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Electronegativities and isoelectronic energy and electronegativity differences
for monatomic systems with nonintegral nuclear charges:

Local-spin-density-functional calculations
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A relativistic self-consistent-field self-interaction-corrected local-spin-density functional, with

electronic correlation included, has been used to compute the electronegativities of monatomic sys-

tems with nonintegral nuclear charges. We focused specifically upon quark atoms related to the

halogens, having nuclear charges of Z+1/3. Two dift'erent methods for calculating electronegativi-
ties were found to give results in good agreement with each other and with an earlier empirical ap-
proach. It was also shown that accurate energy and electronegativity diA'erences for the isoelectron-
ic quark-atom pairs Z+ 1/3, Z —1/3 and Z +2/3, Z —2/3 can be determined using only the elec-
trostatic potentials at the nuclei of the isoelectronic atoms and ions with integral nuclear charges.

I. INTRODUCTION

In an important recent development, Lackner and
Zweig have generalized the concept of electronegativity
to quark atoms. ' The latter are defined as having integral
numbers of electrons but nuclear charges that differ by

—,
' or +—,

' from integral values. Lackner and Zweig used

the Mulliken formula for electronegativity [Eq. (I)], in
which I and A denote the ionization potential

I+3x=

II. METHOD

A. Notation

A ground-state monatomic system X with nuclear
charge Z will be denoted by X(0). Isoelectronic quark
atoms with nuclear charges Z+ —,

' and Z+ —', shall be
represented by X(+—,') and X(+—', ). Thus F( —

—,') corre-
sponds to a quark with nine electrons in the 1s 2s 2p
configuration and a nuclear charge of 8—', ; F (+—,') indi-
cates a quark atom with ten electrons (ls 2s 2p ) and
nuclear charge equal to 9—', .

and electron affinity, respectively, to calculate g for
quark atoms in their ground states. I and A were ob-
tained by isoelectronic interpolation of the experimental-
ly measured values for the neutral atoms.

In density-functional theory, the electronegativity has
been defined as

(2)

B. Computational approach

We have used a relativistic self-consistent-field pro-
cedure within the self-interaction-corrected local-spin-
density approximation to compute total and orbital ener-
gies and electrostatic potentials. ' This method has been
used successfully to calculate atomic ionization potentials
and electron affinities over a large portion of the periodic
table, ' indicating that it is effective in taking account of
electron correlation.

The total energy E is treated as a continuous function of
the number of electrons X and the nuclear charge Z.
Equation (2) has been the basis for a number of quantita-
tive determinations of electronegativities.

In this paper, we shall compare several different ap-
proaches for computing the electronegatives of quark
atoms. We will also show that energy and electronega-
tivity differences for the isoelectronic quark pairs
Z+

3
Z

3
and Z+ —', , Z ——', can be determined from a

single calculation of the electrostatic potential at the nu-
cleus of the isoelectronic neutral atom with nuclear
charge Z. As examples, we shall use quark atoms related
to the halogens (F, Cl, Br, and I).

C. Calculation of electronegativities

Two approaches were used to compute quark-atom
electronegativities. One of these involved the application
of Eq. (1), with the ionization potentials and electron
affinities being obtained from the calculated total energies
of the ionic and nonionized systems. These results shall
be denoted by gM.

The second method is based upon the concept of the
Slater transition state. ' Taking an analogous approach,
we expanded the total energy of a quark atom about the
energy of Eo of the neutral atom:
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E =Eo+ g (n, —n, o)
BE

1 BE+—g(n —n )(n —n ) +
2~

& to ~ ~0
V J

n, is the number of electrons in the ith atomic orbital. If
6 electrons are transferred from the jth orbital of one
atom to the ith of another, the energy difference is

quark atoms X(+—,
' ), where X=F, Cl, Br, and I. In or-

der to obtain XM for X( —
—,
' ), Eq. (I) would require com-

puting the energies of nearly doubly charged negative
ions. Since this presents severe convergence problems in
the self-consistent-field procedure, g& and gs were not
calculated for the systems X(+—', ).

