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We propose a simple model to incorporate inelastic energy losses into molecular-dynamics simu-
lations of high-energy radiation damage, which at the same time describes the metallic thermal con-
ductivity by coupling the ions to a thermal reservoir. Both expressions are based on a local-density
description of stopping power. We provide an empirical expression to describe the strength of the
ion-electron coupling, which is a function of the local electronic density. The model is then ade-
quate to those simulations where the ion-ion interactions are obtained from many-body potentials

based on density-functional formalism.

INTRODUCTION

The important progress recently made in the descrip-
tion of effective many-body interaction potentials in con-
densed matter, together with the rapidly increasing com-
puter capabilities, allows us today to apply the techniques
of molecular dynamics to the study of high-energy dis-
placement cascades. The technological importance of
this field of computational physics is out of discussion be-
cause the complexity involved in radiation damage is so
large that up to now only empirical theories account for
quantitative evaluation of damage. The interest of hav-
ing damage simulations is then evident.

Recent work on large-scale molecular dynamics' has
brought up the question of the role of the thermal spike
in 3- to 5-keV Cu cascades, together with the correspond-
ing implications for atomic mixing, Frenkel pair produc-
tion, and point-defect clustering. However, the physics
involved in the model was too simple and therefore the
reliability of the quantitative results may be questioned.
In fact the potential was repulsive, pairwise, and restrict-
ed to nearest neighbors. The liquid-solid phase transition
is certainly poorly described in this framework, since so
are the shear constants.

The present status of the simulations can briefly be
summarized as follows. On one hand, the effective
many-body potentials, like the embedded-atom model?
(EAM) or the Finis-Sinclair Model® (FSM), give the best
available and a quite reliable description of crystalline
structure, elastic constants, phonon dispersion relations,
defect properties, and dynamics correlations in the liquid
phase, together with a reasonable computing cost. On
the other hand, supercomputers and powerful algorithms
can solve a large number of degrees of freedom using
molecular dynamics, namely, N < 10°. Cascades of ener-
gies up to some 10° eV are now being studied with these
means.

However, good potentials and large crystal sizes do not
necessarily warrant a good simulation of radiation dam-
age in metals. Two main problems still remain open. The
first is a proper account of the electronic inelastic scatter-
ing and the second is a good description of the thermal
conductivity of the simulated crystal. Both are related to
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the ion-electron interactions but in quite different
domains of ion kinetic energy. In what follows we shall
identify the first as the electronic stopping power (ESP)
regime and the second as the electron-phonon interaction
(EPI) regime. Together they cover an energy range from
10° to 1072 eV. The aim of this work is to provide an ex-
pression to be included in the molecular dynamics equa-
tions to account for the whole energy range. In what fol-
lows we first discuss the ESP and the EPI regimes sepa-
rately and then we merge them using local-density for-
malism.

ELECTRONIC STOPPING POWER REGIME

Inelastic scattering with target electrons is an impor-
tant mechanism of energy loss® which is, of course, ab-
sent in adiabatic molecular dynamics. Compared to elas-
tic collisions (ion-ion collisions) its relative importance
depends on the energy of the projectile. It is the main
contribution to the total stopping cross section at high
energies, ~ 10° eV; its contribution decreases to 20% or
30% at energies in the range of ~10* eV and at the
threshold energy (~25 eV) it represents an 8% of the to-
tal energy loss. All these figures and those that follows
correspond to Cu.® These results are obtained using Fir-
sov’ or Lindhard® theories. Although quite old, they are
still believed to give a good description of the electron ex-
citation.

