusion coefficient can vanish exactly, and at the same
time the phase diffusion coefficient can become very small. This leads to spontaneous-emission
noise quenching in the photon-number distribution, and the laser field can become very close to a
coherent state. A scheme to generate the proper form of the initial atomic coherence necessary for
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the quantum noise quenching is proposed and analyzed.

I. INTRODUCTION

The quantum theory of lasers was developed 20 years
ago and the underlying physics of laser operation has
been well understood since then.!'™* In an ordinary laser,
two-level active atoms are incoherently pumped to their
upper levels and subsequently return to their lower levels
through stimulated emission. Besides returning to its
lower level via stimulated emission, an active atom may
also return to the lower level via spontaneous emission.
While the stimulated emission of the atoms contributes to
the laser field in the laser cavity, the spontaneous emis-
sion of the atoms contributes to fluctuations in the pho-
ton number and phase of the laser field, which, in turn,
leads to the uncertainity in the photon-number distribu-
tion and the linewidth of the laser, respectively. It is of
great interest to reduce the intensity and phase noise aris-
ing from the spontaneous emission of the lasing atoms,
and to further understand the nature and origin of quan-
tum noise in the laser.’ The phase of a laser field is ran-
domly distributed over a 27 range with equal probability
due to the lack of a preferred phase angle. By injecting
an external optical field into a laser cavity,® one can in-
duce a preferred phase angle and even lock the laser
phase to a particular value. It has been shown that the
linewidth of a laser subject to such a symmetry-breaking
injected signal is reduced.” As to the variance in photon
number of a laser field,' it is always larger than that of a
coherent state® with the same mean photon number.
When the laser is operated far above threshold, laser pho-
ton statistics approach a Poissonian distribution—the
photon-number distribution of coherent states, or say,
classical fields. Reducing the amplitude noise below that
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of a coherent state has recently been discussed and
demonstrated experimentally in a pump-noise-suppressed
laser.’

In this paper we discuss a novel method for the reduc-
tion of photon-number noise and phase noise in an ordi-
nary two-level laser. Instead of incoherently pumping ac-
tive atoms into their upper levels as in ordinary laser de-
vices, one could pump them coherently, i.e., prepare a
two-level lasing atom initially in a coherent superposition
of its upper and lower states when it is injected into a
laser cavity. We show that, with a proper relation among
the initial atomic coherences of randomly injected atoms,
it is possible to reduce the amplitude and phase diffusion
coefficients of the laser field simultaneously. The laser
with injected atomic coherence can even generate a field
with exactly Poissonian photon statistics for a particular
initial atomic population and coherence. That is, in this
way, one can generate a field which is more classical than
that produced by an ordinary laser. The reduction of
phase noise in such a coherently pumped laser does not
appear in a linear theory of the coherently pumped two-
level laser. Thus phase noise reduction is achieved via
nonlinear processes in the laser. A physical explanation
is given in this paper as to the origin of the noise reduc-
tion. Briefly, since both the amplitude and phase fluctua-
tions of a laser are due to the spontaneous-emission
events of lasing atoms, the simultaneous intensity and
phase noise reduction in a laser with injected atomic
coherence are obviously related to the suppression of the
number of spontaneous emission events. To see phase
noise reduction, a nonlinear laser theory (at least third or-
der in the atom-field coupling constant g) must be
developed. Quantum noise reduction in lasers due to in-
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jected atomic coherence was first found in correlated-
emission lasers'®!! with injected atomic coherence,'?!? in
which atoms are prepared initially in a coherent superpo-
sition of the two upper levels of a V -type three-level sys-
tem, and the noise reduction in the relative phase angle of
two-mode laser fields appears even in a linear theory.

In order to achieve noise reduction in a coherently
pumped two-level laser, it is vital that a proper phase re-
lation is satisfied among all randomly injected lasing
atoms, as mentioned before. More accurately, the rela-
tion is such that the phase difference between two ran-
domly injected atoms equals the phase accumulation be-
tween the two injection times with rate v, where v is the
laser operation frequency. (In terms of absolute phases,
initial atomic phases of randomly injected atoms are
different.) In other words, initial phases of the injected
atoms should be the same relative to the instantaneous
total laser phase (i.e., including the frequency part vi).
To account for the effects of the initial atomic coherence,
especially the phase difference of the injected atoms, the
interaction between the laser field and the active atoms
should be treated from an overall point of view when the
Scully-Lamb model"? of the laser is used. This is accom-
plished by generalizing the usual treatment, provided by
the Scully-Lamb theory for an incoherently pumped
laser, to a form appropriate for studying the coherently
pumped laser.

In Sec. II, we present the general formalism for a two-
level laser with injected atomic coherence and derive a
master equation for the field density matrix. The photon
statistics of the laser is discussed in Sec. III. Because
atomic coherence is involved here the photon statistics
are no longer as simple as in an ordinary laser. An alter-
native is to use a Fokker-Planck equation. In Sec. IV, by
converting the master equation into a Fokker-Planck
equation, we obtain photon-number and phase diffusion
coefficients and study the steady-state laser operation.
We show that both the intensity and phase diffusion
coefficients are reduced in a steady state compared to
those in an ordinary laser. The preparation of a proper
initial coherence for the injected atoms is proposed and
analyzed in Sec. V. Finally, we comment on the relation
between the approach we develop here and the usual
method used in the Scully-Lamb theory, and give a physi-
cal explanation for the desired initial atomic phase as
well as for quantum noise reduction in Sec. VI.

II. MODEL AND THE FIELD MASTER EQUATION

In this section, we first generalize the usual method of
the Scully-Lamb theory''? to a form appropriate for deal-
ing with laser problems involving injected atomic coher-
ence, and then derive the master equation for the field-
density matrix elements of a two-level coherently pumped
laser.

We consider two-level active atoms consisting of an
upper state |a) with energy #iw, and a lower state |b)
with energy #iw,. These active atoms are randomly in-
jected into the laser cavity at a rate r, to interact with the
laser field. We model the quantum theory of a laser with
injected atomic coherence in the following way: The jth

atom is injected into the laser cavity at time ¢; with initial
atomic coherence p,(t;)70, where the superscript j
denotes the density matrix of the jth atom. Just as in the
usual Scully-Lamb theory of the laser, we assume that (i)
an atom ‘“‘sees” the effects of other atoms only through
the laser field, i.e., the evolution of an atom is indepen-
dent of those of other atoms, and (ii) the cavity decay
time ¥ ~! is much longer than the atomic lifetime. In-
stead of calculating the contribution to the laser field
from one atom first and then obtaining the contribution
from all injected atoms as in the usual treatment of the
Scully-Lamb theory, we treat the atom-field interaction in
a more rigorous way: the laser field interacts with many
active atoms in the cavity simultaneously.!* Notice that
this is different from the method commonly used in the
Scully-Lamb model, since the latter is only capable of
studying the incoherently pumped laser. Thus the ap-
proach developed here is more general.

