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Effects of relativity and configuration interaction on L-shell Auger and radiative decays
of the doubly excited 313l' states of sodiumlike ions
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High Temperature Physics Division, Lawrence Livermore National Laboratory, Iivermore, California 94550
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Auger and radiative transition energies and rates for the states from the 2p'3131' and 2s2p 3131'
configurations of the Na-like ions have been calculated for 18 ions with atomic number 18 Z 92
using the multiconfiguration Dirac-Fock method. The Z dependence of the transition rates for a
few selected states has been analyzed. Numerous irregularities are present in many transitions due
to the level-crossing interaction. The effects of relativity and configuration interaction are simul-

taneously important for medium and heavy ions. These effects can sometimes change the rates for
weak transitions by orders of magnitude. Strong configuration interaction between states from the
2p'3p and 2p 3s3d configurations has been found. Inclusion of the Breit interaction in calculations
of the Auger matrix elements can change the Auger rates by as much as a factor of 2. The spin-
orbit mixing and Breit interaction are responsible for the decay of most of the quartet states. In
particular, the 2p'3s3p D7/2 metastable state of low-Z ions decays predominantly by Auger-
electron emission via the magnetic interaction.

I. INTRODUCTION

Energy levels and transition rates of multiply ionized
atoms are important atomic parameters in the studies of
atomic collisions and in the modeling of astrophysical
and laboratory-produced plasmas. Auger and x-ray spec-
tra of a few electron ions have previously been investigat-
ed. ' The eff ect of relativity has been found to alter
significantly the transition rates of some of the autoioniz-
ing states. '

Auger and radiative transition rates for the 2p 3l3l'
and 2s2p 313l' states of the Na-like phosphorus and
krypton have been studied theoretically. ' Recently,
Auger spectra from Na-like Ar and Fe' + ions have
been observed in ion-atom collision experiments. ' ' "
Some of the Auger lines have been identified. Although
the Auger and radiative transition rates for these doubly
excited states have been included in calculations of the
dielectronic recombination rate coe%cients, ' ' detailed
analysis of the characteristics of the transition rates has
never been carried out except for the Kr + ion.

In this paper we report on the systematic relativistic
calculations of Auger and x-ray energies and transition
rates for the 2p 3l3l' and 2s2p 313l' states of the Na-like
ions. The calculations were carried out in the intermedi-
ate coupling with configuration interaction within the
same complex using the multiconfiguration Dirac-Fock
method (MCDF). '' The theoretical study covers ions in
the range 18~Z 92. We pay special attention to the
effects of relativity and Breit interaction on the Auger
transition rates. The effect of level-crossing interaction
on the systematic trends of the transition rates is also in-
vestigated.

II. THEORETICAL METHOD

Calculations of Auger and radiative transition rates
based on the M CDF method have previously been

Here, +, and +& are the antisymmetrized many-electron
wave functions of the initial and final states of the ion, re-
spectively; p(E) is the energy density of final states; and
V &

is the two-electron interaction operator.
In this work, the two-electron operator V & is taken to

be the sum of Coulomb and generalized Breit opera-
s 16, 17
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where rl and r2 are position vectors, r, 2
= ~ri —

r~~ and V,
and V2 are gradient operators corresponding to r, and r2
respectively. The a; are Dirac matrices and co is the
wave number of the exchanged virtual photon. In Eq.
(2) and hereafter, atomic units are used unless specified
otherwise.

In the MCDF method, ' an atomic-state function can
be expanded in terms of configuration-state functions
(CSF's j. The Auger matrix element can then be writ ten
as a sum of matrix elements between two CSF's. The
CSF matrix elements can be separated into angular parts
and radial integrals using tensor algebra. '

The relativistic radiative transition probability is calcu-
lated from perturbation theory. The probability for a
discrete transition i f in multipole expansion is given

7, 19

presented in Ref. 7. Here, we only outline the essential
features.

The Auger transition rate is given in perturbation
theory by

T= V~ g Vti +; p(E).2' 2

a, P
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TABLE I. Calculated L-shell Auger energies (in eV) and rates (in sec ') for states from the 2p'3$'
and 2p'3$3p configurations of Ar +, Ti"+, and Fe"+ ions. (Numbers in brackets are powers of 10.)