The success of those theories arises because there exists
a quite general feature of the stopping power in the low-
energy regime. Low energy means projectile velocity
lower than the relevant electronic velocity in the target,
for instance, Fermi velocity in a metal. In fact quasiclas-
sical or quantum theories give a stopping power propor-
tional to the projectile velocity for a large variety of pro-
jectiles and targets. The different approaches and
projectile-target combinations only give different expres-
sions for the constant of proportionality.’ This constant
depends so much on the model that it is actually used as
a fitting parameter. The v dependence of the electronic
stopping has been assumed to be correct from energies
going from some MeV/amu down to the displacement
threshold energies of about 20-50 eV, the lower limit to
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which these theories have been applied. However, once
low velocity is assumed, the results so obtained are valid
down to velocities equal to zero since no other velocity
comes into play. In this sense it is important to point out
that in this regime, calculations of screening are actually
made at ion velocity strictly equal to zero.

The concept of stopping power is valid not only in the
transport formalism as a continuum slowing down pro-
cess but also for molecular dynamics where the electron
collisions can be included as a dissipative term in the
equations of motions. In fact the ion-ion (i-i) collisions
are very different from ion-electron (i-e) collisions be-
cause in the latter the energy and the momentum transfer
in each event are very small compared to the ion energy.
They give in practice a straight trajectory of the projec-
tile. It is therefore justified to incorporate a continuous
loss mechanism into the Newton equations of at least the
most energetic ions in the cascade.

We recall here the functional form of this interaction.
Starting with the electronic stopping cross section S,(E)
from the Lindhard theory,

S,(E)=AE'?*, (1)
the stopping power is

4E _ _,s.(E), @)

dx

where n is the density of scatter centers in the target.
Since dE /dx =(1/v)dE /dt,
%=—nx(M/2r“2E=—f1E, 3
where M is the projectile mass and 7 is the lifetime of the
kinetic energy due to electronic losses. Therefore the
equations of motion including stopping power become

M%=F—nAM/2)'?’x=F—Bx . 4)

For Cu a value of A between 0.3 and 2.5 eV!”2A? has
been used,® giving 2.3X107'<B<1.95X1071° gsec
and a relaxation time 7=(M/2)3"! between
2.7X107 B <7 <2.3X107 2 sec.

The application of Eq. (4) to all ions in the simulation,
i.e., to those with energies in the thermal region, will be
discussed in the next paragraph.

ELECTRON-PHONON INTERACTION REGIME

In a molecular-dynamics simulation the thermal con-
ductivity is given by the anharmonic part of the intera-
tomic potential. It produces phonon-phonon interactions
whose magnitude is in general not used as a fitting pa-
rameter in the determination of the potential. In the par-
ticular case of the EAM the fitting to an equation of state
reproduces properties like thermal expansion, Gruneisen
parameter, and probably lattice thermal conductivity
(which are all three related); instead in the FSM, with less
free parameters, the equation of state is not used in the
choice of the potential and therefore the anharmonic part
is not adjusted. For some materials, incorrect values of
properties mentioned above are obtained.’

In both models the conductivity obtained is obviously
the lattice conductivity. Simulations of cascades should
consider that in metals at equilibrium most of the heat is
transported by electrons. This certainly will affect the
thermal behavior of the cascade since after the collision
phase and the athermal recombination an important
thermal spike is quenched in the lattice. The quenching
rate depends on both thermal conductivities and on the
coupling between ions and electrons.

The problem is not simple because in the collision
phase part of the energy is deposited in the electronic sys-
tem and part into the lattice. Electrons and ions are two
different systems, each with their temperature-dependent
heat capacities and thermal conductivities, coupled by
the electron-phonon interaction. It is a formidable task
to try to describe the electron-phonon interaction over a
range of energies or temperatures going from 1072 eV to
those of the thermal spike of the cascades. In addition,
both systems are themselves out of equilibrium in the
thermal spike because it happens in a time scale of 1013
sec, which is comparable to the period of lattice vibra-
tions.

For our present purposes we need to know the rate of
energy transfer to electrons as a function of the mechani-
cal variables of the ions (position, velocity), which are not
necessarily related to lattice temperature, and eventually
the electronic thermal conductivity as a function of elec-
tronic temperature.