The total Hamiltonian in the Schrodinger picture for
the laser field and the active atoms is

H=#H,+#V
=% (Qa'a + I HM | +A3O(:—1)V, , (2.1)
i j
with
H* 3 w44/)(47], (2.2)
A=ab
V; =g0j+a +gaTaj , (2.3)

where Q is the cavity-mode frequency, a (a') is the field
annihilation (creation) operator, H" is the free Hamil-
tonian of the jth atom, Vj is the interaction Hamiltonian
of the jth atom with the laser field under the dipole and
rotating-wave approximations, g (>0) is the atom-field
coupling constant, aj=lbj)(aj| and 0}=|a’)(b’\ are
the lowering and raising operators of the jth atom, re-
spectively, and

1, t= ¢

(2.4)
is a step function used here to specify the initial time of
the interaction of the jth atom with the laser field.

The total density operator for all atoms and the field
obeys the equation of motion

p=—i[Hy+V,p]. (2.5)

The reduced density operator for the jth atom and the
field is obtained from the total density operator p by trac-
ing over all atoms except the jth one,

p{:TrA‘,AZ ,,,,, Al 4t P (2.6)

The reduced density operator for the laser field is ob-
tained from p by tracing over all atoms,

p/=Tr .o p=Tr ;p/. (2.7)

Similarly, the reduced density operator for the jth atom
is obtained from p by tracing over the field and all atoms
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but the jth one,

pPP=Tr,Tr o p=Trsp] . (2.8)

LI 4t

For convenience we go to an interaction picture via the
following unitary transformation:
Lo F : tgg
iva at-HZH}’ (t—1;) ]p(t)
j

p(t)=exp

X exp {—ivafat—izH}“'(t—tj)] , (2.9)
j

where v is the actual laser frequency and here, as well as

throughout this paper, we use a tilde to denote a physical

quantity in the interaction picture. Using Egs. (2.5) and

(2.9), one finds that the total density operator g in the in-

teraction picture satisfies the equation

p=—i(Q—w)ata,p]—i[V,p], (2.10)

where V is the total interaction Hamiltonian in the in-
teraction picture,

V(t)=exp

ivatat+iSHM (1 —1;) ] 14
j

X exp —-iva*at—iZH}"'(t —t;) ]
J
=306 —1,)V, 2.11)
J
and V; is that for the jth atom and the laser field,
I7j ___go_;aer(At M/)—f‘ga *i(Al*wtj) ) (2'12)
Here
A=w—v=0,—w,—v (2.13)

is the atom-field detuning.

As in the Schridinger picture, the various reduced
density operators in the interaction picture can be ob-
tained by appropriately tracing over atomic and/or field
variables,

p’j[:TrAl‘AZP“,Aj'l’Aj'i-l,_“p- , (2.14)
ﬁf:TrAl,Az,...ﬁzTrAjﬁJf ’ 2.15)
F=Tr,Tr 1 o -1 e, p=Trpl . (2.16)

Tracing over all atomic variables on both sides of Eq.
(2.9), one finds the relation between the reduced field-
density operator in the interaction picture and that in the
Schrodinger picture

R R
ﬁf(t)zewa atpf(t)e—tva at (2.17)
In particular, the two field-density operators coincide
with each other at time ¢t =0,

p(0)=p’(0) . (2.18)

Similarly, the relation between the reduced density opera-
tor for the jth atom in the interaction picture and that in
the Schrodinger picture is found by tracing over the field
and all atoms but the jth one on both sides of Eq. (2.9),

p(t)=expliH (t —1;)]p/(1)
Xexp[ —iH"(t —t;)] . (2.19)
The coincidence of the two operators occurs at time ¢,

(2.20)

Tracing over all atoms and using Eqgs. (2.14) and (2.15),
one finds the equation of motion for the reduced field-
density matrix 5’ from Egq. (2.10) to be

pr=—i(Q—v)[a'a,p’

—ixy Ot —t TrA,[
j

,pj]—hLﬁf 2.21)

We have added the last term to describe the cavity loss
due to the interaction with a loss reservoir

L~f" ’y(2ap a'—a apf—-pfaTa) ,

(2.22)
where y is the cavity loss rate. In order to obtain an
equation of motion for pj we use assumption (i) stated
previously, i.e., the evolution of an atom in the laser field
is independent of those of all other atoms. Consequently,
we have

pi=—i0(t —1)[V;,p/1—HTp/+p/T), (2.23)
where

> r,l4a/)(4]|
A=a,b

(2.24)

is the decay operator for the jth atom when there is no
atomic collision.

Equations (2.21) and (2.23) are our two basic equations.
Note that they differ from the usual method used in the
Scully-Lamb theory in the form of I7j. When one first
calculates the contribution of one atom injected at time ¢,
and then sums over injection times #;, the exponential

+i(At —wt; +iA(t—1t;)
factor e " in V becomes e i’, Tt turns out

that the form of V w1th the factor e A happens to
give the correct answer only when population pumping is
involved. In fact, no unitary transformation of the in-
teraction Hamiltonian V in the Schrédinger picture will

lead to ¥; with the factor e """ 7% We shall return to
this point in Sec. V1.