Initial state Energy

Ar'+
Rate Energy

T' I I+

Rate Energy

Fe"+

Rate

2
P3r2

2
PIy2

( P) S382
(3P)4D„2
( P) D5t2
( P) D
( P) DIq2
( P) P5z2
( P) P3y2
( P) PIZ2
( P) D3~2
( IP)2P
('P) D5)2
( Ip)2p

( P) SI/2
( P) D5/2
( P) D312

P3y2
( P) P
( P) SIy2

100.58
102.78

112.23
114.09
114.28
114.66
115.17
115.59
115.91
116.36
117.10
117.30
117.76
117.92
118.51
122.51
123.38
125.04
125.15
130.14

1.02[12]
1.02[12]

1.1 1[7]
3.08[5]
3.32[7]
4.93[8]
9.64[9]
9.21[8]
2.55[9]
1.90[11]
4.15[9]
1.83[10]
4.30[9]
1.74[8]
9.53[11]
4.99[11]
2.12[11]
2.89[11]
5.58[12]
3.08[14]

2p'3$
157.48
163.24

2p 3$3p
175.28
178.02
178.02
178.67
179.72
180.30
180.63
181.90
184.48
183.96
185.75
185.52
185.43
189.50
190.93
195.65
195.14
202.43

2.08[12]
2.00[12]

4.54[7]
1.69[6]
8.67[9]
2.93[10]
1.30[9]
3.10[10]
5.39[10]
1.47[9]
4.49[10]
4.07[10]
6.95[10]
1.64[8]
6.88[12]
5.28[11]
1.37[11]
3.65[11]
1.71[13]
3.68[14]

224. 10
236.63

248.49
252.53
251.74
252.59
254. 15
255.59
255.73
257.87
266.65
263.76
266.65
265.05
264.65
267.68
268.90
279.82
277.71
286.94

2.74[12]
2.54[12]

2.90[7]
5.44[6]
2.97[10]
1.24[11]
2.85[10]
1.01[11]
1.23[11]
9.85[10]
1.24[10]
9.87[10]
2.78[11]
8.79[10]
2.15[13]
5.57[11]
1.14[11]
4.59[11]
4.54[13]
3.78[14]
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FIG. 1. Lowest odd levels with J =
—,
' in the complex 2l '3l'31" of the Na-like ions. The levels are arranged in ascending order of

energy.
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Wf;= g 2m g (fiTLM~i ) . (3)
1

I+ Ml Mf LM

In the MCDF model, ' the Lth multipole matrix ele-
ment (f i TlI ii ) can be expressed in terms of a CSF
basis which can then be written as a sum of products of
angular factors and the one-electron matrix elements. '

III. NUMERICAL CALCULATIONS

The energies and wave functions for bound states were
calculated using the MCDF model with average-level
scheme. ' For the odd-parity states we used 121 CSF's
from 2s 2p 3s, 2s 2p 3p, 2s 2p 3s3d, 2s 2p 3d,
2s2p 3s3p, and 2s2p 3p3d configurations. For the even-
parity states, we employed 116 CSF's from 2s 2p 3s3p,
2s 2p 3p3d, 2s2p 3s, 2s2p 3s3d, 2s2p 3p, and
2s2p 3d configurations. The eigenvectors and energies

were obtained by diagonalizing the energy matrix which
includes Coulomb interaction, transverse Breit interac-
tion, and the quantum-electrodynamics corrections. '

The transition energies were obtained by performing
separate MCDF calculations for the initial and final ionic
states. The transition rates, however, were calculated us-

ing the one-electron wave functions from the initial state
to avoid the complication from nonorthogonality of the
initial and final orbital wave functions. For highly
charged ions, this approximation is expected to yield
quite accurate results because of the smallness of the
nonorthogonal overlap integrals. The continuum wave
functions were generated by solving the Dirac-Fock equa-
tions corresponding to the final state without the ex-
change interaction between bound and continuum elec-
trons. The continuum wave functions were than Schmidt
orthogonalized to the initial orbital wave functions.

