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The energy transfer between a pair of excited Na(3p) atoms leading to Na(3s)+Na(5s) and
Na(3s)+ Na(4d) final states is studied in a semiclassical coupled-state theory. Classical trajectories
are evaluated from the average adiabatic potentials of previously calculated excited molecular states
of Na,. With this specification of average nuclear R(¢) for atoms approaching in a given magnetic
quantum number (m,,m,) substate, we solve the coupled equations for the time-dependent
Schrddinger equation in the 21-state diabatic basis set (including 3p, 3s, 5s, and 4d) of atom pairs.
The coupling terms arise from the dipole-dipole interaction. Excellent agreement is obtained with
the data of the two most recent measurements of the 3s +4d and 3s +5s energy-transfer cross sec-
tions at T~500-600 K. Extension to low temperature shows a rising 3s + Ss cross section as a re-
sult of a net attractive adiabatic potential in the (m,,m,)=(1,0) incident channel, as also occurs for

associative ionization.

I. INTRODUCTION

Over the last 15 years there has been a large effort in-
vested in studying the processes that occur in a dense
sodium vapor when it is excited with laser radiation at
the 3s-3p resonance wavelength.! Collisions of two
Na(3p) atoms may lead to a variety of final states, includ-
ing Na,*+e for associative ionization, or Na(nl)
+Na(n'l) for energy transfer. Associative ionization has
been studied experimentally most recently by Bonanno
et al.? and Huennekens and Gallagher,? and theoretical-
ly by Geltman.* The energy-transfer processes, which
are most favored by electronic energy balance with the
initial states, have final states n/ and nl’ of 3s+5s
(E;-E;=—1735 cm™}), 35 +4d (E;-E; =613 cm™Y), and
3s+4f (E;-E;=653 cm™!). Measurements of the rate
coefficients and derived cross sections have been carried
out for one or more of these processes by a number of
groups.® !9 The only theoretical work on these process-
es has been done by Kowalczyk!! on 3s +4d and by Al-
legrini et al.'® on 3s +4d and 3s +4f energy transfer.

There is considerable disagreement among many of the
measured cross sections, except for the measurements of
Huennekens and Gallagher® and Allegrini et al.® on
3s +5s and 3s +4d, which agree within their estimated
errors. Kowalczyk’s calculated result!! for 3s +4d lies
about a factor of 10 below these mutually consistent mea-
sured values, while the Allegrini et al.' calculation is a
factor of 2-3 below. The Allegrini et al.'® calculation
for 3s +4f is consistent with their own measurement of
that cross section.

The theoretical treatments to date have used apparent
curve crossings at the rather large internuclear distances
of R *25a, together with the Landau-Zener approxima-
tion for the transition probabilities. In the present work
we apply an alternate formulation of the problem to the
processes
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Na(3p)+Na(3p)—Na(3s)+ Na(5s,4d) . (1)

We find that diabatic curve crossings in the region of
5 <R < 14a, are most important, and transition probabil-
ities are evaluated from a full solution of the coupled-
state Schrodinger equation.

II. GENERAL OUTLINE OF THEORY

We seek to treat the collision of two Na(3p) atoms in
the most general way possible within the limits of a semi-
classical calculation. This means that the transitions
among the electronic states of the atoms are conse-
quences of the excited atoms following a prescribed clas-
sical trajectory R(?). Once this classical trajectory is as-
signed to a pair of initial Na(3p) atoms in given magnetic
quantum number m substates, one can, in principle, solve
the time-dependent Schrodinger equation to get the prob-
abilities for transitions to all final states which are ener-
getically and dynamically accessible.

This procedure is, of course, an approximation since
the nuclear and electronic motion are in reality, coupled
and interdependent. A full quantum formulation would
require an expansion of the form

W(r,R)= S F,(R)¥,(r) ,

or ()
¥(r,R)= 3 G;(R)¢;(r;R) ,
J

where the electronic states may or may not depend
parametrically on the internuclear separation, i.e., one
may use atomic or molecular basis states. To represent
associative ionization a molecular basis set should be
used, and the G;’s would have to include states of nuclear
motion representing vibration in Na,”. The solution of
the corresponding time-independent Schrodinger equa-
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tion subject to scattering boundary conditions would be a
formidable computational project, so we seek semiclassi-
cal simplifications.