Summation over the randomly injected atoms in Eq.
(2.21) can be replaced by integration over the injection
time 1, ie., 2 —7r, dt t;, where r, is the atomic in-
jection rate. Substituting Egs. (2.12) and (2.22) into Eq.
(2.21) one arrives at the following equation for the field-

density matrix element g, ,,:
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Bum = —i(Q—v)(n —m)p,,,
— (At —ot;)_; — —i(At—o ;
v‘irafj_ dlje(t_tf)g ‘/n+1€[ l “ljp%n+l,am+\/ne o t/]ﬁ{:m*l,bm
i —— A —wt) — (Al —wt))
_p{m.bm+l\/m +le / *p-;m,am*l‘/me “
+yVin+Dm +1p, 01 e —sv(n+mp,,, , (2.25)

where, without ambiguity, the superscript f has been dropped from the field-density matrix elements. The density ma-
trix elements 3y, 4., (A, A’=a,b) are to be found from Eq. (2.23). As in the usual laser theory,! " this can be accom-
plished by using assumption (ii) mentioned above, i.e., y >>T",,T,, to approximate ﬁf( t;) by p'f(t). To facilitate the cal-
culation of 5, 4,,, we introduce ¢/, such that

ﬁj;4n,‘4’m:C‘j;1n(c',{1'm)*’ A’A':a?b . (2.26)
The equations of motion for ¢/, are readily found from Eq. (2.23) as
—i(Al- zotj )

d
dt

— *I(Al*wtj)

igVne

Cr{,n*l ] “ra _lg‘/;e
A |

Ca,n -1
S (2.27)
-, Chn

starting from ¢ =1¢;. Since the jth atom is injected at time ¢;, the initial condition is p'Jf-( t )y=p"( t )®p/( t;), and the corre-
sponding solution for Egs. (2.27) is (for simplicity, we take I'y, =T, =T")

——(r——fmufr/)/z

¢l 1()=e {[cosy, —i(A/Q,)siny, e/, (1,)—i(2gV'n /1, )(siny, )cgv,,(tj)e». ", (2.28a)

ol (n=e T cosp, +ilA/Q, siny, Jef . (1) —i(2g VR /Q, )siny, el (t)e Y (2.28b)
where

Ya=1Q,(t 1)), Q,=(4ng>+A%)!">. (2.29)

We assume that the initial conditions for the injected atoms are

_ —1ivt,
. Paa Pab€ /
pPu=1_ " , i=1,2,... (2.30)
Pba€ Pob

where p,,, ppy» and p,, =P}, are the same for all atoms. The coarse-grained time rate of change for the laser field is ob-
tained by substituting Eqgs. (2.28), via Eq. (2.26), into Eq. (2.25) and using Eqgs. (2.20), (2.29), and (2.30). The master
equation for the laser field is finally found after the integration to be

Pom =1 —1@paaPomn +1+m +1+i(n —m)8+g*n —m ) /T2 1+ apyyfy + 1. m+1V (n +1(m +1)
+iSPapPums1Vm +1[1+g%m —n)/T(C—iA)]
—iS*PpaPr i1V 0 F1[1+g%n —m)/T(T+iM)} /E,,,
+ {aPaaﬁn—Lmﬁ‘/”—’; —Lapypumln +m+ilm —n)d+gin —m)?/T?]
—iSPupPu _1.mVn[1+g*n —m)/T(C—iA)]

+iS* BouPum 1 Vm [1+gXm —n)/T(T+iM)} /€, 1 -

—i(Q—v)(n _m)ﬁ'1m+7‘/(n +1)(m+1)ﬁn+1,m+l_%y(n +m)ﬁnm ’ (2.31)
with
1+ B B 8 —m)
Evn=1+L—(n+14+m+1)+ (1+8%)(n —m)?, (2.32)
2a 16a’
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where

2rag2
a:—, =
r2+a2

8r,g* _r.g
(F24+A2)2° °  T+iA’

5=A/T .

(2.33)

a and B are the linear-gain coefficient and saturation parameter, respectively. Equation (2.31) reduces to the familiar

field master equation' when g, =5}, =0.

III. PHOTON STATISTICS

The equation of motion for the diagonal element g, of the field-density matrix is obtained from Egs. (2.31) and (2.32)

by setting m =n,

p"nnz_[l_*_(n +1)B/a]7l[a(n +1)(paaﬁnn _pbbﬁn+1,n+l)_vn +1(i‘sﬁabﬁn,n+l+c'c' )]

+ +nﬁ/a)ul[an(paaﬁn—l,n*l—pbbﬁnn )_\/;(isﬁabﬁnAl,n tec.c. )]+y(n +1 )ﬁn+l,n+l—ynﬁnn .

This becomes the usual probability flow equation' when
Pap =0. Notice that, besides the usual diagonal coupling
between p,, and g, 4 , 4+, we now have additional cou-
pling to off-diagonal density matrix elements g, , +, and
Pn+1,,- The flow of probability for finding n photons is
plotted in Fig. 1 for the case sin(¢—6+arctand) <0,
where the two phase angles ¢ and 6 are defined by

Par=Pasle’, (3.2a)

and

p'n,nAlziﬁn,n—lleid’ . (321‘))

In this case, atomic coherence increases the mean photon
number {n)=n,. For the opposite case, i.e., sin(¢—6
+arctand) >0, atomic coherence decreases the mean
photon number.

In the steady state the photon-number distribution
does not vary with time, i.e., §,, =0, and the phase ¢ is
locked to a particular value ¢, because g, ,_, does not
vanish in the steady state. It is easy to see from Eq. (3.1)
that this is satisfied when

(1+nB/a)Al[an(paaﬁnAl,ﬂ*l_pbbﬁnn)
VN iSPapPp —1.n Tc.c)1=Ynp,, , (3.3)

which is just detailed balancing of the photon-number
flux. Due to the coupling to off-diagonal density matrix
elements p,_, ,=p, ,_1, however, there exists no re-
currence relation between p,, and g, _; , —; here, in con-

(3.1

f

trast to the usual laser case. A general discussion of the
laser photon statistics as well as other laser operation
problems can be carried out via the Fokker-Planck equa-
tion approach. This is the subject of Sec. IV. Neverthe-
less, we point out here a special case for which the pho-
ton statistics can be solved exactly. In the steady state
when

paazl_pbbzl——g’ |ﬁab|:‘/paapbb ’
(3.4)
¢=¢p,=06—arctand— i,
we find that
~ —ng M0
Prn = 071_! , (3.5a)
B nn—l/zei‘t’o
~ — — ng 0
Pnn—1"Pn—1,n—¢€ Valn =11’ (3.5b)
where
_a|a—y
ng=— (3.6)
° v | B

is the mean photon number in this case, which happens
to be the same as the average photon number in an ordi-
nary laser with p,,=1 and p,, =0 [see Eq. (4.10)]. We see
that the photon-number distribution is exactly Poissonian
and the off-diagonal elements g, ,_, are the same as

those in the coherent state |1/ npe'?).