Electron-phonon interaction theories are usually based
on the hypothesis of local thermodynamic equilibrium
between electrons and phonons. At room temperature,
thermal equilibration of the electronic system is achieved
by electron-phonon interactions (relaxation time
Te—ph= 10~ 13 sec). Similarly, in the phonon system the
phonon-electron interaction is as important for the equili-
bration as the phonon-phonon interaction, since the
phonon-phonon relaxation time is 7, ;= 1071 sec,
while the phonon-electron relaxation time can be estimat-
ed from 7, _;, and considerations of detailed balance also
to be 7, =10""" sec.'

The molecular dynamics (MD) method computes
phase-space trajectories of a collection of classical de-
grees of freedom. The evolution of the system can be
forced to obey microcanonical (i.e., number of particles,
volume, and energy constants) or canonical (number of
particles, pressure, and temperature constants) laws.
Usually canonical behavior is obtained by a simple scal-
ing of the kinetic energy (isokinetic MD). However, since
average values in MD are obtained under the assumption
that ensemble averages are equal to time averages, the al-
gorithm that leads to thermal contact with a reservoir
must generate canonical fluctuations. This is not the case
with the isokinetic MD. Several other ways, like Gauss-
ian isokinetics,!! or Nose dynamics,'? generate fluctua-
tions that obey Boltzman statistics, but have the limita-
tion that the coupling with the thermal bath has no sim-
ple physical meaning. For the problem we are interested
in, i.e., electrons and phonons initially in thermal equilib-
rium perturbed by a primary knock-on atom (PKA) of
some keV we need a canonical MD where the coupling
between phonons and electrons reproduces the electron-
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phonon coupling when in equilibrium and the electronic
stopping power when out of equilibrium. It seems then
adequate to propose the well-known classical stochastic
Langevin equations!! which describe the interactions of
an ensemble of classical particles with an irreversible
thermal reservoir. Although there is no theoretical
proof, it is generally accepted that Langevin equations
generate the canonical ensemble. In this mechanics the
kinetic losses are represented by a constant positive fric-
tion coefficient and the particles are accelerated with sto-
chastic forces with random magnitude and orientation.
The Langevin equations of motion read

M%=F+n(t)—px , (5)

where f3 is a constant measuring the strength of the cou-
pling to the bath (proportional to the inverse of the life
time of the energy fluctuations) and 7 is a random force
defined by

(n(t))=0,
(q(t)m(ty)) =2BkgT8(t—1t,) , (6)
P(p)=2m{n*)) " 2exp(—n*/2{n*)) .

In this expression T is the temperature of the bath. In or-
der to mimic the equilibrium phonon-electron interaction
B must be such that 'rph.e~10_11 sec. A limitation of
this average formalism is that it gives the same life time
for all normal modes, regardless of their frequency or
wave vector. Then, those with frequencies smaller than
10! sec™! (a few in common metals) become over-
damped.

Now comparing Egs. (4) and (5) it becomes evident
that the ion-electron coupling may have the same expres-
sion in both the ESP and EPI regimes. The coupling pa-
rameter, however, differs by one to two orders of magni-
tude. This is the problem we address in this work.

In order to describe these variations, let us assume that
the physics is the same in both regimes and that the
differences come from the different target electronic den-
sity swept by the projectile. In this picture, the phonon-
electron interaction originates in the stopping power that
an ion feels when oscillating in a plasma. The density of
this plasma is that of the valence electrons of the host at
the ion position. On the other hand, in collisions above
some 107 eV the apical distance is short enough that the
ions cross almost all their core electronic charge and the
stopping power is correspondingly high. The actual situ-
ation is certainly more complex because the density of
states at the Fermi level, which contains information on
the lattice, becomes relevant.

With this interpretation of the phonon-electron in-
teraction we have a way to describe it in the whole range
of energy because the viscous drag of Egs. (4) and (5) is
simply a function of the local host electronic density, in
the same way as the embedding energy is obtained in the
EAM. There certainly are other ways to introduce varia-
tions in the coupling parameter. For example, it can be
considered that it depends on the energy of the ion, but it
would then introduce cubic frictional forces with, once
again, no clear implications on the generated fluctuations.
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The density-dependent coupling, instead, follows the usu-
al interpretation of the problem, as we see in the next sec-
tion.