Our present treatment will involve two distinct phases.
The first is the selection of classical trajectories. This is
based on detailed adiabatic potential curves which have
been evaluated by other workers for pairs of excited Na
atoms which dissociate to the 3p +3p limit, and is
covered in Sec. III. The second phase concerns the solu-
tion of the time-dependent Schrodinger equation for a
pair of atoms which experience a mutual interaction
while traversing that trajectory. That will be covered in
Sec. IV, and the results will be compared with the experi-
ment and discussed in Sec V.

III. INITIAL ADIABATIC STATES AND TRAJECTORIES

Adiabatic energies for an atom pair at separation R are
the fully diagonalized values for the total electronic Ham-
iltonian. The locus of these levels as a function of R form
the adiabatic energy curves, and they will asymptotically
go to the appropriate separated-atom values. They do
not depend on the direction of R in the laboratory system
since the total energies are invariant with respect to rota-
tion of the atoms. By use of the Born-Oppenheimer sepa-
ration of electronic and nuclear motion, it follows that a
single adiabatic energy curve will serve as the potential
energy for the motion of the nuclei if there are no appre-
ciable perturbations to alter the system’s electronic state.
This of course is the basis for evaluating vibrational
structure in molecules in terms of adiabatic potential
curves. In the case of collisions of excited atoms there is
an appreciable probability for an electronic transition (as
is seen in the following sections), so the choice of a partic-
ular classical path is a bit more questionable. However,
since the final adiabatic potential curves are not very
different from the initial ones, it appears that the nuclear
motion will not be perturbed appreciably in mid trajecto-
ry as a result of electronic transitions.

The adiabatic potential-energy curves for pairs of Na
atoms having 2, I1, and A character and arising from dis-
sociated states up to 3p + 3p have been evaluated by Hen-
riet and Masnou-Seeuws. !> Those dissociating to 3p +3p
may be associated as follows with the atomic m, and m,
(m,,m,) magnetic quantum numbers of the separated
atoms:

(m,=1,m,=1)—'A,, or *A, ;
(m,=1, m,=0)—"Il,, ’I,, 'M,, or °I, ;

(m, =0, m,=0)—"'3"

3+ .
g OF DI

(my=1,m,=—1)—"'37, 335, 'sF or’ s,

All the other of the nine (m,,m;) combinations are
asymptotically degenerate with one of the above indepen-
dent cases. For example, (m,,m,)=(—1,—1) is asymp-
totically degenerate with (1,1), and (m,,m;,)=(0,—1) is
asymptotically degenerate with (1,0), etc. Since the
atoms are identical, the choice of which is atom A4 and
which is atom B is arbitrary.

Each of the above four (m,,m,) combinations defines
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an independent incident channel for the energy-transfer
process. Atoms approaching one another in any one such
incident channel will be in the above corresponding adia-
batic molecular states with probabilities determined by
statistical weights. We may thus construct the average
potentials in terms of the adiabatic potentials of Henriet
and Masnou-Seeuws,

V(LD)=V(A)+3V(A,)T,

V(1,0)={[V(')+3V )+ V(L) +3V (I, ,
_ (3)
V(0,00=LV('zH+3V (],

VL, —D=LVIE)+3VCEN+VUEH+3V (s, .

At very large R these go into the asymptotic form
cs/R°+cg/R® Here c5/R°’ is the first-order diagonal
matrix element of the quadrupole-quadrupole interaction
term between two Na(3p) atoms. This is the lowest-order
term in the multipole expansion for the interaction which
is nonvanishing, as diagonal first-order matrix elements
of the dipole moments will vanish. The cs/R°® van der
Waals interaction is the diagonal matrix element in
second order of the dipole-dipole interaction term.