;n‘l.n'l
~ *1)(PgaPrn- Brel.nt 2 SBypBnne
Y (D pgenen 2D Poa Pun” PobPart.ntt) ———————————M| PavPonel sin(@-¢-arctan 8)
I+ (n*1) B/a I+ (n*1) B/a
P
- 5 - B 2VR IS B 7, -
YNPrn AN(PgqPn-1.n-1~ Pbb Pnn) @ nl PabPn |n| sin(e'qrcrctcn s)
1+nf3/a 1+n B/a
Pa-i,n=1t

FIG. 1. Flow of probability for finding n photons in a coherently pumped laser for the case sin(¢ — 6 +arctand) <O0.
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IV. FOKKER-PLANCK EQUATION

In this section, we transform the field master equation
(2.31) into a Fokker-Planck equation by expanding the
field-density operator p in terms of the diagonal P repre-
sentation. For the field-density matrix elements the ex-
pansions are'®

J
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1612 66 )™

Vot (4.1)

pum = [ d*6 P(&)e ™

Assuming that the mean photon number is large, we
neglect 1 compared to |&|* and obtain the following
equation of motion for P(&):

P& _ |, 3 D o2
= | —la(p,— —i8) == 6+ (1+i8)——6* |+
at za(p,,a Pbb) (1 18)866 ( 18)86*6 ap‘maé’aé*
a 2
— 1B(paat+piy)(1+8%) —g— &* | IM(6)
26*
o 3 2g? .y g’ d 3 .. O .
9 4 8 19 e . 9 9| IM&)+e.c.
i5Pab | 36 T Fr—ia) 86’6 ag*g T =ia) 3¢ |36+ ¢ ¢ (6)Fe.c
l —_— a * —_ —_— a * P
+1 ag5+ag*6 P(E)+i(Q—v) 6 367 6" |6, 4.2)
with
2 p—
_ B -2 B |3 3 .|, B+8) | 0 3 ..
=1+Egp—L | L+ g+ |4+ LT | O o O &) . .
M(6&)= |1+ 2|61~ T ARyt e 366367 ¢ P(&) 4.3)

Equation (4.2) contains derivatives of all orders!’

in & and &* due to the presence of the inverse operator in M (&). Ex-
panding Eq. (4.2) up to a second order in the derivatives and again neglecting 1 compared to |§|?,

we arrive at a

Fokker-Planck equation. Its explicit expression is given in the Appendix.
ThlS Fokker-Planck equation can be expressed in terms of intensity and phase variables, I and ¢, through the rela-

tion® 6=VTe'® (again dropping 1 compared with I)

PL¢) _|_d , 3 , , & +32D 2
o1 azd’ a¢d¢ aIZD” YE "’+2618¢DM P(L¢), (4.4)
where
_ a(paa_pbb) Zisﬁabi‘/_f .
d;= 1 +1B/a 1+18/a sin(¢ —O+arctand) , (4.5a)
_ alPaa—Pus )8 1SPas | BI 21172
dy=v—Q 20+18/a)  VI(+IB/a) cos(¢ 0+arctan8)+a(1+8) cos(¢—80) |, (4.5b)
172
al 1 _ /4 .
Duzm paa+pbb%+2|pab1 %l sin(¢ —6+arctand) (4.5¢)
1+68% BI pr|"”
_ a BI - 2y PL (b —
D(M’ 4I(1+I,8/a) paa+ 2 (Paa+pbb +|pab| (1+6 ) a ] Sll’l(¢ 9) (4.5d)
81 81 172 Bl
— a —
D,q,—m[»a—(pw—pbb)ﬁ |7 |Pas] |2 cos(p—O+arctand)+(1+82)'/2 l7-1 cos(¢p—0) }
(4.5e)

Here d, and d, are the intensity and phase drift
coefficients, respectively, Dy; and Dy, are the intensity
and phase diffusion coefficients, respectively, whereas D 16
is a cross diffusion coefficient. The laser system con-
sidered in this paper can be studied in terms of these drift
and diffusion coefficients. In contrast to the usual laser

I
case, all of these coefficients are functions of I and ¢. For

example, when ¢=60—arctand— and gl
=(PaapPes)' %,
2
_ apaaI Pbb BI 22
R Pev BI , (4.6)
(1+I1B/a) Paa @
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which vanishes at I=(p,/py,, Na/B). The phase
diffusion coefficient D,, can also become smaller than
that in an ordinary laser but always remains positive. The
actual values of the diffusion coefficients in the steady
state are determined by the steady-state values of I and ¢.
In the P representation, the photon-number variance is

(AR Y= (AR +H(A)Y=(BI)*)+(I) , (4.7a)

and, in the presence of phase locking, the phase variance
is

2y —¢(. 2. 1 _ 2 1
((a¢)*) (.(A¢).)+—4(ﬁ) ((5¢) )+_4(I) ,

(4.7b)

where i =a'a is the photon-number operator, :: denotes
the normal ordering of the operators, 8] =I —(I), and
8¢=¢—(¢). From Eq. (4.4) one finds the equations of
motion for the intensity and phase to be

%(I)=(d,), (4.82)

d

a ={(d,), 4.8b
dr (¢)=( 6 ( )
and the equations of motion for the normally ordered
photon-number variance and phase variance to be

%((81)2)=2<d,51)+2(D,,) : (4.92)

%((8¢)2)=2(d¢8¢)+2(D¢¢) ) (4.9b)
Assuming that the steady-state quasiprobability distribu-
tion P(I,¢) is sharply peaked at the mean photon num-
ber (I)=n, and, if it exists, the locked phase value
(¢)=d,, then n, and ¢, satisfy the deterministic equa-
tions d;(ngy, ¢o)=0 and d,(ny, ¢g)=0, as indicated by
Egs. (4.8). In the following we study the cases p,, =0 and
Pa» 70 separately.

A. Incoherently pumped laser, 5,, =0

In order to compare with an ordinary two-level laser to
see the effect of injected atomic coherence on laser opera-
tion, we first review the results for a laser with p,, =0. In
this case, none of the drift and diffusion coefficients de-
pends on ¢ [see Egs. (4.5)], and population inversion
Paa> Py 18 necessary for achieving laser operation. We
first obtain the mean photon number? n, from
d;(ny)=0,

_a Paa—Pep) "Y
4 B '

Using Eq. (4.10) we then find the laser frequency®3 v in a
steady-state operation from d 4(ny)=0 to be

ro+ive
T+ ly

ng (4.10)

4.11)

and the steady-state diffusion coefficients from Eqgs.
(4.5¢)—(4.5¢) for A=0 to be

Yy +apy,)n
D"(no)=_______£_”u

a(Paa—Pob)

a(Paa+pbb)+y
D =t LB

¢¢(n0) 87!0
(4.12)

.Dl¢=0 .

