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Valence removal energies, hyperfine constants, and F.1 transition amplitudes are calculated for
the 2s»2, 2pl~2, 2p3/2 and 3s, &2 states of Li and Be . This calculation is an extension of earlier
second- and third-order many-body perturbation theory (MBPT) calculations, in which now an
infinite subset of MBPT terms is evaluated using all-order methods. Agreement with experiment at
the 0.01%%uo level for energies, and at the 0.1% level for matrix elements, is found. Issues involved

with those higher-order terms omitted by the technique are discussed.

I. INTRODUCTION

Despite the well-understood nature of electromag-
netism, the force that binds atoms, highly accurate calcu-
lations of the properties of atoms with more than two
electrons are difticult and relatively rare. Recently, how-
ever, Lindgren' has presented a nonrelativistic (NR)
coupled-cluster calculation of the energy levels and
hyperfine constants of neutral lithium in which he sums
infinite sets of many-body perturbation theory (MBPT)
terms and obtains very close agreement with
experiment —on the order of 0.01%%uo for energies and un-
der 1% for matrix elements. We have found good, but
less precise„agreement in a set of calculations that (while
relativistic) are limited to second order for energies and
to third order for matrix elements. Specifically, energy
levels differ from experiment on the order of 0.1%, while
matrix elements differed by under 1% with the exception
of the hyperfine constant of the 2p 3/2 state, which
differed from experiment by 18%. By including third-
order corrections we were able to improve the agreement
with experiment for energies to the level of 0.05%%uo for Li
and Be+. It is the purpose of the present paper to report
the results of relativistic all-order calculations that add to
our previous work the relativistic generalization of the
higher-order terms considered by Lindgren. ' We obtain
energies in the same very precise agreement with experi-
ment as in Ref. 1, and matrix elements in agreement with
experiment at the 0.1% level. The techniques used for
neutral lithium are also applicable to other members of
the lithium isoelectronic sequence. We extend our calcu-
lations to the first ion of this sequence, Be, and find
similar agreement with experiment. While the accuracy
achieved in this work is high by the standards of MBPT,
it should be noted that NR variational techniques have
recently been applied to the ground states of Li and Be+
by King and Shoup with even higher accuracy.

There is considerable flexibility in the choice of all-

order methods. For this reason we explicitly describe the
scheme used in this work in Sec. II. Numerical results
are given in Sec. III, along with a comparison with ex-
periment. Finally, in Sec. IV, we discuss the terms in
higher orders of MBPT that are left out of our all-order
method, and the prospects for accounting for such omit-
ted terms. A technical discussion of the treatment of
disconnected terms is given in the Appendix.

II. ALL-ORDER FORMULAS FOR ENERGIES
AND MATRIX ELEMENTS

A. Energies

Here we are using intermediate normalization; to normal-
ize the wave function one must multiply by Xc ', where

NC 1+2PmaPma+ g X PmnabPmnab
mnab

(2)

with p,~kt p)« —
p;,&k. In Eqs——. (1) and (2), sums over a

Lithiumlike ions consist of a valence electron outside a
filled heliumlike core. We have recently employed rela-
tivistic all-order methods to describe helium. We briefly
reprise the results from that work and describe the exten-
sions required for a description of one-valence-electron
systems. This leads to a derivation of all-order equations
for three-electron systems essentially equivalent to the
configuration-interaction (CI) approach, in which the
Hamiltonian is diagonalized within a subspace of the
many-electron Hilbert space. We shall present this
derivation first in some detail, and then briefly outline an
alternative derivation within the framework of the
coupled-cluster approach.

