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A generalized Heitler formalism is used to unify the description of various subtraction schemes
that have appeared in the literature for calculating two-body off-shell amplitudes in terms of the
solution I of an auxiliary nonsingular integral equation. This leads to a universal representation of
the off-shell transition matrix for both positive and negative energies in terms of any one of a very
general class of I matrices.

I. INTRODUCTION

It is well known that computational difhculties are
caused by the is prescription in the kernel of the integral
equation for the off'-shell two-body transition matrix t,
when the parametric energy s has the form s = ~s~+i 0 A.
common method of circumventing these problems is to
introduce an auxiliary nonsingular integral by means of a
subtraction technique. ' Since there are many ways of ac-
complishing this, it is not surprising that a number of
proposals have appeared each of which seems to present
certain advantages. ' One of the most recent of these
proposals is that of Stoof et al. ,

' who introduce a sub-
traction technique that appears to differ markedly from
previous methods.

The extension of subtraction techniques to negative en-
ergies, s &0, where they are really not needed to remove
scattering singularities, has provided another criterion
for distinguishing among different methods. The s (0 re-
gion, of course is accessed kinematically when the two-
body collision is part of a multiparticle process. Any
two-particle bound states are manifested as poles in t,
when s is equal to the bound-state energy.

The primary objective of this paper is to show that for
most purposes all of these subtraction techniques, wheth-
er at s & 0 or s (0, are indistinguishable either as calcula-
tional devices or as vehicles for approximation tech-
niques. We first show in Sec. II how all of the usual sub-
traction techniques can be regarded as following from a
generalization of the Heitler formalism that is usually
used to introduce the K, matrix. Then the dynamical
equations for the I, matrices, which are generalizations
of the K, matrix, are determined for a general one-
parameter class of subtraction functions. A new
singular-kernel subtraction technique is introduced in
Sec. III using a general class of two-parameter subtrac-
tion functions. This provides a general theoretical frame-
work for the method of Ref. 14, as well as that of Ref. 15,
within the context of our generalized Heitler formalism
and the determination of the dynamical equations for the
corresponding I, matrices.

In both Sec. II and Sec. III we explicitly demonstrate
how various rank-one approximations to the fully off-

shell transition amplitude can be calculated using any one
of the various I, matrices. We also comment on the
properties and expected accuracy of these approxima-
tions.

Along with the new development in Secs. II and III, we
also clarify and unify previously obtained results. Our
strategy for doing this is to highlight the universality of
the I,-matrix representation of the off-shell transition
matrix that is a major consequence of our work. As we
emphasize in Sec. IV, which summarizes our conclusions,
it appears that the I,-matrix formalism provides a
coherent theoretical framework from which much of a
large body of seemingly unrelated literature on off-shell
scattering can be correlated and understood. It also al-
lows us to point out some misconceptions in regard to the
preferred use of particular subtraction schemes that have
appeared in the literature. We hope we have identified a
number of the major aspects of off-shell scattering that
can now be considered to be entirely understood, thus
isolating those aspects that are not.

II. UNIVERSAL I s-MATRIX FORMALISM

Let us consider the integral equation for the off-shell
two-body transition matrix t, (p,p') at parametric energy
s in a given angular momentum state:

t, (p,p') = V(p,p')+ f dq g(q, s) V(p, q)t, (q, p'), (I)

where

g(q, s)=kq (s —
q )

and where the integration limits here and throughout this
paper are from 0 to ~. For simplicity we suppose that
the two particles are spinless' '' and we suppress the an-
gular momentum index. The value of the constant k de-
pends upon the normalization convention used in the
partial-wave decomposition. The non-negative real vari-
ables q, p, and p' denote the absolute values of the various
wave vectors of relative motion. The parametric energy s
can take any complex value except on the positive real
axis where the appropriate limits must be taken; by posi-
tive s we always mean the limit s ~ ~s~+i 0 . We have
denoted the functional dependence of the transition ma-
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trix, as well as other quantities, on the parametric energy
by means of a subscript s in order to distinguish it from
the wave vectors referring to the initial and final momen-
ta and the subtraction point. Finally, V(p, p') is the
partial-wave amplitude of the interparticle potential,
which we take to be a real symmetric function of p and
p'. Independently of that assumption on the potential,
t, (p,p') also satisfies the integral equation obtained from
Eq. (1) by interchanging the roles of V and t, under the
integral sign.