Laser frequency pulling is apparent in Eq. (4.11), D 4,(n,)
in Egs. (4.12) gives half the natural linewidth of the
laser>3 and Dy;(n,) is related to the steady-state photon-
number variance. The normally ordered photon-number
variance (:(A7)%)={((8I)?) in the steady state can be
obtained from Eq. (4.9a) by setting d /dt=0 and expand-
ing d; and Dy, around I =n, up to first order in 8. Sub-
stituting the resulting expression for ((87)*) into Eq.
(4.7a) and using Egs. (4.10) and (4.12), we find that the to-
tal steady-state photon-number variance for A=0 is'

3d,(ny) /31

AP gq n
- _ N __ho»

A(Paa—Prp) Y

which is larger than that of a Poisson distribution with
the same mean photon number n,.

((AR)*)=n,

(4.13)

B. Coherently pumped laser, 5 ,, 70

For simplicity, we consider the resonant case ! =w in
this section. From symmetry consideration we have
v=Q here as in the case of p,, =0 [see Eq. (4.11)]. Con-
sequently, Eq. (4.5b) reduces to
dg=— ls‘%,,| cos(¢—6) .
Because of the injected atomic coherence, the laser phase
¢ is locked to a particular value ¢, in the steady state.
Using Eq. (4.14) we find the stable solution from

d4(¢o)=0 [cf. Eq. (4.8b)] and 3d 4(¢) /3¢ <0 to be

4.14)

¢0=8_%7T . (4.15)
[Note that dd 4(¢,)/0I =0.] Knowing ¢, the mean pho-
ton number 7, in the steady state can be found from

dy(ng,d0)=0, i.c.,
(noB/a) > +[1=(pga—pw)a/y nogB/a)’?

—2|pla/y=0. (4.16)

This is a third-order algebraic equation for (n,8/a)'/2.

There exists a standard formula for its general solutions.
It is easy to show that (i) Eq. (4.16) gives only one positive
solution for (n,B/a)!’/?, and (ii) this n, satisfies dd;(n,,
¢0) /09I <0 and, consequently, is always a stable solution.
With the same parameters a, B, ¥, paq and py, satisfying
alpaa—pPps)> V> no found here is larger than n, in Eq.
(4.10). We note that, for the laser to remain an active de-
vice, population inversion p,, > p,, is not necessary when
|5 170.1® Namely, we can have “lasing without popula-
tion inversion” in the coherently pumped laser. The
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reason is that, even though the laser gain is negative
when p,, <p,,, the injected atomic coherence p,, acts
here as a driving force for the laser intensity, as can be
seen from Eq. (4.5a) by noting that the drift coefficient for
the laser amplitude r =V'I is related to the intensity drift
coefficient through the relation d,=(2r)"' d; when
r>>1. Using Eq. (4.15), the steady-state diffusion
coefficients become [see Egs. (4.5¢)—(4.5¢)]

Dy, o) o
Ny by) = —————
E0T0 1+ noB/a)?
X[paa+pbb(n0/3/a)_2lﬁab|(n0[7)/a)1/2] ’
(4.17a)
-«
Do(norb0)= 4 1T nopra)
X[paa+%(n03/a)_|p_abl(noB/a)l/2] ’
(4.17b)
D;y(¢g)=0, (4.17¢c)
where p,,+p,, =1 has been used in Eq. (4.17b). We see

that the initial atomic coherence p,, decreases both
Dy (ny, ¢g) and Dy4(ng, éo). This implies that there is
quantum noise reduction for both the intensity and phase
in the laser with injected atomic coherence. It should be
noted that D,,(n,, ¢o) as given by Eq. (4.17b) is smaller
than that in an incoherently pumped laser (|5,,|=0), Eq.
(4.12), with the same parameters a, 3, ¥, puq and p,,. In
particular, when

Paazl_Pbbzl—%» Pas| =V PaaPbb> (4.18)
and accordingly [satisfying d;(n,,$0,)=0 and being
stable],

a|a”y

ng=— R (4.19)

Ty | B l
we find

DII(n0,¢0)=0, D¢¢(no,¢0)='618_;/K . (420)

0

Notice that conditions (4.15) and (4.18) are the same as
those in Eq. (3.4), since A=0 here. Equations (4.18) and
(4.19) give an example for our previous statement that,
for the laser to remain an active device, population inver-
sion p,, > Py, is not necessary when p,, 70, since p,, <pps
in Eq. (4.18) and n, >0 in Eq. (4.19) if y <a <2y. Com-
paring Eqgs. (4.20) with Egs. (4.12), one sees that we have
both complete spontaneous-emission noise quenching in
the laser intensity and large phase noise reduction. The
phase diffusion coefficient D ;4 decreases from the typical
value (a+vy)/8n, to (a—vy)/8n, here. For a near-
threshold case a=1.02y, we have the reduction of phase
diffusion coefficient by a factor of 100 compared to an in-
coherently pump laser. Physically one may understand

this noise reduction by noting that the rate of spontane-
ous emission is only ap,,=0.02a ( <<a). We note that
the reduction of the phase diffusion coefficient due to in-
jected atomic coherence, discussed here, greatly exceeds
that achieved by injecting a squeezed vacuum into a laser
cavity,'” in which case D4, can be reduced at most by a
factor of 2.