The exact two-particle wave function can be obtained
from the lowest-order Hartree-Fock (HF) wave function,
~oc), as

~%) = I++p, a a, + —,
' g p „,ba a„aba, ~0c). (1)

mnab
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and b run over the occupied core and sums over m and n
run over all positive-energy states outside the core; all
single-particle states here are defined in the HF potential ~

Negative-energy states are specifically omitted from the
excited-state summations; they are connected with QED
effects that are negligible at the level of accuracy of this
work. Substituting Eq. (1) into H lV) =El'), we find

(e. +5Ec—e. )p..=Xg.b..p.b+g g.b.,P...b
bn bnr

X gbcanPmnbc
bcn

(e +Eb+5EC e e„)p

(3a)

gmnab +g gcdabPmncd + X gmnrsPrsab
Cd rs

g gmnrbPra X gcnabPmc X gcnrbPmrac

+ m~n (3b)

E EHF +&Ec

EHF X ea Y g gabab
a ab

5EC
p X gabmnPmnab

abmn

Here g;~&& is the Coulomb matrix element,

g'jQ/=, 0;(r)Pic(r)g, (r')OI(r')rd 7 I

r —r'

(3c)

To generalize the above equations to the lithium case, we
write the lowest-order state as

lo, &—=a,'lo, &, [,— +(5E +5E„)]P,=g g b,„P„+gg „„P„„,
bn bnr

We are forced to neglect such a term because of the
difficulty of dealing with p nr„,b. In order to carry out
multiple summations over excited states with the accura-
cy of interest, we require large basis sets and a large num-
ber of angular momentum channels. The size of the basis
sets makes the treatment of even the simpler object p n, b

difficult. The resulting numerical computations require
the use of supercomputers, so inclusion of Eq. (8) is not
practical at present. We believe, however, that such
effects can be treated adequately using perturbation
theory; the excellent agreement with experiment shown
in Sec. III is empirical evidence for this belief.

We now apply Schrodinger s equation to the approxi-
mate wave function (6). The action of the potential on
the wave function results in terms involving one, three,
five, seven, and nine creation or destruction operators at-
ing on the core loc ). The terms with nine operators van-
ish for three-electron systems since they involve four de-
struction operators. Terms with seven operators would
have to be considered if the wave function correction of
Eq. (8) were included, but since we are not including this
correction, we drop such terms. As a further approxima-
tion we drop those terms having seven operators with
both a valence creation operator and a valence destruc-
tion operator, even though by using the anticommutation
relations these could be reduced to terms with five opera-
tors. Because of this approximation, our formalism omits
certain terms in third-order MBPT, which are included
in other formalisms. We discuss this approximation fur-
ther below. After these approximations, we are in a posi-
tion to identify the coefficients of the three and five
operator terms, and find

where the single-particle states are defined in the HF po-
tential of the heliumlike core, and loc) is the HF wave
function for this core. This state can be modified in three
ways. First, the core can be modified exactly as in Eq.
(1); second, a modification in which one of the core states
is replaced by the valence state can be made. We will in-
clude these two modifications in the following, and write

lqs) = 1++p, a a+ —,
' g p „,ba aaba,

mnab

+ g p, a a„+gp „„a a„a,a„ lo, ) . (6)

To normalize this wave function, we must multiply by
N, ', where

+u C X PmvPmv X PuaPva X PumabPmvab
abm

g PmnvaPmnva X (PvmvaPma +P vmvaPma )

The third possible modification, which we will not con-
sider in this paper, is to destroy both electrons in the core
and also the valence electron. The corresponding correc-
tion to the wave function would be described by

l5q. &= y p „„,.ba a„a„a.aba, lo, &

mnrab

X gbcanPmnbc
bcn

[e, +eb —e —e„+(5Ec+5E,)]p
gmnab +X gcdabPmncd +g gmnrsPrsab

CQ' rs

+ g gmnrbPra g gcnabPmc +X gcnrbPmrac
r c cr

+ m~n

[e„—e +(5Ec)+5E,]p

X gmavnPna g gmanrPnrva
an anr

X gabvrPmrab
abr

[e, +e„—e —e„+(5Ec)+5E,]p
gmnva +g gbcuaPmnbc X gmnrsPrsua

bc rs

+ g gmnraPru X gbnuaPmb +g gbnraPmrub
b br

a~v
+ m~n

E =EHF +5E~+c, +6E, ,

(9a)

(9b)

(9c)

(9d)
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where EHF and 5Ec are given by Eq. (3c), and where

v g gvavmPma g gabvmPmvab + X gvamnPmnva

For three-electron systems,

~g, ) = Iexp(S, +S +S )) ~0, )
mab

(10)
= I(1+s,+s, +s, +-,'s', +s,s, + ) I ~0, ) .