We now show that the content of the so-called I,-

matrix formalism can be viewed as a generalization of the
off-shell K, or Heitler formalism. This leads to the sim-

plest and entirely self-contained derivation of most of the
results already in the literature and suggests many more
possibilities than have been considered so far.

Let a quantity I, (p,p';k) be defined in terms of the
transition matrix t, (p,p') by

t, (p,p') =I,(p,p', Ic)

+I,(p, k;k )f dq g(q, s)y(k, q)t, (q,p'), (3)

where we leave y(k, q) arbitrary for the moment and k is
an arbitrary non-negative parameter with the dimension
of a wave vector. Since the kernel of Eq. (3) is of rank
one, we see that

t, (p,p') =I, (p,p'; k)+ I, (p, k; k )I,(k,p'), (4)

I,(p', I&; k)
I, (k,p') =t, (k, k) [I,(k, k;k)]

I, (k,p';k)
I, (k, k;k)

If we insert this expression for I, (k,p') back into Eq. (4)
we obtain the canonical expression

t, (p,p') =f, (p, k)t, (k, k)f, (p', k)+R, (p, p', k), (9)

I,(p, k;k)=
r, (k, k;k) ', p, k=

and the representation

(10)

where

f dq g(q, s)y(k, q)r, (q,p';k)
I, (l&,p') =

1 —f dq g(q, s)y(k, q)r, (q, k;k )

Therefore we deduce that

I, (k, k;k)
t, (k, k)=

1 — dqg q, s y k, q I q, k;k
and

I, (p, k;k)
t, (p, k)= t, (k, k) .I, k, k;k

If t, (p,p') is symmetric in p and p', then we find from
Eqs. (4) and (7) that

of the residual function which was first derived in Ref. 12
directly from Eq. (1) and Eqs. (4)—(8).

As pointed out in Ref. 10, any symmetric off-shell am-

plitude such as t, (p, p') admits the universal decomposi-
tion (9) into a purely off-shell part and a factorizable
piece with

t, (p, k)
f, (p, k):— (12)

R, (p, k;k) =R, (k,p';k) =0, (13)

where k is the absolute magnitude of an arbitrary wave
vector. Equation (9) is clearly an algebraic identity; it
holds for arbitrary k, p, p', and s, and it is independent of
whether or not t, (p,p') satisfies Eq. (1). These assertions
are obvious from the fact that

which has a nonsingular kernel

(16)A, (p, q;k) =g(q, s)[ V(p, q) —V(p, k)y(k, q)],
provided that for positive s we have k = v s and
y(k, k)=1. For negative s the functional relation be-
tween k and s is arbitrary and certainly not determined
by kernel nonsingularity constraints. ' '

The universality of the I,-matrix formalism is mani-
fested in the validity of Eqs. (9)—(11) independently of the

y function used to define 1,. The function y(k, q) need
not even be such that A, (p, q;k) is nonsingular in order
to achieve this. For example, let y(k, q) be a distribu-
tion-valued function of q with the properties

(s —
q ) 'y(k, q)=+iir6(k q), —

so that

(17a)