In the following we discuss the steady-state variances
in photon number and phase. From Eq. (4.5a) (with
A=0), (4.14), and (4.15), we find

8d,(n0,¢0) . ad¢(n07¢0) —

421
Y} oI “2D

Expanding d;, Dy, d 4, and D, in Egs. (4.9) around the
stable operation point I =ny, =4, up to first order in 81
and 8¢ and using Eq. (4.7) and (4.21), we obtain the
steady-state variances

Dy (ng,d0)
AR = —_ 7T 4.
q )= 1ad, novdo) /AT (4.22a)
D, (n,,
((Ag1)=- o010, 60) (4.22b)

13d 4(no,0)/3¢]

When the initial atomic condition is that given by Eq.
(4.18), we find

3d;(ng,$0) /31 =3d 4(no,d,) /3¢ =—

from Egs. (4.5a), (4.14), (4.15), and (4.19). Consequently,
we obtain from Egs. (4.20) and (4.22)
((AR)?)=n,, (4.23a)
8n,
Ay ((Ag)) =L1+(a/y)] . (4.23¢)

Equation (4.23a) also means that the normalized second-
order correlation function g'2(0)=(:4%) /(A )?>=1 and
agrees with Eq. (3.5a). When a2y, Eq. (4.23b) becomes
((A$)*) 2 (4ny)~ !, which means that the laser phase
noise is very close to that in a coherent state, and Eq.
(4.22¢) becomes (AR)*)((A¢)?) X L, which means that
the laser field approaches the quantum limit for the
minimum uncertainty product. Overall the laser field
approaches a coherent state [V nge’ %) or, say, a classi-
cal field when a R y.

V. PREPARATION OF INITIAL ATOMIC COHERENCE

In Secs. III and IV, we have seen the importance of the
proper initial atomic coherence in the realization of
quantum noise quenching in the two-level laser with in-
jected atomic coherence. In this section we discuss the
preparation of such initial atomic coherence. This dis-
cussion in this section is quite general and is not limited
to the two-level laser studied here. In fact, a proper ini-
tial atomic coherence, i.e., pac( t)ce s also vital in
the two-photon correlated spontaneous emission laser!®
in which cascade three-level atoms are initially prepared
in a coherent superposition of the top and bottom levels.
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A proper form of the initial atomic coherence, i.e.,

i —ivt; oy o . .
Php(t;)ce 7 is also needed (i) in a micromaser in order
to obtain symmetry breaking via off-diagonal atomic in-
jection!® and (ii) in a (V-type three-level) correlated-
spontaneous-emission laser with injected atomic coher-
ence.!>13

To be specific, we will discuss the preparation problem
in the context of a two-level laser with injected atomic
coherence. For simplicity, we assume that the jth atom
is first pumped to level a (or level b), and then travels
through a preparation field between time ¢;—7T —7 and
t;—T (see Fig. 2). The preparation field couples two
atomic states with frequency v, which is close to
w=w,—w,. Finally, the jth atom enters the laser cavity
at time f;. The interaction Hamiltonian between the
preparation field and the jth atom in the Schrédinger pic-
ture can be put in the form

Ui=—1#(xe ol +x*e™0;) , (5.1)

—-I, 0 —Lix* 1ix
0 Y Fix* —Liy
L=l-1y 1y —ry—ile—v 0
Liy*  —liy* 0 —T,, +ilo—v)

with T' ), =L(I',+T,). The solution of Eq. (5.3) is (as-
suming Y =const)

plt;—T)=eL'pl(t;— T —7)=el"

S O O -

which shows that p{;b(tj — T)eimj_r)=(el—“’)31 is indepen-
dent of 7; and j. At the injection time ¢,

Pho(1;)=ply(t;—Tle ~'T
(5.6)

L —ilwo—v)T—ivt;
—(e—T):“e J N

which is just the desired form of the initial atomic coher-
ence.

v,T v, T

FIG. 2. A scheme to generate the proper form of the initial
atomic coherence. Coherent superposition between levels a and
b is produced by coherent excitation via a preparation field of

—ivt,

frequency v, leading to p’,( t;)=pspe 7.

where ) is the corresponding Rabi frequency and, for
simplicity, we treat the preparation field classically. If we
define a density-matrix-element column vector for the jth
atom as

J
paa
J
Pbb
j o ivt
Pab€

joo, vt
Pba€

= (5.2)

where p{;B are the density matrix elements of the jth atom
in the Schrodinger picture, then p’ satisfies the equation

d ; P
—p/=Lp’, j=1,2,... (5.3)
dt Le.
where the matrix L is defined by
) (5.4)

VI. DISCUSSION

We address here the relation between the approach,
developed in this paper, to treat lasers with injected
atomic coherence and the usual approach used in the
Scully-Lamb laser theory. During the last 20 years, only
incoherent pumping was studied in laser physics, for
which the Scully-Lamb laser theory is widely used. The
method used to calculate the coarse-grained time rate of
the change of laser field proceeds in two steps: (i) The
contribution to laser field due to one atom (say, the jth
atom) injected at random time ¢; is first calculated. Usu-
ally this calculation is performed in an interaction pic-
ture. (ii) By summing over all injected atoms one obtains
the total contribution. In step (i), when transforming
from the Schrodinger picture to an injection picture, the
atomic and field operators are transformed in the fol-

. + io(t—t.) —ivit—t;)
lowing way: aj‘-—>a;e 7 a—ae /. and

+ ivit—t;) .. . . .
a'—>a'e /. In step (ii), an integration over ¢; is per-

formed. We point out here that the above transformation
can be justified only for the system of a laser field in-
teracting with one atom, but not for a system of a laser
field interacting with many atoms injected at different
times, which is just the case in actual laser systems. The
field operator a in the interaction picture should take a
form which does not change with t;, eg., a—ae ™,
aT—>aTe"V'; otherwise, in the process of atom-field in-
teraction the relation between p’ and its counterpart in
the interaction picture is not fixed. On the other hand,
we note that the usual approach of the Scully-Lamb laser
theory still gives the correct answer for an incoherently
pumped laser, although an extra, incorrect, random
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ive; . . . —i
phase factor e'” is then associated with e . The
reason for this fact is that when there are only population
terms in the initial atomic density matrix, the equation
of motion for the reduced field-density operator p’ con-
tains only even-order terms in the coupling constant g,
t . - .
and g and a' are paired in each of these terms, 1.5., each
of these terms contains equal numbers of @ and a'. Con-

vt . . — .
sequently, the extra factor e / associated with ae " is

just canceled by the extra factor e " associated with
a’e’ and the results happen to be correct. As a compar-
ison, when there is initial atomic coherence, ﬁf contains
terms proportional to p{;,,(tj ). The field operators a and
a ' are no longer paired in such terms. Consequently, the
extra phase factor will not cancel and the resulting ex-
pression is not correct. Based on the above discussion we
conclude that our approach developed here will give the
same results as the Scully-Lamb theory if there is only in-
coherent pumping.