D. Calculation of electronegativity differences

E(N+6) E(N— 6)—

=5 + +O(6 )+
Bn; Bn

(4)

Levy has shown that the energy difference between ad-
jacent members A and B of an isoelectronic atomic series
is given rigorously by

In local-spin-density-functional theory, the energy of
orbital i, represented by E;, satisfies Eq. (5):

~E=E. E, =-(Z, Z, )V-.*

BE
Bn;

Combining Eqs. (2), (4), and (5),

BE

z

E(N+5) E(N —5)— Ei'+Ej= —lim
5~0 25 2

(5)
Z~ and Z~ are the nuclear charges of A and B, and Vo is
the electrostatic potential at the nucleus of an isoelect-
ronic system with a nuclear charge Z' that is intermedi-
ate between Z~ and Z~; thus Vo = —( I /r ),. Levy et
al. subsequently used a recursion relationship derived
from Eq. (g) in studying atomic binding energies and
chemical potentials. ' '" Kumar and Sen modified this re-
lationship by defining'

If the same orbital is involved in both the gain and loss
of an electron, as is the case for the halogens, then c, = c,

and

X=&i ~

Since the computational approach that we are using does
retain the orbital formulation, we can use Eq. (7) to esti-
mate electronegativities. The results shall be represented
by Xs.

In this work, we have calculated gM and gs for the

Z" =0.5(Z„+Z~ ) . (9)

We have recently used Eq. (8) and this definition of Z* to
compute the differences in energy within isoelectronic
pairs of atomic and molecular systems. ' This approach,
which requires calculating wave functions and electro-
static potentials for nonintegral nuclear charges, has been
called the Z transition state (ZTS) method. ' '

For the quark-atom pairs X(+—,
' ), X( —

—,
'

) and
X(+—', ), X( ——', ), Eq. (9) gives

TABLE I. Calculated electronegativities, in atomic units, for quark atoms related to the halogens.

Atoms

F(+ —,
'

)

F(0)
F( ——')

3

x~ Fq (&)]

0.6366

0.4060
0.2078

xs' Fq (7)]

0.6105

0.3848

0.1914

y (Lackner-Zweig)"

0.6077

0.3826
0.1873

Cl(+ —,
'

)

Cl(0)

Cl( ——' )

Br(+ —,
'

)

Br(0)
Br( —

—,
'

)

I(+ —,
'

)

I(0)
I( —

3 )

0.4700

0.3207

0.1880

0.4241

0.2941

0.1749

0.3573

0.2458

0.1438

0.4542

0.3052

0.1727

0.4137

0.2823

0.1634

0.3696

0.2567
0.1531

0.4548

0.3050
0.1720

0.4090

0.2789
0.1605

0.3631

0.2484

0.1452

aNo self-interaction correction was used in calculating gz.
Reference l.
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TABLE II. Calculated energy differences for isoelectronic pairs of quark atoms related to halogens.
All values are in hartrees.

Atoms

3, B

Differences of total

calculated energies,

Eq —E~

ZTS

[Eqs. (12)

and (13)] Eq. (8)'

F(+ —,'), F( —
—,')

F(+3) F( 3)

Cl(+ —,'), Cl( —
) )

Cl(+ —', ), Cl( ——', )

Br(+ —'), Br( —
—,
'

)

Br(+ —') Br( ——)

I(+-,'), I{—
3 )

I{+—', ), I( —-')

17.7423

35.4827

43.2018

86.4020

119.8970

239.7940

217.2572

434.5352

17.7423

35.4847

43.2020

86.4040

119.8965

239.7930

217.2649

434.5298

17.7415

35.4777

43.2011

86.3969

119.8555

239.7848

217.2639

434.5282

'Vo is set equal to 0.5((1/r )z + (1/r )z ).
B

and

Z * =0. 5 ( Z + —,
' +Z —

—,
'

) =Z

Z*=0.5(Z+ —,'+Z ——,')=Z .

(10) in terms of the electrostatic potential at the nucleus of the
isoelectronic neutral (nonquark) atom X(0). Further-
more, the energy difference for the pair X(+—', ) should be
twice that of X(+—,

' ).
Applying Eq. (2),

Equation (8) then becomes

E ( Z + —,
'

) E(Z —
—,
'

) =—( Z + —,
' —Z + —,

'
) Vo, = —

—,
' ( 1/r )z

(12)
and

E(Z+ —') E(Z ——') =—(Z+ —' —Z+ —') Vo z = —
—,'(1Ir )z.

and

X(Z+ —,
'

)
—X(Z —

—,
' ) = ——2 0 1

3BN r z

X(Z+ —', )
—X(Z ——', )= ——4 a

38N r z

(14)

(15)

Thus the energy differences within these pairs of isoelect-
ronic quark atoms, X(+—,

'
) and X(+—', ), can be expressed

The derivatives on the right-hand sides of Eqs. (14) and
(15) shall be approximated by finite differences:

TABLE III. Calculated energy differences for isoelectronic pairs of quark atoms related to halogen
ions. All values are in hartrees.