In order to study the effect of the Breit interaction, the
Auger transition rates were calculated according to Eq.

TABLE II. Calculated L-shell x-ray energies (in eV) and rates (in sec ') for the 2p'3$ and 2p 3$3p
states of Ar'+, Ti"+, and Fe"+ ions. (Numbers in brackets are powers of 10.)

F 15+

Transition Energy Rate Energy Rate Energy Rate

2 2
P3/2 S1 /2

2 2Pl /2- Sl
243.51
245.70

2p'3$ -2p 3$
6.94[10] 448.39
6.99[10] 454. 15

2.50[11]
2.53[11]

712.79
725 ~ 31

6.45[11]
6.62[11]

2p 3$3p-2p 3p
( ) S /2-P, /2

P) D3/2 Pl/2
( P) Dl/2- Pl/2
('p)'p„, -'p„,

P) P1/2 Pl/2
('P) D3/2- Pl/2

P) Pl/2 Pl/2
P) P3/2 Pl/2

('P) Sl/2- P, /2

P) D3/2 Pl/2
P) P3/2 Pl/2

( P) P 1 /2 P 1/2

237.78
240.21
240.72
241.46
241.91
242.65
242.85
243.47
244.06
248.93
250.59
250.70

1.58[8]
1.54[10]
1.14[10]
2.16[10]
5.77[9]
4.09[10]
2.62[10]
1.90[10]
5.77[10]
4.03[10]
3.58[9]
2.97[10]

440.29
443.67
AHA 73
445.63
446.90
449.49
448.96
450.52
450.43
455.93
460.65
460.15

9.75[8]
1.10[11]
1.13[11]
7.59[10]
1.32[10]
1.30[11]
5.87[10]
3.72[10]
1.96[11]
1.26[11]
2.51[10]
5.86[10]

702.70
706.79
708.36
709.94
712.08
719.26
717.97
720.86
718.85
723.11
734.03
731.92

2.08[9]
4.22[11]
4.58[11]
1.42[11]
2.68[10]
3.40[11]
1.19[11]
2.21[9]
4.17[11]
3.22[11]
7.42[10]
3.42[10]

( P) Sl/2- Pl/2
( P) S3/2 P3/2

P) D5/2 P3/2
P ) D3/2 P3/2
P ) Dl/2" P3/2
P) P5/2 P3/2
P) P3/2 P3/2
P) P1/2 P3/2
P) D3/2 P3/2
P) Pl /2 P3/2
P) D5/2 P3/2
P) P3/2 P3/2

('P) Sl/2- P3/2
( P) DS/2- P3/2

P) D3/2 P3/2
P) P3/2 P3/2

('P)'P„, 'P3/2
( P) Sl/2- P3/2

255.69
237.45
239.50
239.88
240.39
240.81
241.13
241.58
242.32
242.51
242.98
243 ~ 14
243.73
247.73
248.60
250.25
250.37
255.35

2
3.37[10]
6.27[8]
5.94[9]
9.90[7]
2.06[9]
1.84[10]
2.94[10]
9.06[9]
4.95[9]
4.38[10]
7.12[10]
4.57[10]
3.80[10]
4.24[10]
1.98[10]
5.16[10]
4.53[10]
3.41[10]

467.44
439.22
441.96
442.61
443.66
444.24
444.57
445.84
448.42
447.90
449.69
449.46
449.37
453.44
454.87
459.59
459.08
466.37

p 3$3p-2p 3p
1.48[11]
3.64[9]
2.84[10]
4.72[8]
8.01[9]
9.44[10]
1.45[11]
1.64[11]
5.23[8]
8.87[10]
2.02[11]
1.31[11]
4.02[10]
1.68[11]
1.12[11]
1.53[11]
2.13[11]
9.42[10]

741.14
700.11
703.36
704.21
705.78
707.21
707.36
709.49
716.67
715.38
718.27
718.27
716.27
719.31
720.52
731.44
729.33
738.56

4.55[11]
9.57[9]
7.78[10]
3.78[8]
1.19[10]
2.87[11]
4.33[11]
6.06[11]
9.78[9]
8.96[10]
8.00[10]
1.62[11]
7.77[9]
8.27[11]
4.33[11]
3.62[11]
7.05[11]
1.24[11]
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(1) both with and without Breit-interaction terms [second
E (2)]. The effects of relativistic en-and third terms in q.