We have evaluated c5 and cg4 for each of the incident
(m,,m;) channels using the Bates-Damgaard method!?
for the atomic dipole and quadrupole radial matrix ele-
ments, and these are given in Table I. Since the adiabatic
potentials of Henriet and Masnou-Seeuws have been eval-
uated out to R =164, we have smoothly joined their re-
sults to the asymptotic values at R > 24a,. The resulting
average adiabatic potentials are given in Fig. 1.

These potentials are used to describe the average tra-
jectory for a pair of Na(3p) atoms which enter a collision
in the (m,,m;) channel. An example of the resulting or-
bits for the (1,0) incident channel at a relative velocity of
1.2X10° cm/s is given in Fig. 2. For the lower values of
impact parameter, the distance of closest approach will
be ~S5a,, corresponding to the turning points due to the
repulsive part of the potential ¥(1,0), as seen in Fig. I.
At large enough impact parameter the orbit will no
longer penetrate and approach a rectilinear path.

As we will see in Sec. IV, the radial range for the dia-
batic curve crossings which lead to electronic transitions
is S<R <14a,. From the orbits in Fig. 2 we can expect
this range to be reached at this velocity by impact param-
eters p $23a,. Since the average potentials in Fig. 1 are
qualitatively similar to one another, one can expect quali-
tatively similar sets of orbits to result for all (m,,m,)
cases. The repulsive hill in ¥(0,0) at R = 15a, results in

TABLE I. Asymptotic parameters for the Na(3p) + Na(3p) in-
teraction.

m, my cs (a.u.) ce (a.u.)
1 1 365.4 —6303.0
1 0 —730.8 —9134.0
0 ] 1462.0 —147.0
1 —1 365.4 —7550.0
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FIG. 1. Average adiabatic potentials V(m,,m,) for indicated
(m,, m,) values.

nonpenetrating orbits for v $1X10° cm/s, and hence
very low transition probabilities for lower velocities.
Similarly, the much smaller potential hills in the (1,1) and
(1,—1) channels (due to c5>0) will give effective cutoffs
in their respective transition cross sections at much lower
velocities. The only channel that is effectively open at all
velocities is (1,0) since its ¢5 <0. In fact, at ultralow ve-
locities (for example, T~ 1 mK, which are attainable by
laser atom-cooling techniques') there is a large focusing
of atoms in that channel from very large impact parame-
ters (~250a,) to inwardly spiraling orbits.* This is simi-
lar to the Langevin orbiting in an ion-atom collision,
where the effective potential is the —a/R* polarization
attraction.

IV. DIABATIC BASIS STATES AND TRANSITIONS

Having adopted the average trajectory that is expected
to be followed in a collision of a pair of Na(3p) in the

Y
23 | ?
[
[

FIG. 2. Typical orbits for collisions on potential 7(1,0) at
v =1.2X 10° cm/s for various impact parameters.
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(m,,m,) substates, we must now adopt a basis set of dia-
batic states to describe the dynamics of transitions. Any
complete set may be used for this, but some are more
convenient than others. For example, the adiabatic states
discussed in Sec. III are an acceptable basis set, but they
are complicated, correlated molecular wave functions,
and only a small part of the total number required for the
transition to 3s +4d have been evaluated by Henriet and
Masnou-Seeuws. !> Furthermore, since they diagonalize
the full electronic Hamiltonian at each R, the perturba-
tion that would induce transitions between electronic
states is the coupling between electronic and nuclear
motions, ~(dR/dt)-Vgé;(r;R). This is a small pertur-
bation for the thermal velocities of interest.