Ions

F (+3), F (
—

—,')
Cl (+—'), Cl (

—3)
Br (+ —,'), Br ( —

—,')
I (+ —,'), I (

—
—,')

Differences of total

calculated energies,

E~ —E~

18.1021

43.4496

120.1191

217.4599

ZTS

[Eqs. (12)

and (13)]

18.1034

43.4505

120.1195

217.4563

Eq. (8)a

18.0992

43.4476

120.1164

217.4546

F+(+ 1) F+( 1)

Cl (+—) Cl ( 3 )

Br+(+ —,'), Br (
—

—,')
I+(+]) I+( ])

17.2444

42.8857

119.6207

217.0328

17.2443

42 ~ 8857

119.6198

217.0300

17.2440

42.8855

119.6198

217.0307

'Vo is set equal to 0.5(( 1/r)z +(1/r)z ).
B
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TABLE IV. Comparison of calculated electronegativity differences, in atomic units, for isoelectronic
pairs of quark atoms related to the halogens.

Isoelectronic pair
~x~

[Eq. (1)]
~xs

[Eq. (7)]
~XZTs

[Eq. (16)]
~x

(Lackner-Zweig)'

F( + —,
' ), F( —

—,
'

)

Cl(+ —'), Cl( —
—,')

Br(+ —'), Br( ——')
I ( +

3 ) I ( 3 )

0.4289

0.2819

0.2492

0.2135

0.4296

0.2842

0.2499

0.2131

0.4191

0.2815

0.2503

0.2165

0.4204

0.2828

0.2484

0.2179

'Reference 1.

hX(Z+ —,
'

) =X(Z+ —,
'

) —X(Z —
—,
'

)

2
3

bX(Z+ —,
'

) =X(Z+ —,
'

)
—X(Z ——', )

4
3

(16)

(17)

those obtained directly, the average discrepancies being
only 0.002% for the ZTS method and 0.009% for Eq. (8).

Analogous results are presented in Table III for the
quark forms of the halogen ions X+(+—,') and X (+—,').
The agreement with the directly calculated energy
differences is again excellent, with average discrepancies
of 0.002% (ZTS) and 0.004% [Eq. (8)]. It should be not-
ed that the ZTS results presented in Tables II and III in-
volved no new computations, since they require only
(1/r ) values for nonquark atoms and ions and these are
already available. ' '

Table IV compares the electronegativity differences
AgM and b gz with those calculated by the ZTS approach
[Eq. (16)] for the isoelectronic quark pairs X(+—,'). The
Lackner-Zweig predictions are also included. All of
these values agree very well with each other. Again, the
ZTS electronegativity differences can be obtained from
existing (1/r ) data. ' '

Equations (16) and (17) can be used to obtain electronega-
tivity differences for isoelectronic pairs of quark atoms.

III. RESULTS AND DISCUSSION

Table I contains our calculated electronegativities gM
and Xs for the halogen quark atoms X(+—,

' ), obtained us-

ing Eqs. (1) and (7), respectively. The values are in good
agreement with each other and with the empirical ones of
Lackner and Zweig, which were calculated with Eq. (1)
and interpolated ionization potentials and electron
affinities. ' These results demonstrate that the density-
functional treatment of electronegativity can satisfactori-
ly be extended to atoms with nonintegral nuclear charges.

Table II compares energy differences within the
isoelectronic halogen quark pairs X(+—,

'
) and X(+—,'), as

computed by (a) taking total energy differences; (b) the
ZTS method [i.e. , Eqs. (12) and (13)];and (c) Eq. (8), with
Vo taken to be 0.5[(1/r )z +( I/r )z ] as originally

A B

suggested by Levy. Both the ZTS approach and Eq. (8)
produce energy differences that are extremely close to

IV. SUMMARY

This paper has demonstrated the feasibility of using
local-spin-density-functional theory to compute the elec-
tronegativities of monatomic systems with nonintegral
nuclear charges. Two different approaches were used and
found to produce results that are in good agreement with
each other and with an earlier empirical treatment. It
was also shown that energy and electronegativity
differences within the isoelectronic quark atom pairs
X(+—,'), X( —

—,') and X(+—,'), X( ——', ) can be obtained ac-
curately from a knowledge only of the electrostatic po-
tentials at the nuclei of the isoelectronic neutral atom
X(0) and ions X+(0) and X (0).
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