0 ~ ~

ergies and wave uncf tions on the transition rates were in-
d b comparing the MCDF results and t e pre-vestigate y corn

urationdictions rom ef the nonrelativistic multiconfigur
F valuesock (MCHF) ones. The present MCHF va uesHartree-Foc

were obtained by repeating the MCDF calcu a ions
the velocity o ig nf l ht i creased by a thousandfold to simu-
late the nonrelativistic limit. '

IV. RESULTS AND DISCUSSION
~ ~

A systematic calculation of Auger and radiative trans&-
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' she doubl excited .3l 3l' states
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(ii) Strong configuration interaction between states
from the 2p 3p and 2p 3s3d configurations has been
found. The 3~2 radiative electric-dipole transition (E 1 )
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for the 2p 3p states is forbidden under the single-
configuration approximation. However, in the MCDF
calculations, the E1 transitions for the 2p 3p states be-
come quite prominent for the mid-Z ions because of the
strong configuration interaction with the 2p 3s3d states
(Fig. 6). Furthermore, the irregularities observed in the
Z dependence of the transition rates can be explained as
due to the effect of level crossings involving states from
the 2p 3p and 2p 3s3d configurations (see Figs. I and 6).

(iii) The effect of relativity changes the level structure
and introduces many level crossings, which then lead to
irregularities in the Z dependence of the transition rates.
The relativistic effect can change the transition rates for
the allowed transitions by as much as a factor of 5 (see
Pigs. 2, 3, 5, and 6).

(iv) Inclusion of the Breit interaction in the calculation
of the Auger matrix elements can have quite different
effects on various transitions. For some transitions, it
can change the Auger rates by as much as a factor of 2.
For others, it causes no effect at all. In general, the Breit
interaction is more important for the weak transitions
than for the strong ones.

(v) The spin-orbit interaction is extremely important.
Without it, the 3~2 E1 radiative and Auger transitions
for the quartet states are forbidden. Including the spin-
orbit mixing, the decay rates for the quartet states can be-
come quite large and the transition rates for the fine-
structure states can differ by as much as a factor of 2 for
the medium and heavy ions.

In Figs. 8 and 9, the L-shell fluorescence yields for
some multiplet states are displayed. As expected, the Z
dependence of the fluorescence yields suffers many
discontinuities due to the level-crossing interaction. In
addition, the electric-quadrupole (E2) transition for the
2p 3s3p D5/z state has been found to increase L-shell
fluorescence yield by a factor of 3 at Z =92.

The decay characteristics of the 2p 3s3p D7/p state
deserve some special attention. The 2p 3s3p D7&z state
is metastable. It has the largest total angular momentum
among states from the 2p 3s3p configuration. It is for-
bidden to decay by n =3~2 and n =3~3 E1 emissions
and is also forbidden for Auger transition due to the
Coulomb interaction. In addition, it cannot decay by the
spin-orbit mixing with the doublet states. However, it
can decay via Auger electron emission through the spin-
spin, spin-other-orbit, and orbit-orbit interactions which
are parts of the Breit interaction and the n =3~2 M2
radiative transition. The metastability of the
2p 3s3p D7/p state has been established experimentally
for the Ar and Fe' + ions. ' " The L-shell fluores-
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cence yield and the lifetime of the 2p 3s3p D7/p state are
shown in Figs. 10 and 11, respectively. For Z ~30, the
fluorescence yield is less than 0.05. As Z increases to 54,
the M2 emission becomes as important as the radiation-
less transition. The lifetimes of the 2p 3s3p D7/p state
for the low- and mid-Z ions are quite long (for example,
180 ns at Z =26). Even for ions with Z as high as 54, the
lifetime of this metastable state is still 2.3 ns. Measure-

ment of the lifetime for this metastable state is in pro-
gress. '
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