Instead, we will adopt the diabatic basis set that is sim-
plest to handle, and that is the set of separated-atom
wave functions defined in the laboratory system, or

Yi(r,,1)=nl,my,nyl,my ) . (4)

We neglect fine-structure effects, which will be small ex-
cept at very low velocities or temperatures (the 3*P, , ; ,
splitting equals kT at about T'=25 K). Expanding the
full time-dependent electronic wave function as

W(r,1)=3 a;,(t)Y;(r,,1;,)exp —if'dtH[,»] , (5)

the Schrodinger equation is converted into the set of cou-
pled equations for the transition amplitudes,

4=—i 3’ Hya.exp iftdt(Hjj—H,«f)] . ()

(Atomic units are used throughout unless otherwise
specified.) Here H;; is the matrix of the full electronic
Hamiltonian H =H,+ H’ taken with respect to the basis
states (4),

H,;=E;+H) ()

where H' is the interaction potential between the two
atoms, and the infinitely separated atoms are described by

Hyy,=E; . (8)

The lower limit on f ‘dt in (6) is arbitrary as it merely
affects the phase factor.

The diagonal elements H;;(R) are the diabatic energy
curves. It should be noted that they are not unique but
depend entirely on the basis set chosen. This differs from
the adiabatic curves, which are unique in principle in that
they are defined ideally as the electronic eigenvalues at
separation R. In practice, even the adiabatic curves are
not unique in that they are approximated by diagonalized
energies in some subspace of a molecular basis set. This
latter property prevents the crossing of adiabatic states of
a given molecular symmetry. Diabatic states of a given
symmetry are, of course, free to cross one another, and
indeed it is these crossings that give rise to the main flow
of amplitude among the basis states.

We describe the interaction potential in terms of the
multipole expansion for the interaction of two electronic
charge clouds (neutral systems'?)
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H'=167% 3 (—1[472a+1)(2B+1)(2a+2B+1)] '/

a,B

P>

Ap

(a+B—A—pa+B+At+p)
(@a— M a+MNB—pNB+p)!

We choose our laboratory system such that the +Z axis
is along —v (v is the relative velocity vector for atom A4
incident on atom B), and the YZ plane is the collision
plane.

Consider the minimum subset of basis states needed to
describe the transitions

Na(3p m,)+Na(3p m,)—Na(3s)+Na(5s)

—Na(3s)+Na(4d m) , (10)

that is,
In l,mg,nplym, ) =131m,,[31m,) ,
=|300,500) ,

=|300,42m) . (11)

We would first like to examine the diagonal diabatic
curves in this subspace. The only term in (9) contributing
to a diagonal matrix element which is asymptotic to
3p +3pis the a=B=2 quadrupole-quadrupole term, or

(31m,,31m,|H|31m,,31m,)

cs(m,my)

=E;3,3,+ s P,(cosf) (12)

where cos@=k-R. All other terms in (9) give a vanishing
contribution because of the parity or triangular selection
rules. It is this term, which also gives rise to the adiabat-
ic asymptotic interaction cs/R 5, that was discussed in
Sec. III. Since the adiabatic potential is evaluated with
respect to a rotating coordinate system, the P,(cosf)
above would go to 1 (since §—0 in that system).

A similar examination of the diagonal diabatic curves
which are asymptotic to 3s +5s and 3s +4d shows that
there are no terms in expansion (9) that contribute non-
vanishingly. This is a consequence of the general selec-
tion rule that s—s transitions are strictly forbidden via
all multipole moments. Thus the two final diagonal dia-
batic curves in our present representation are constants
and all crossings will be determined by the R,6 depen-
dence of Eq. (12) on the appropriate classical orbit.

In Fig. 3 we show the radial dependence of these dia-
batic curves. The coefficient P,(cos@) will introduce a
number of crossings with the constant final-state curves.
This will mean that probability will flow strongly among
the basis states near the crossings during a collision. It
confirms that we are in a strong-coupling regime where a
full solution of the coupled equations (6) is necessary. We
point out that the multipole expansion (9) is valid only
when the atoms are well separated so that there is little
actual overlap of the charge clouds. When the overlap is
appreciable this expansion loses its validity. Stated
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mathematically, (9) is an asymptotic expansion, which is
not absolutely convergent at each R. It is thus not valid
to allow the R ~> form in (12) to continue indefinitely to
small R. To take account of this we have cut off the R ~°
form at a value of R which is smaller than all of the “ra-
dial crossings” in Fig. 3. We have chosen R -5 =8a,, and
replace R ~° in (12) by R 5 for R <Ro. This approxi-
mation in practice only affects the region 5<R <8a,
since our classical orbits do not penetrate to R <5 any-
way. In this region the factor exp[if’dt(Hjj—H,-,-)] in
(6) oscillates so rapidly as to not affect transition proba-
bilities appreciably.