R, (p,p', I&)=t.(p p ) f, (p, k)t, (k, k)f, (p', k), (14)

with f, defined by Eq. (12). For s) 0, we always take
k =v's. Then t, (k, k) is the on-shell amplitude and the
form (9) becomes more interesting because time-reversal
invariance and off-shell unitarity for t, (p,p ) imply that
both f, (p, k) and R, (p;p', k) are purely real. '0 '8 For
s &0, t, (p,p') as defined by (1) is real and so, therefore,
are f, and R, . The factorizable bound-state poles that
t, (p,p') may have at discrete negative s will reside in

t, (k, k) as it appears in the representation (9), rather than
or R 8, 10, 19—21

S S

Unlike all previous derivations of Eqs. (9)—(11) the
preceding one does not use dynamical scattering integral
equations for either t, or I, . To say something about
I, (p, p';k), presuming t, (p, p') is defined by (1), we need
at least to constrain y(k, q). If y(k, q) is real and satisfies
y(k, k)=1, then off shell unitarity for t, (p, p'), for s )0,
implies that I,(p,p';k) is real. For s &0, t, (p,p') is real
and is 1,(p,p', k) as well, so long as y(k, q) is real, wheth-
er or not y(k, k) = l.

Generally, one obtains the integral equation for
I, (p,p';k) from Eqs. (1) and (3):

I,(p,p';k)= V(p, p')+ f dq A, (p, q;k)r, (q,p';k), (15)

I, (p, k;k)1, (k,p';k)
R, (p,p', k) =l, (p,p';k)— I, (k, k;k)

[ V(p, q) —V(p, k )y ( k, q) ](s q')—
=P(s —

q ) 'V(p, q) (17b)
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for s =k +i 0 and

(s —
q ) 'y(k, q)=0 (17c)

and Eq. (3) becomes the usual oF-shell Heitler equation

for s not on the positive-energy cut, where the symbol P
denotes the Cauchy principal-value prescription. Then
using Eqs. (17b) and (17c) in Eqs. (15) and (16) and Eq.
(17a) in Eq. (3), we recover the K-matrix formalism with

t, (p,p') =K, (p,p') —i —kkK, (p, k)6(k)t, (k,p'),

(17f)

r, (p,p;k) =K, (p,p'), (17d)

where K, (p,p') is the completely oF-shell K, matrix:

K, (p,p') = V(p,p')+P f dq g(q, s) V(p, q)K, (q,p'),
(17e)

where 6 is the step function, 6(x)= 1, for x )0 and =0
for x (0. Similarly, with @=0 we recover the t, -matrix
formalism since then I,=t, .

A number of generalizations of Eq. (3) suggest them-
selves, especially if we wish to include the method of Ref.
14. One possibility is

t, (p,p')=1, (p,p', k, ko)+I, (p, k;k, ko) f dq f dq'g(q, s)y(k, ko;q, q')t, (q', p') . (18a)

y(k, ko,'q, q') = y(k, ko, q)5(q' k), — (18b)

where k and ko are two arbitrary wave vectors. The for-
malism of Ref. 14 corresponds to taking ko )k and

y(k, ko, q) =6(ko q) . — (18c)

In Ref. 14 ko is denoted by A, so that the connection be-
tween the two notations with the choice (18c) is given by

Using Eq. (18a) we again obtain Eqs. (9)—(11) for a sym-
metric t, (p,p'). The subtraction technique that we devel-

op in Sec. III results in a Heitler relation of the form
(18a) but with

%, =A, +A, e%, ,

%, =A, +A, e A, ,

(2 la)

(21b)

r, =(I+%,)*V, (22a)

that we. have written in an abstract notation (the asterisk
signifying integration) for brevity. The kernels of Eqs.
(21) are exactly the same as in Eq. (15) so that one is basi-
cally confronted with the same integral equation, but
with a more complicated inhomogeneous term, to calcu-
late all of the components of the off-shell transition ma-
trix. In fact, the resolvent kernel defines what we mean
by a solution of Eq. (15):

I.(p«p «k ko)«=r (p p «E) (18d) and so

for E—=s=k +i0. It is clear that the Heitler-type equa-
tion (18a) encompasses more general possibilities than the
scheme of Ref. 14.