The quantum noise quieting and even quenching
discovered in this work rely heavily on the proper form
of the initial coherence given in Eq. (2.30). Compared to
a laser with injected signal®’ of frequency v, the depen-
dence of the initial atomic coherence on the injection
time ¢, p{;b(tj e is similar to the time dependence
of the injected signal e ~'*’. Also similar to the laser with
injected signal, the injected atomic coherence here serves
as a symmetry-breaking mechanism and acts as a driving
force for the steady-state intensity. On the other hand,
due to the nonlinearity of lasing atoms, the injected atom-
ic coherence reduces both the laser intensity and phase
diffusion coefficients in the steady state, which is absent
in the laser with injected signal. In the following, we first
examine what would happen if the initial atomic coher-
ence takes other forms and then give an intuitive physical
explanation for the initial atomic coherence given in Eq.
(2.30).

Suppose that the initial atomic conditions are
—lwgt;

Paa F_’ab € o
ey, , i=12,...
Pba€ Pob

pllt))= 6.1

where p,,, Py, and p,, =pt, are the same for all atoms
and w, can be zero or any other real value. Substituting
Egs. (2.28), via Eq. (2.26), into Eq. (2.25) and using Egs.
(2.20), (2.29), and (6.1), one obtains a master equation for
the laser field which is similar to Eq. (2.31) but with the
following changes in the p,, and p,, terms (including
their denominators £, and £

n—1l,m—1 )
- % _ i(v—awg)t

Pab —Pba —>Pab€ ’
I'-I'+i(v—w,) in terms containing p,, ,

) 6.2)
I' >I'—i(v—w,) in terms containing p,, ,

78

S>—0——7—"—.
- I't+ilo—wy)

When w,=0, which means that all atoms have the same
initial coherence, one sees that S —0, since @ >>T". Thus
any possible quantum noise reduction caused by the in-

jected atomic coherence is washed out in this case, as can
be seen from Eq. (2.31). When o, is close but not equal to
v, the phase angle 6 in Egs. (4.5) is replaced by
0+ (v—wy)t, as implied by (6.2), and no stable phase
locking is possible. Moreover, the diffusion coefficients
Dy, and D,y change periodically with time. Consequent-
ly, there is no stable quantum noise reduction when
WeFV.

A simple physical explanation to the required initial
atomic coherence listed in Eq. (2.30) may be given in
terms of the vector model of the optical Bloch equations,
in which the laser field is treated classically. Considering
steady-state laser operation in which the phase
¢ (al6)=616), 6=VTe'®) is locked to ¢ =d,, we may
write the interaction Hamiltonian #V;' of the jth atom
with the laser field in the Schrodinger picture as

1 — ildg—vt) + — i(vt—d,)
Vil=gV/ nge o;+gV nge o,

; 6.3)

which is the semiclassical version of Eq. (2.3) and g\/n0
is half the Rabi frequency. The jth atom interacting with
the laser field in the cavity obeys the optical Bloch equa-
tions'?

iBJ=QB XB/—TB/, (6.4)
dt
where
28V ngcosd,
Q= | —2gV nysing, (6.5a)
A
is the driving (laser) field vector and
u’ phye’™ +phe "™
B/= |uf = li(pl,e™—pj,e ™" (6.5b)
w Paa™ Phb

is the Bloch vector for the jth atom. Substituting Eq.
(2.30) into Eq. (6.5b) and using Eq. (3.2a), one obtains

2|p, |cos6

B/(t,)=

] (6.6)

—2|plsind |,
Paa™ Pbb

which is independent of j (see Fig. 3). In other words, all
injected atoms with the initial condition (2.30) have the
same initial atomic condition (or, say, orientation relative
to Q) in the Bloch vector space. Thus all B/(¢) have the
same trajectories in the Bloch vector space and all atoms
give the same contribution to the laser field. If, instead,
the initial conditions (6.1) (with w,7v) are satisfied, then
different atoms have different initial orientations and con-
sequently different trajectories in the Bloch vector space.
The effects of the initial atomic coherence on the laser
operation (e.g., phase locking and noise reduction), com-
ing from each individual atom, tend to cancel in this case.

Besides accounting for the correct form of the initial
atomic coherence shown in Eq. (2.30), the Bloch equa-
tions also provide an intuitive picture of the evolution of
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FIG. 3. Initial Bloch vector B/(z;) for the jth atom and
steady-state driving field vector Q5 for the laser field at stable-
locked phase ¢ =6— %w for A=0 in the Bloch vector space.

the atomic density matrix elements [see Eq. (6.4)] and of
the relation between the atomic phase 6 and the locked
phase ¢, given in Eq. (4.14). We note that, owing to
atomic decay, a physical process happening earlier has a
larger probability than that happening later and thus
dominates. When the laser field is resonant with the
atomic transition A =0, the driving vector 5 is in the uv
plane (see Fig. 3) and is perpendicular to the Bloch vector
B/( tj) when ¢,=0+1m, since

Qp-Bl1;)=4gV ng|p | cos(o—0) .

Consider ¢o=0— 4 first (see Fig. 3), which is just Eq.
(5.15). The driving vector £ makes the Bloch vector B/
(j=1,2,...) rotate downward to u =v =0, w <0 (i.e., to
pl,=0). Stimulated emission takes place for the active
atoms and the laser intensity is increased, which corre-
sponds to a stable phase locking. For the other value
$o=0+ 17, however, the Bloch vectors B/ (j =1,2,...)
are first rotated upward to u =v =0, w >0 (i.e., p}, =0).
Thus stimulated absorption occurs and the laser intensity
decreases, which corresponds to an unstable phase lock-
ing. For other ¢, values, u =v=0 cannot be reached.
Consequently, they are unpreferred phase angles for the
laser field. Our discussion here explains why the laser
phase is locked to ¢, as given in Eq. (4.15) for A=0.

As opposed to ordinary lasers, lasing without inversion
can be realized in lasers with injected atomic coherence.
This can be physically understood from the Bloch equa-
tions. For simplicity, we look at the stable phase-locking
case ¢o=6— L7 for A=0 (see Fig. 4). Regardless of the
sign of p,,— Py, the Bloch vectors B’ are rotated toward
u =v =0, w <0 first to emit photons and thus the laser
intensity is increased by atoms. In addition, it is ap-
parent in the A=0 case from the Bloch equations that
when ¢=60+ 17 (e.g., in an amplifier) atomic coherence
decreases the photon numbers [see Eq. (4.5a)], and when
¢=206,0+m, the atomic coherence does not affect the laser
intensity (as well as Dj; and D ).