The effect of the P, (cosf) factor in (12) will be to cause
more oscillations of the initial diabatic curve between the
two final constant diabatic states, since P, has four zeros
in 7> 6> 0, and the orbits sweep through a large range of
0 as seen in Fig. 2. The sign changes in P,(cosf) will
cause crossings of the initial diabatic curve with both final
diabatic states, no matter what the sign of ¢5 (m,,m,) is.
These are shown in Fig. 4 for the (1,0) channel where the
initial diabatic curve is plotted as a function of time along
the trajectory for various impact parameters.

We have given some consideration to the application of
the Landau-Zener approximation'® to transitions at these
crossings. The Landau-Zener parameter at crossing time
t.is

[H ()]

d(H, —Hy)

dt

q=2m , (13)
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FIG. 3. Radial dependence of the diagonal diabatic matrix
elements of the electronic Hamiltonian,

(3p m,,3p my|H|3p m,,3p my)=Ej, 3, +cs(m,,my)/R* ;

values of (m,,m,) indicated (zero taken at E3,, 3,).
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FIG. 4. Time dependence of {3p 1,3p O|H|3p 1,3p 0) along
the trajectory prescribed by ¥(1,0) at v =1.2 X 10° cm/s for vari-
ous impact parameters. The zero of time is taken at the dis-
tance of closest approach, and crossings with the final diabatic
3s +5s and 3s +4d levels are shown.

and the corresponding transition probability at the cross-
ing is
p=1l—e"9.

In general, this is a reasonable approximation if p is not
too large, say if ¢ S1 or p $0.5. We find that for many
of the crossings encountered in this problem there are
very large of values of g, say g > 10, which indicates a
strong-coupling situation (p =1), and hence a breakdown
of the Landau-Zener approximation. Another deficiency
of the Landau-Zener method in this case is its assumption
that there is no coherence between crossings. The oc-
currence of closely successive crossings of 3s +5s and
3s +4d final states, as seen in Fig. 4, suggests that the
phase relationships between them may be important. A
third difficulty with the Landau-Zener approximation is
that it is applicable only to the crossing of nondegenerate
states. The high degeneracy of the 3s +4d final state
makes its application to the present case inappropriate.
Total energy conservation, including both the nuclear
and electronic degrees of freedom, is not automatically
satisfied in a semiclassical treatment. The assignment of
a classical orbit governed by a potential-energy curve, as
we are presently doing, simply treats the nuclear transla-
tional energy as a constant throughout the collision. Ac-
tually, there is an interchange between nuclear and elec-
tronic energies in such a way as to preserve overall ener-
gy. This would be incorporated into the boundary condi-
tions in a full time-independent quantum treatment based
on expansion (2). This includes the conversion of initial
translational energy into molecular vibrational energy, as
occurs in the associative ionization process. The semi-
classical time-dependent Schrdodinger equation (6) does
not insure overall energy conservation since an external
perturbation is assumed to be present. This is the
prescribed collision trajectory R(z) in the present case, or
it could be an applied laser field where H' ~r-Ejcos(wt).
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In either case it is assumed that the source of the external
perturbation is unaffected by the quantum transitions it is
causing.