The occurrence of bound-state poles at s =s~ is associ-
ated with the condition '

f dq y(k, q)g(q, s~ )I', (q, k;k) = 1, (19a)

with the relationship

p~(q)-q g(q, s~)r, (q, k;k) (19b)

R, (p,p';k)= %,(p,p', k) —f, (p, k)A, (k,p', k)

between I, and the bound-state wave function gs in
B

momentum space. Condition (19a) follows from Eq. (6).
Some apparent exceptions to this last inference are possi-
ble. For example, a class of y functions is known for
which the denominator in the right-hand side of Eq. (6) is
independent of I, at negative energies. In this instance,
I, has a bound-state pole at s =sz just as t, does.

The residual function R, (p,p', k) is related to the resol-
vent kernel %,(p,p', k) corresponding to A, (p,p', k) and
to f, (p, k) by

W, (p,p'; k ) = [r, (p,p';k) —r, (p, k; k)y(k, p')]g(p, s) .

(22b)

Therefore we also obtain from Eq. (20) the form (11) for
the residual function. This establishes the equivalence of
the two seemingly different treatments of this term and
the general off-shell case given in Refs. 9 and 12.

The universality of the I,-matrix formalism is mani-
fested in the validity of Eqs. (9)—(11) independently of the
choice of the y function used to define I, . The form (20),
which explicitly incorporates the dynamical content of
Eq. (1), is also universal in the same sense of being form
invariant with respect to the choice of y. When y is such
that A, is nonsingular, then this universality clearly
reflects the latitude one has in expressing the dynamical
content of Eq. (1) in a way consistent with oF-shell uni-

tarity, for all real s, and time-reversal invariance. How-
ever, as we have seen, y need not always be such that 3,
is nonsingular in order to achieve this.

In order to emphasize the universality properties, we
collect all of our results:

r, (p, k;k)f'p'"'= r, (k, k;k)
Xg(p', s)

The resolvent kernel satisfies the integral equations

(20) K, (p, k)

K, (k, k)
t, (P, k) r (p, k;E)
t, (k, k)

(23a)
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and

K, (p, k)K, (k,p')
R, (p, p', k) =K, (p,p')—

, k), V(p, k)V(k, p )

V(k k)

+ J dq A, (p, q;k)R, (q,p';k) . (32)

t, (p, k)t, (k,p')

1,(p, k; k)I, (k,p'; k)

r, (k, k;k)

=r (p,p';&) P—' ' 'P ' (23b)
~ (k, k;E)

We remark that, in general, the I, matrix is not sym-
metric in p and p', but both t, and K, are; so when time
reversal is valid we have

&, (p,p') =&,(p', p ),
(24)

K, (p,p')=K, (p', p) .

We note that the symmetry of K„along with Eq. (23b),
implies that Eq. (9) holds with t, replaced by K, . It is the
lack of symmetry of I,(p,p', k) that prevents it from be-
ing expressed in the canonical form (9). Instead,

From Eqs. (23a) hnd (31) we see that the zeros of t, (k, k)
and K, (k, k) are generally correlated with zeros in the
Fredholm determinant of A, . Finally, since with the
choice (27) we have I,(k, k;k) = V(k, k), we see from Eq.
(6) that the association of the integral relation (19a) with
the occurrence of a bound state is obvious in this in-
stance.

The subtraction function of Brown et al. (BFLS),
r

y BFLS k
(33)

is interesting because of the relationship of I " to the
Jost function, at least for local potentials. ' This is
relevant to the known association of (19a) with bound-
state poles and to the convergence of the iteration solu-
tion for I "" in this case.

As another consequence of universality we see that the
rank-one Kowalski-Noyes ' (KN) approximation to
the t, matrix

I, (p,p';k)=f, (p, k)I, (k, k;k)f, (p', k)

+R, (p,p', k), (25)
t, (p,p', k) =f, (p, k)t,—(k, k)f, (p', k), (34)

where

I, (k,p';k)
I, (k, k;k)

(26)

which resembles some of the asymmetric forms con-
sidered in Refs. 2 and 3.