ION-ELECTRON INTERACTION
IN THE LOCAL-DENSITY FORMALISM

The local-density approximation in stopping power
theory assumes that each volume element in the solid is
an independent free plasma of density p(r). The stopping
power is then position dependent and can be written as'?

S (r)=I(v,p(r))[Z} (v)]? @)

where [ is the interaction of a particle of unit charge and
velocity v with a plasma of density p and ZT is the
velocity-dependent effective charge of the projectile. The
binary collision description can be obtained from Eq. (7)
by integrating over a given trajectory.

The historical development of the theory provides
different expressions for S,(p) according to the complexi-
ty of the description of the plasma target. Although all
of them give the same v dependence already mentioned,
the density dependence is different depending on whether
the plasma is described as an ideal degenerate gas,'* a
Fermi liquid,'® a Hartree-Fock—type quantum gas,'® or
an electronic system treated with density-functional for-
malism. !’

The linear response theory predicts stopping power
given by

2,4
ﬂ=mf 00a)dcoquImK’(q,co)
0

dx 2

d(#q-v+#q*/2M +iw)
4 ’
g

X

(8)

where M, v, and Z are the mass, velocity, and atomic
number of the incident ion, respectively; #iq is the
momentum transfer, and K'(q,») is the Fourier com-
ponent of the retarded Green’s function.

To obtain K'(q,w), Kitagawa et al.'® make a Hartree-
Fock decoupling and obtain that in the low velocity limit
Eq. (8) reduces to,

_ *2,4 2
dE _ 2Z er? vfldé‘ é'* - 9)
dx 3mh 0 T [E+(m/m*af(&)]

with m* an effective electron mass; Z* an effective pro-
jectile charge; a=e2/7rhvf; §=q2/4q}; v, and q, are
Fermi velocity and momentum, respectively; and
[(E)=(2£+1)/(46+1). The integral in Eq. (9) can be
approximated in the following two limiting cases.

(i) a << (high density). In this case we have

—dE _ ZZ%(:'Zm2
dx 3mh3

which is nothing other than the Fermi-Teller formula,'8
indicating that for high density plasmas the electron-
correlation (in the Hartree-Fock approximation) is not
relevant.

vin(#iv,/e?) , (10)
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(ii) @ >>1 (low density). In this case we have
—dE
dx

This p?/3 dependence is the same found in Ref. 14
without exchange, but the factors are different. A plot of
these two limiting functions as well as the numerical in-
tegration of Eq. (9) is shown in Ref. 15.

Unfortunately, actual metallic systems exhibit a ~ 1.
In Fig. 1 we show the stopping power, Eq. (9) as a func-
tion of the electronic density.

By considering the electron density in the solid as
given by the superposition of atomic densities, as in the
EAM, we observe that host density values in the range
1072 to 10* e /A are obtained by moving fgom the equi-
librium lattice position to some tenths of A close to an
ion. These changes in density produce less than a factor
of 10 in the stopping power, according to Fig. 1. One
could then think that the ion-electron interactions in the
EPI and in the ESP regions are due to different mecha-
nisms. However, this small variation is probably due to
limitations of the Hartree-Fock approximation. In fact,
according to Ref. 17 the stopping power of slow ions can
be rewritten in terms of scattering theory as

E .
‘cii_x: k3i3 2(l+1)s1n2[8,(Ef)—8,+1(Ef)] ) (12)
rrs 1

=0.327"3Z3 fwp?? . (11)

s

where §,(E/) are the phase shifts at the Fermi energy for
scattering of an electron of angular momentum / and r, is
the radius associated to a sphere containing one electron.
Based on nonlinear calculations of the density fluctua-
tions, which give results quite different to those of linear
response theory, Echenique et al. evaluate the phase
shifts within density-functional formalism. Unfortunate-
ly they do not give numerical values of their calculations
but a plot which shows that at low density the stopping
power is significantly reduced with respect to linear
response theory. We plot these results in Fig. 1. The
range of densities they calculated covers only the low-
density portion in our plot.