From Fig. 3 it is seen that the transition to 3s +5s is
exothermic, i.e., has no threshold, while the transition to
3s +4d is endothermic by 613 cm ™!, which corresponds
to a threshold velocity of 1.130X 10° cm/s. In our adopt-
ed basis set there are nine (m,,m;) combinations and ten
substates of 3s +4d m (each pair state must appear
symmetrically on atom A and B). This means that there
are 11 basis states below the 3s +4d threshold, and there
are 21 basis states above this threshold which must be in-
cluded in expansion (5).

The off-diagonal matrix element Hj; is evaluated from
the dipole-dipole term in (9) (@ =B=1), and thus will cou-
ple the initial state to either of the two final states, but
will not connect the 3s +5s and 3s +4d final states. They
are not directly coupled to each other by any term in (9),
again because of the s-s selection rule. The H;; also de-
pend on 6, since the dipole-dipole term in (9) has the
more familiar form
[r,r,—3(r,-R)(r,-R)] .

V,d (14)

e
In terms of the polar angle 6 of a trajectory point and
Cartesian electron coordinates, this becomes

#[xaxb +(1—3sin%0)y,p, +(1—3 cos’0)z,z,

—35sinf cosb(y,z, +z,v,)] »

in terms of which the needed transition matrix elements
are readily found. We use the Bates-Damgaard radial
matrix elements, (3p|r|3s)=4.223, (3p|r|5s)=—0.9182,
and (3p|rl4d)=—1.658. For consistency with our pro-
cedure with the diagonal matrix elements, we also apply
the same cutoff to the radial R ~* dependence of the off-
diagonal matrix element.

V. RESULTS AND DISCUSSION

We use the RKF solver!” for the set of first-order linear
equations (6). The 21 equations for complex a; become
42 real equations. As the times needed for solutions of
such large sets of equations on the VAX 8600 computer
is considerable, we have lowered the relative error re-
quirement and the number of impact parameters such
that the resulting cross sections have a numerical accura-
cy of £10%. An example of the variation of the transi-
tion probabilities Py, , 5, and P, ,, with impact parame-
ter is shown in Fig. 5. It is seen that there are many os-
cillations, indicating a strong-coupling situation. Al-
though the incident channel is a particular (m,,m,) com-
bination, there is a redistribution among all the (m,,m,)
states during the course of the collision. This is seen by
examining the individual final (3p m,)+(3p m,) probabil-
ities. Note that the sudden drop in transition probabili-
ties at p=23 is a result of the trajectories no longer
penetrating into the crossing region of the diabatic
curves.

The individual channel transition cross sections are
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FIG. 5. Transition probability to the 3s +5s and 3s +4d final
states at v =1.2X 10° cm/s and incident channel (m,,m;)=(1,0)
as a function of impact parameter.

given in Table IIL
cross sections,

7=1[20(1,1)+40(1,0)+0(0,0)+20(1,—1)] (15)

The statistically weighted average

are shown in Fig. 6. There is a discontinuity in 75, , 5, at
the threshold for &, , 4, since different basis sets are used
below and above the threshold. It is fortuitous that the
discontinuity in T3 4 5, is small as it is, since the individu-
al channel cross sections each have larger discontinuities,
as can be seen in Table II. One would expect that exact
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FIG. 6. Average transition cross section to the 3s +5s and
3s +4d final states as a function of initial relative velocity. The
threshold velocity for the 3s +4d transition is 1.130X 10° cm/s.

cross sections from a full quantum treatment would be
continuous at the 3s +4d threshold with a significant
departure from the semiclassical values over a velocity
range ~(m /M)""?v,,,. This would also apply to &5, ;445
which should go to zero at its threshold from phase-space
considerations (Wigner threshold law). Note that 7, s
rises indefinitely as v —0 because of the attractive adia-
batic potential in the (1,0) channel (see Tables I and II).
As v decreases, larger and larger impact-parameter tra-
jectories are pulled into the diabatic crossing region.