(13)

where S is an operator which can be represented by con-
nected Goldstone diagrams, and 0, ) is the zeroth-order
wave function, in our case given by Eq. (5). Operators in-
side the braces I. . . I are to be normally ordered with
respect to the core, that is, rearranged such that core
creation and excited annihilation operators lie to the
right of core annihilation and excited creation operators,
with the insertion of an appropriate phase. For an N-
body system, S may be decomposed into contributions in
which one, two, three, etc. , N electrons are excited from

S—S+S+ . +S (12)

y', ( y ik y sI

y i4

(b)
y I1

(c)

FIG. 1. Brueckner-Goldstone graphs representing the
valence energy in Eq. (10). Dashed lines represent Coulomb
matrix elements g „,b, solid lines ending in a circle represent
the one-particle excitation operator p „and solid lines
represent the two-particle excitation operator p „b. Exchange
graphs are not explicitly shown.

As EHF+6EC corresponds physically to the energy of
the ion core, c, +5E, may be identified as the negative of
the valence ionization energy. The Goldstone diagrams
for 6E, are drawn in Fig. 1. The final approximation that
we make is to neglect the energy shifts given in small
parentheses in Eqs. (9a) —9(d). Without these energy
shifts, our equations are equivalent to a simplified version
of the coupled-cluster approach in the pair approxima-
tion.

The coupled-cluster (CC) formalism' enables one to
construct all-order equations whose iteration leads to a
term-by-term identification with the Rayleigh-
Schrodinger linked-diagram expansion. The formalism
thus shares with the order-by-order approach the proper-
ty of being size consistent, which could be important for
accurate calculations on heavy elements. In addition, use
of the CC approach enables one to combine the all-order
technique with MBPT. It is possible to identify unambi-
guously which MBPT diagrams have been included im-
plicitly in any CC scheme and which have been omitted.
The most important omitted diagrams can then be added
using low-order MBPT.

As shown by Lindgren and Morrison, for example, it
is possible to write the exact many-body wave function
(in intermediate normalization) as

~P,, ) = Iexp(S) I ~0, ),

Our all-order equations are equivalent to neglecting the
triple excitation terms S3 and all nonlinear terms,

~q, ) =
I (I+s, +s, ) I ~0, ) . (14)

We shall refer to the omitted nonlinear terms as coupled-
cluster terms; the most important are —,

' S2 and S
&
S2.

After these approximations, one can follow the method
outlined by, for example, Lindgren and Morrison to ob-
tain the all-order Eqs. (9a) —9(d) with the energy shifts in
small parentheses absent. When the equations are iterat-
ed, these energy shifts would lead to terms not present in
the linked-diagram expansion for a general atom. Fur-
thermore, these terms can be shown to destroy the size
consistency of the approximation. Note, however, that
the valence correlation energy is retained in the energy
factor for the valence Eqs. (9c) and (9d); this term is asso-
ciated with folded diagrams.

The neglected coupled-cluster terms can be shown to
lead to energy and matrix element corrections starting in
fourth order. The neglect of S3, however, leads to errors
already in third order for valence ionization energies. We
have identified the omitted third-order terms, and include
them as a correction E,'„,'„; explicit expressions for these
terms are given in Ref. 3. As shown by Lindgren, these
omitted third-order terms are, in fact, of a type which
can be picked up in the pair approximation by the use of
a Hermitian reformulation of the CC approach. (Also,
they are the contributions mentioned above in the CI
derivation that arise from the neglect of terms with seven
annihilation and creation operators acting on ~oc).)
However, as E,'„'„is already a small correction, we shall

, not investigate this Hermitian formulation at the present
stage. With the addition of E,'„,'„,our equations are com-
plete through third-order MBPT; the principal omitted
terms are the fourth-order coupled-cluster terms, and the
fourth-order triples.