The full significance of the y invariance underlying
I,-matrix universality is not clear. However, other
choices besides Eqs. (17a)—(17c) and y=—0 also have dis-
tinctive properties that are well known, and should be
pointed out in the context of the present new treatment
of the subject. The subtraction function introduced by
Kowlski, Feldman, and Noyes (KFN),

V(k, q)~"" '"'q'=
V(k k)

' (27)

A, (p, q;k) —= A, "
(p, q;k)

has the property

(28)

is unique among all choices of y in the resultant simplici-
ty of the residual function 8, . That is, with this choice
the kernel

r, (p, &—s ) = t,"N(p, & s;&—s ), —

t, (&—s,p') = r,"N(& —s,p', &—s ),
(35a)

(35b)

for all p, p', and s &0. The optimum choice for the
"functional relationship" between k and s for s &0 is an

important unknown problem concerning off-shell behav-
ior. The present discussion has shown that this question
is entirely separate from the choice of a particular y, and
therefore a particular I, . This independence is not al-
ways emphasized. '

which is obtained by neglecting R, (p,p;k) in Eq. (9), is
universal in the sense of being independent of the choice
of the subtraction function y(k, q) that may be used to
calculate f, . As negative energies k is not determined by
kernel nonsingularity constraints. ' However, we would
like to point out that the "moving" subtraction point,
k =v' —s for s (0, that was suggested in Refs. 8, 10, and
20, has the advantage of defining a negative-energy shell
for each s for which t, represents the transition matrix
exactly both on shell and half shell for a semi-infinite
range of parametric energy because of Eq. (13), just as in
the positive energy case. That is,

A, (k, q;k)=0, (29) III. SINGULAR-KERNEL SUBTRACTION SCHEMES

R, (p,p';k)=%, " (p,p', k)g(p', s) (30)

Further, A, is distinguished by the fact that it is the ker-
nel for the integral equations satisfied by both the univer-
sal half-shell and residual functions:

so therefore R, differs from the resolvent kernel &, " of
A, only by kinematic factors:

I, (k, ko)—:J dqg(q, s)y(k, ko, q) . (36)

We now identify a new type of subtraction scheme
which leads to auxiliary integral equation with a non-
singular integral, but with a kernel that is still singular.
Let y(k, ko, q) be some arbitrary real function of the three
wave vectors k, ko, and q, where k and ko can be regard-
ed as entirely arbitrary. Set

f, (p, k)= ' + Jdq A, (p, q;k)f, (q, k), (31)
Then we can rewrite Eq. (1) as
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t, (p,p')= V(p, p')+ V(p, k)I, (k, ko)t, (k,p')

+ dqg q, s Vpqt, qp'

—V(p, k)y(k, ko, q)

ing y'(k, ko, q) so that I, (k, ko) vanishes. For example, in
the counterpart of Eq. (37) for the K, matrix defined by
Eq. (17e), we could take y(k, ko, q)=(k/q) and exploit
the fact that

Xt, (k,p') j, (37)
P dq =0 .

2 q2
(38)

and we see that the last term on the right-hand side of
(37) is an integral with an integrand with no singularity
resulting from g (q, s) for s =k +iO provided that
y(k, ko, k) = l.

The standard way of using (36) and (37) involves choos-
I

In this case we simply have an integral equation [Eq. (43),
below] with an integral term that is formally nonsingular
so no new auxiliary equation is needed. '

When I, (k, ko)%0 the solution of (37) can be expressed
in terms of the solution of the auxiliary integral equation

I, (p p';k, ko)= V(p p')+ J dq g(q2, s)[V(p, q)I, (q p', k, ko) —V(p, k)y(k, ko, q)I, (k p';k, ko)j, (39)

whose kernel is a highly singular, distribution-valued
quantity.