The thermally averaged cross sections are given in Fig.
7. The rising 3s +4d cross section reflects the increasing
overlap with the Maxwell distribution. Since T, 444(v) is
decreasing somewhat less rapidly than 1/v, one expects
this rise to continue until 7' >2E, /k, or up to T'=1800
K. The slowly falling thermal 3s +5s cross section

TABLE II. Cross sections for specific incident channels (m,,m,) (in 10~ '° cm?).

v(10° cm/s)
m, my 0.1 0.5 1.0 1.2 2.4 3.6
3p +3p—3s+5s
1 1 0.903 1.67 0.973 1.17 0.698 0.638
1 0 8.38 2.47 2.09 1.29 0.328 0.509
0 0 0.008 0.030 0.075 0.677 2.17 1.68
1 —1 2.66 1.10 1.18 1.78 0.943 0.490
3p+3p—3s +4d
1 1 5.63 3.15 3.29
1 0 11.59 7.15 4.30
0 0 1.37 4.39 4.90
1 —1 7.30 4.09 2.58




40
5
4 —
3s+4d
)
€
o 3+
0
T
Q
= oL
N\ \'\.\
\'b/ T — — . 3s+5s
| =
o) | | | ] 1 1
100 200 300 400 500 600 700 800
T (K)

FIG. 7. Velocity-averaged (Maxwell distribution) transition
cross sections to 3s +5s and 3s +4d. The measured points are
those of Huennekens and Gallagher (Ref. 8) at 597 K and Al-
legrini et al. (Ref. 9) at 483 K. The higher-lying experimental
point is the 3s +4d cross section in both measurements.

reflects the behavior of @;,s,(v) in this temperature
range. The results of Huennekens and Gallagher® and
Allegrini et al.® are included in Fig. 7, and we see that
there is excellent agreement with our present results. The
three measurements® ' which are not included in Fig. 7
give cross sections that differ from these by one or more
orders of magnitude. Both Huennekens and Gallagher®
and Allegrini et al.’ discuss possible experimental
reasons for these widely differing results. A previous cal-
culation'! gives a value of 73,4, =1.17X10"" cm? at
T=550 K, which is about a factor of 2 lower than the
present calculation. That calculation relied on a different
set of basis states, which led to apparent crossings at
much large separations (R =~30a,) than we encounter
here, and with the use of the Landau-Zener formula.

An extension of our present results down to ultralow
temperatures is given in Fig. 8. As mentioned above,
(T3,45, 2 for T <1 K comes entirely from the (1,0) chan-
nel. The (T,, s, ) values in Fig. 8 for T <10 K are tak-
en from &, ,s,(v) at v =(2kT/M)'/2. For comparison,
we show the previously calculated* and measured® %18
associative-ionization (AI) cross sections. That theoreti-
cal curve followed from a semiclassical perturbation
theory calculation on approximately the same adiabatic
trajectories as are used presently. The fact that the AI
cross section is substantially below the present energy-
transfer cross sections is consistent with the applicability
of perturbation theory for that case, as opposed to the
necessity for a coupled-equation solution presently. The
apparent shoulder on {T;, s, at low T and its absence
from (7 ,;) reflects the difference between the perturba-
tive Al calculation and the coupled-equation solution for
the 3s+5s transition. In the former at low T,
O Aa1=TpraPar, and the main T dependence comes from
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FIG. 8. Extended-range temperature variation of 3s +5s and
3s +4d average cross sections [values for T< 100 K are taken as
T (v =V2kT/M)], compared with average cross section for as-
sociative ionization evaluated in Ref. 4, and measured values.
For Al a, Ref. 3; b, Ref. 2; ¢, Ref. 18; d, Ref. 14; for energy
transfer, e, Ref. 9; and f, Ref. 8.

the U variation of the maximum capture impact parame-
ter Pmao With P,; remaining almost constant. In the
latter, the full solution of the coupled equations along the
trajectory is such that P, s, has a stronger dependence
on U than does P,;, giving the cross sections somewhat
different shapes as a function of T.