It should be noted that, for three-electron systems, it is
in fact possible to pick up a valid subset of CC terms by
including 5EC in the energy factor in Eq. (9a) and (9b). It
is possible to show that such a term in (9a) corresponds
exactly to the inclusion of S,sz in (14), while in (9b) it
corresponds to the inclusion of —,'Sz in (14), when there
are two electrons in the core. Furthermore, as may be
seen from (3a) —3(c), this modification causes the two-
electron core energy to be given exactly by the all-order
formalism. We have nevertheless chosen not to include
this term in the present calculation for two main reasons.
Firstly, because we are primarily interested in valence
properties in the present work, and the modification men-
tioned leads only to a subset of the fourth-order CC
corrections to valence removal energies or matrix ele-
ments. There are, in addition, fourth-order CC terms as-
sociated with the valence equations (9c) and (9d) that can-
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B. Matrix elements

We now turn to a discussion of the evaluation of the
matrix element of a one-body operator Z,

& q. lzlq, &

(15)

not be included merely through energy shifts, while for
matrix elements the formula (21) must be augmented with
extra terms. The second reason is that this simplicity is
special to systems with two-electron cores; for larger
atoms, such a modification of (9a) and (9b) does not lead
to an exact core energy, and in fact introduces spurious
terms, as discussed below Eq. (14). It is our hope to ex-
tend the present treatment to the whole series of alkali-
metal atoms, with the present calculation the first in the
series.

In addition to the above all-order treatment of the
Coulomb correlation, we employ MBPT to add terms
arising from the Breit interaction and from nuclear
recoil. These contributions have been evaluated as de-
scribed for Na-like ions in Ref. 10, and differ from our
previously reported results for Li-like systems by the ad-
dition of higher-order terms, and by the explicit evalua-
tion of the mass-polarization effect rather than use of the
Hughes-Eckart formula. " Specifically, for the Breit in-
teraction, we include the lowest-order term, plus a
random-phase approximation- (RPA)-like summation of
the one-body part of the Breit interaction, plus residual
second-order corrections and a third-order correction as-
sociated with Brueckner orbitals. For nuclear recoil, we
add the reduced-mass contribution (m, /M„„, )e, and
treat correlation corrections to the mass polarization as
described above for the Breit interaction. As explained in
Ref. 10, we are here using a nonrelativistic approxima-
tion for nuclear recoil (except that the expectation value
of the nonrelativistic mass-polarization operator is taken
with relativistic wave functions). This approximation is
adequate, for the nuclear recoil correction (Table II) is al-

ready small, and relativistic corrections to it are expected
to be suppressed by a further factor of o. in neutral or
nearly neutral atoms, putting them well below the level of
significance of the present calculation. In general, a fully
consistent relativistic formulation of nuclear recoil in
many-electron atoms remains an outstanding problem.

where

z, =5.„(o,in'. zn, io, )

and

z, =(o, io.(n'. Zn„)a,"io, ) .

(17)

The zero-body term Zo is formed after contraction of a
and a, , and is nonzero only for diagonal matrix elements
(v =iv). The remaining terms Z, are ones in which a„
and a, contract into 0 ZQ, ; this is the meaning of the
bar notation. It is also useful to make a similar distinc-
tion with the normalized terms

(q„ill, &=X,+5+„,
x,=(o, n', n, io, ),
5X, =(O, io, (n'. n„)a,'iOc) .

The core normalization No is in fact independent of U, as
terms in 0, which depend on U give vanishing contribu-
tions.

A direct way to evaluate M, in the pair approxima-
tion is to substitute Eq. (6) for the wave function into the
numerator and denominator of Eq. (15). However, in-
spection of the various terms that result reveals discon-
nected terms, showing that this formulation is not size
consistent. Specifically, terms appear on the numerator
having the form of matrix elements of Z multiplied by
the core normalization; such terms cancel against only
the leading order of a binomial expansion of the denomi-
nator, leaving higher-order disconnected terms.