As mentioned in Sec. II, the formalism of Ref. 14 is
recovered if we take ko & k and

y(k ko q)=6(ko q) (40)

In terms of the notation of Ref. 14, I",(p,p', k, ko) is
denoted by Eq. (18d) for s=E=k +iO,—although our
treatment makes the extension of the work of Ref. 14 to
negative energy obvious. The relationship (18b) between
y(k, ko;q, q') and y(k, ko;q) leads to the generalized
Heitler relation (18a) connecting t, and the solution of
Eq. (39). We also conclude from Eqs. (23) that as far as
calculating either the on- or off-shell transition matrix is
concerned, the technique of Ref. 14 offers no particular
advantage.

Now, of course, f, (p, k) and R, (p,p', k) are indepen-
dent of the parameter ko=A. However, a calculational
scheme is proposed in Ref. 14 for obtaining a nonuniver-
sal rank-one approximation for t, (p,p') by approximating
R, (p,p, k) in a A-dependent fashion by dropping the
r (p,p', E) term in R, (p,p';k) given in Eq. (23b). The
freedom in A is then exploited to minimize the error
made in doing this. Let us call this approximation to the
residual term R, (p,p ', k ).

Since R, (k,p', k)WO, R, (p, k;k)%0, we see that the

y (k, ko, q) =(k/q) (42)

in Eq. (39), then I,(p,p';k, ko) is a quantity K,'(p, p') that
satisfies

I

resultant rank-one transition operator T (p,p', E) pro-
posed in Ref. 14 violates not only off-shell unitarity, but
on-shell unitarity as well. On the other hand,
T (p,p', E) does not possess the singularities that the
t approximation has at points where t, (k, k) =0. Also,
at least for the cases explored numerically in Ref. 14, the
approximation seems reasonably accurate.

Evidently the same type of approximation can be
achieved by dropping l, (p,p', k) in Eq. (23b). Then in
order to minimize the y-dependent error involved in do-
ing this in the manner of Ref. 14, one can take, with
ko) k,

r(k ko q)=e(ko q)) (k q) (41)

in place of y(k, q) in Eq. (15) and follow the same minimi-
zation procedure used in Ref. 14. This approach has the
advantage of working with the numerically stable non-
singular kernel I, equation. It also presents one with the
additional opportunity of choosing a y(k, q) function that
may reduce the error even further, an option not present
in Ref. 14.

It is interesting to note that if we make the ko-
independent choice

K;(p,p') = V(p,p')+ f dq g(q, s ) V(p, q)K;(q, p') —V(p, k) — K;(k,p')k

q
(43)

t, (p,p') =K;(p,p') i kkK;(p, k)t, (k,p—') —. (44)

For s real and positive, s =k, the function Kk, (p,p') as

defined by Eq. (17e) and K„',(p,p') are identical and Eq.
(43) is identical to the equation used by Haftel and Taba-
kin. ' Otherwise, K;(p,p') represents an entirely different
continuation to arbitrary s than does K, (p,p'). In par-
ticular, for s real and negative, K, (p,p')=t, (p,p'), but
K;(p,p')WK, (p,p'). For complex s in place of Eq. (17f)
we have the following Heitler equation:

IV. CONCLUSIONS

We have demonstrated by means of a generalization of
the Heitler formalism how y-function invariance under-
lies the universality properties of the oF-shell two-body
transition matrix. We have also shown how the class of y
functions can be enlarged to include distribution-valued
subtraction functions. We conclude that the only possi-
ble advantage of one choice of y over another lies in the
convergence and stability properties of the numerical
solutions of the I -matrix equations. The universality of
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the I -matrix formalism is also shown to lead to a univer-
sal rank-one approximation to the off-shell transition ma-
trix for both positive and negative energies.

In addition, we have identified the general class of sub-
traction procedures into which the example used by Stoof
et al. ' falls, and we showed how the auxiliary amplitudes
involved in this case also satisfy the universality property.
In addition, we examined the nonuniversal rank-one ap-
proximation T proposed in Ref. 14 and found that T
violates both off-and on-shell unitarity. It was suggested
that this type of approximation may be made more accu-
rately by using cutoff subtraction functions in the I",-

matrix formalism.
The preceding results simplify, unify, and extend many

different seemingly distinct approaches to off-shell
scattering.
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