We have omitted from our basis set the possible final
state 3s +4f, which lies above the 3s +4d level by only
40 cm ™. It is clear from Fig. 4 that almost all crossings
with the 3s +4d level will also involve one with the
3s +4f level. However the off-diagonal coupling between
(3p m,)+(3p m,) and 3s +4f will involve the dipole-
quadrupole term [a=1, =2 and a=2, B=1 in (9)] vary-
ing as R % This would mean a weaker coupling at the
crossing than for the dipole-dipole transitions. The ener-
gy transfer cross section to 3s +4f has been also mea-
sured by Allegrini et al.'® at T=523 K with the result of
(5.7£2.3)X 10~ '® cm®. This is a factor of 3—6 lower than
the 3s +5s (4d) cross sections, which helps to justify the
omission of that state from our set of basis states. It
should be noted that Davidson et al.' find a transfer
cross section to 3s +4f which is only about a factor of 2
below the 3s +4d value. However, the inclusion of
3s +4f basis states would have meant an increase in the
number of real coupled equations from 42 to 70, making
the calculation prohibitive. Huennekens and Gallagher®
also reported estimated cross sections to the more remote
3s +6s and 3s +5d endothermic final states which lie
below the 3s +4d cross section by the factors 10”2 and
3X1073, respectively.
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Since the fine-structure splitting of 32P; , 3, is 17.2
cm ! (=kT at T=25 K), it is clear that care must be
taken in comparing the results of measurements at ul-
tralow temperatures with the present results. For exam-
ple, if the Na atoms are cooled by pumping to a particu-
lar JFM state, it is legitimate to ask how subsequent
energy-transfer cross sections are to be compared with
our present (7 ). Our present treatment of the dynamics
of these processes indicates that the introduction of a
spin-orbit interaction would be a negligible perturbation.
For example, such an interaction is negligible compared
with Hi’j at a crossing (~ 1073 a.u.), and it would produce
negligible shifts in the diabatic energies of Figs. 3 and 4.
Thus apart from questions of the recoupling of angular
momenta, the only real effect of fine structure on these
processes is in the initial-state population mechanism. If
the m; states are not populated equally, one must do the
appropriate Clebsh-Gordan algebra to combine our
o(m,,m,) values in such a way that they represent the
actual distribution of (m,,m,) states excited, while sum-
ming over all the other dynamically unimportant quan-
tum numbers (JFMp).

Another potentially more serious question which
enters at ultralow temperatures is the fact that the radia-
tive lifetime of Na(3p) (~ 16 ns) becomes comparable or
smaller than average collision times. A basic assumption
in the present calculation is that the colliding excited
sodium atoms are not coupled to the radiation field, and
can lose their excitation energy only through collision
channels. It would seem that AI and energy-transfer
measured rates must be lower than theoretical rates
which neglect the occurrence of radiative decays. This
would account for the loss of transition probability when
the atoms are on a collision trajectory but decay before
the critical crossing region is reached. For example, the
time for a pair of excited atoms at zero initial velocity to
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traverse the present trajectory from R =300a, to the
curve-crossing region is ~ 18 ns, which would amount to
a decay survival probability of ~0.3. This question
deserves more detailed separate attention, along with the
question of quantum effects replacing classical trajec-
tories at very low velocities.

In summary, we have treated the energy-transfer pro-
cess of thermal collisions of excited Na(3p) atoms to the
3s +5s and 3s +4d states. We have used a semiclassical
method with realistic atomic trajectories based on known
adiabatic potential curves. The transition probabilities
were evaluated by numerical solution of the Schrdodinger
equation within the subspace of the (3p m,)+(3p m,)
and 3s +5s,3s +(4d m) atomic basis states, subject to the
perturbation resulting from the dipole-dipole interaction.
The results are in excellent agreement with the two most
recent measurements of these cross sections. The main
processes omitted from the present basis set, associative
ionization and energy transfer to 3s +4f, are shown by
other experimental and theoretical work to occur with
much lower probability than the presently considered
processes. We now feel that a good theoretical under-
standing of the mechanisms for these processes exists,
and hope that these methods may be promising for other
thermal energy-transfer processes.
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