It seems that quantum noise reduction in both D;; and
D,; may also be intuitively understood from the Bloch
equations. For simplicity, we still consider the resonant
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AW

Bj(tj)

pd

FIG. 4. The plane containing the w axis and B/(¢;) in the
Bloch vector space for A=0. The plane is perpendicular to the
driving field vector Qjz, since ¢,=60— %77. The symbol - X
denotes that the driving vector Qp points into the paper.

Bit)

J

case, A=0. Equations (4.5) and (4.17) show that D;; and
D, are reduced when ¢=06—1Lm. From previous discus-
sions we already know that stimulated emission takes a
smaller fraction of a Rabi oscillation circle (compared to
half of the Rabi oscillation circle in the usual p},=1
case). Since spontaneous emission is closely related to
stimulated emission, the chance for spontaneous emission
is reduced so that both the photon-number and phase
diffusion coefficients D;; and D44 are reduced. On the
other hand, both D, and D,, with ¢ =0+ are larger
than those for |ﬁab | =0, since stimulated emission takes a
larger fraction of the Rabi oscillation circle in this case
(compared to the usual p/,=1 case ) so that the rate of
spontaneous-emission events is increased.

Before summarizing our results in this work, we point
out that in the derivation of our master equation for the
reduced field-density operator, Eq. (2.31), we introduced
the coarse-grained time-rate approximation—the laser
field does not change appreciably on a time scale of atom-
ic lifetime in the good cavity limit y <<T, i.e., p’
(tj):p’f(l). If, instead of the density matrix approach
presented here, we perform a Langevin-equation linear
theory analysis?®® (up to g2 terms, valid for a <<y), then
(i) we find an extra term proportional to |p,,|* in the
steady-state amplitude diffusion coefficient, which
reduces the fluctuations in the amplitude quadrature of
the laser field, and (ii) the amplitude and phase drift
coefficients and the steady-state phase diffusion coefficient
remain the same as in this paper. In a more elaborate
nonlinear theory analysis,?! which goes to all orders in
the atom-field coupling constant g, our main discoveries
(simultaneous noise reductions in the photon number and
the laser phase, and the laser field can become very close
to a coherent state) of the present paper are confirmed.
In particular, when aXy, corrections to the photon-
number and phase variances given in Egs. (4.23) are very
small.

In summary, by generalizing the Scully-Lamb laser
theory to a form appropriate for studying laser problems
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involving injected atomic coherence, we developed a
quantum theory of the two-level single-mode coherently
pumped laser. The generalization is made by treating the
interaction of the laser field with many injected atoms
simultaneously. We derived the master equation for the
reduced field-density operator and study the laser photon
statistics. We found that the photon-number distribution
is exactly Poissonian for a particular initial atomic condi-
tion. We converted the field master equation into a
Fokker-Planck equation and obtained drift and diffusion
coefficients. Steady-state laser operation is discussed and
it is shown that the laser phase symmetry is broken when
there is injected atomic coherence, similar to the case of
injecting an external field. The laser phase is actually
locked to a particular value depending on the phase of
the initial atomic coherence. The diffusion coefficients of
both the laser intensity and phase are phase sensitive. In
the steady state, they take the values at the locked phase
angle and it turns out that both diffusion coefficients are
reduced compared to the case of no initial atomic coher-
ence. Namely, the injected atomic coherence reduces
both photon-number noise and phase noise. The
photon-number diffusion coefficient can vanish exactly
for a special choice of the initial atomic variables and the
resonant laser transition, in which case the photon statis-
tics is Poissonian. When the photon-number diffusion co
efficient vanishes, the phase diffusion coefficient becomes
(a—7v)/8n,, where a, y, and n, are the linear gain
coefficient, cavity loss rate, and mean photon number, re-
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spectively. Compared to the usual phase diffusion con-
stant (a+7)/8n, of an ordinary laser, this represents a
very remarkable phase noise reduction. To achieve this
noise reduction, it is vital that the initial phases of all in-
jected atoms satisfy a proper relation pf;b(rj e U (vis
the laser frequency and ¢; is the injection time of the jth
atom). The photon-number and phase variances are also
discussed and it is found that the coherence of the laser
field can approach that of a coherent state when the
photon-number distribution is Poissonian. In this case,
the laser system becomes a quantum-noise-limited active
device. A practical scheme to generate the proper form
of initial atomic coherence necessary for this quantum
noise quenching is proposed and analyzed. Its feasibility
is demonstrated here. Finally, a comment on the relation
between the approach developed here and the usual
method used in the Scully-Lamb laser theory is made and
it is shown that when coherent pumping in the laser is in-
volved the present approach is necessary in order to ob-
tain the correct results.
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APPENDIX: THE FOKKER-PLANCK EQUATION IN TERMS OF & and 6*

The Fokker-Planck equation in terms of complex variables ¢ and &* is obtained from Eq. (5.2) by first expanding
M (&) [see Eq. (5.3)] up to first order in the derivatives, yielding

_ P(&) B 0 9 . P(6)
= ’ 5 — 6+ é > , (A1)
1+|61°B/a  2a(1+]|61°B/a) |36 6* 1+61°B/a
and then neglecting 1 compared to | &2, leading to
P6) _ 13, B 4 4o & & .+ p . . lp6) (A2)
3t |36 a&* " Tasagr 6T a2 ¢ perrete” '
Here
& a(paa_pbb)(l_ia) 2g2|6|2 2g262 1
dg=— —y+2i(v—Q) | —i |Sp,, |1+ =5 — *5 ,
6= 14 612/ Y2y = )\ = SPa T(C—iA) Poa (D +id) | 1+]61%8/a
(A3a)
d«=d} , (A3b)
D _ 4apaa+B(paa+pbb )(1+82)16‘2 _ B(Paa_pbb”{;]z
6*e 8(1+|61*B/a) 4(1+|61°B/a)?
iSp, 6* 2
iSpap g B/2a (A3c)

201+161%8/a)

D(C—iA)  1+1]61°B/a

+c.c.] S
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Bpaatppy )(1+8%)62
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D =
¢ 4(1+|61°B/a)? 8(1+161°B/a)
ISP, 6 26762 B/2a g’ IS *Phag *6°B/x (A3d)
1+ 6128/« D(C—iA) | 1+]6128/a T(C—iA) | D(C+iANi+]|6128/a)?
DG*G* — 2’6 . (A3€)
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