From this figure, it can be seen that an important vari-
ation of stopping power (two orders of magnitude) results
when the density of the host varies from 10%? to
10*” e /cm®. In order to have a simple approximate ex-
pression that covers the whole range we propose the fol-
lowing fitting equation for 8 in Eq. (5):

B= A log,ylap'/*+b) , (13)

where a=(37%)!3#/e?m =3.09a,, (a, is the Bohr ra-
dius), A is a fitting parameter close to the value
2Z%*m?/3w#3=2X10"" g/sec, and b is an adjustable
parameter which allows the relation between the ESP and
EPI regimes to be varied and contains the information on
the EPI coupling (for instance, it accounts for the density
of states at the Fermi level for different materials); a value
of b=0.65 has been used in Fig. 1. The value of A4 that
reproduces the loss in a 1-keV Cu-Cu binary collision as
well as the electron-phonon interaction is around
A=2X10719 g/sec. It implies a reasonable relation be-
tween effective mass and charge: (Z*m*/Zm)=0.32.
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FIG. 1. Ion-electron interaction as a function of electronic
density. , numerical integration of Eq. (9); —-—-, high-
density approximation, Eq. (10), to the exact, Eq. (9); — — —,
results of stopping power from Ref. 17 using density functional
and nonlinear response; — — —, proposed empirical function
to fit the whole density range. For details see text.

It is important to point out that Eq. (13) is only an
empirical approximation to the full density dependence
but does not have any physical implication. The pro-
cedure is empirical and therefore the criterion is that of
the best fit to the theoretical predictions over the whole
range of electron density. Its advantage is that the ener-
gy losses are incorporated in MD for all energy ranges,
i.e., for all ions in the simulation, without an excessive in-
crease in computational effort. The density is the overall
electron density and not only that of valence electrons as
used in EAM.

The last point which remains open is the term 7(¢) in
Eq. (5). If energy is transferred to electrons, they heat
up. Since 7(¢) depends on electronic temperature, a feed-
back of this energy into the ions appears. The electronic
thermodynamics is not simple because the system is out
of equilibrium; however, a simple estimation of the
influence of electronic heating can be made in two limit-
ing cases: If the coupling is weak, the electron mean-free
path is some hundred of A, which is larger than the cas-
cade dimension. It means that excited electrons at the
early times of the cascade will decay far from the energet-
ic ions. The fact that electronic thermal conductivity is
two orders of magnitude larger than the phonon one
means that the electronic thermal spike propagates much
faster. The radius of the electronic hot sphere is around
ten times larger than the cascade radius at any time.
Hence the energy feedback into the ions is distributed
over a number of ions a thousand times larger than those
participating in the cascade. In this approximation we
can therefore neglect the electronic heating and keep the
electronic temperature appearing in Eq. (6) constant and
equal to the desired equilibrium temperature. It is
equivalent to consider the electrons as a perfect heat sink
or as having infinite thermal conductivity compared to
ions. On the contrary, the electronic mean-free path can
be comparable to the cascade dimensions in the case of
strong coupling,!® and the electrons would eventually
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reach thermal equilibrium with the lattice. In this case a
description of the evolution of the electronic temperature
has to be given in order to correctly define the random
force term in Eq. (5).

CONCLUSIONS

Using the local-density formulation of the stopping
power we have shown how to incorporate the electronic
losses of high-energy particles into the equations of
motion of molecular dynamics. The same formalism de-
scribes the electron-phonon interaction, responsible for a
quenching of the cascades more rapid in metals than in
insulators. An empirical expression to match the two re-

gimes is proposed. The formalism is easy to implement in
MD codes based on the density-functional formalism like
the embedded atom model or the Finnis-Sinclair model,
without an excessive increment of computational cost.
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