These disconnected contributions in fact vanish in a
complete treatment, as is shown by the following identity
which holds for exact wave functions:

M „=5„,(ZO)„„„
(zi ), „„+ (19)

I[I+(5X )„„„j[1+(5N,)„„„]I'~
This result is proved in the Appendix. The subscript
"conn" indicates that terms represented by disconnected
Cxoldstone diagrams are to be discarded; the contribu-
tions must be rigorously connected. This identity is just
the generalization to one-valence-electron systems of the
well-known result for closed-shell systems, '

=
& qizill &,.„.. (20)

with

Z=

ill, &=n, o,'io, &, (16)

we have

& q. lzlq, &
= &o, lo. (n'. Zn, )o,"io, & =z, +z, ,

between states having a single valence electron outside
closed shells. It is useful to separate the numerator of
this expression into a zero-body (or core) contribution,
and a one-body (or valence) contribution, as follows.
Writing

Notice, however, that for one-valence-electron systems
there is a residual normalization contribution to the one-
body part of the matrix element associated with the con-
nected terms from 6N, and 6N . We shall refer to
(5X„)„„„asthe valence normalization in the following.
If the denominator is expanded using the binomial
theorem, one obtains the folded contributions to the ma-
trix element.

A size-consistent formulation of the matrix element
can now be achieved by substituting the approximate
wave functions Eq. (6) into Eq. (19) rather than into Eq.
(15). The core part Zo vanishes if the operator Z is non-
scalar, as is the case for all properties considered here; we
shall not consider this term any further. By use of Wick's
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theorem, we find that (Z, )„„„consists of the lowest-
order result zwu corrected by the set of 20 terms shown in
Fig. 2. The analytical expressions are

pair ™wu wv (23)

and is depicted in Fig. 3. In presenting results, we give
the lowest-order result z, and the correction

where

(a)
Zwv g amPwmua +

am

(d)
wu Qpnwznmpmu i

mn

(21)
The formalism for matrix elements presented here is

complete through third-order MBPT, as may be verified
by iterating the all-order equations algebraically, substi-
tuting into the matrix element formula, and comparing
with a complete list of MBPT terms through third or-
der. ' In Ref. 13, following earlier work by Dzuba
et al. ,

' we divided the third-order matrix element into
structural radiation (SR) terms, and terms associated
with the random phase approximation, Brueckner orbit-
als (BO), and normalization. Unfortunately, it is very
hard to make a similar division in presenting results of

(e)
Zwv X pvbzabpwa

ab

(f)
Zwu g Pmw auPma

am

W )LL

)LL
W r(

am

(h)
Zwv g PmwzanPmnua+C'C'

mna

(i)
Zw, —$ p«zmn pwnua +c.c. ,

amn

(j)Zw, = —g pmbz, bp„m„, +c.c.
abm

(k)
wv g PvazbmPwmab +

abm

~ ( I)
Pm, ZbuPwmba +C. C.

abm
(m)

P mnwa muPnQ
amn

W)&

{a)

V )L

W"
)L

W"
r IL

y

(b)

rL

W )L

(c)

y )L
i Il

Wi

~(n)
Zwu ~ Pnmwb ZabPnmva

abmn

~(o)
Zwv ~ P vmbc acPwmba

ahem

w"
) II

y )L

w,'I

y)(

wu ~ P rnwa rm P mnua
amnr

~(q)
~wu ~ Pvmba zmn Pnwab

abmn

~(r)
P muawZbnPmnab C. C.

abmn

~(s) ~ PnmwaZbuPmnab+C. C. 7

abmn

(t)
Zw, ——g p«b, Zm, p„w,b +C. C.

abmn

The valence normalization for state U is given by

v }conn g PmvPmu g PuaPua

W )L

W"

)LV)i

(k)

)LL

V)j

W )L
)L

y )L

W

ih

W )L

y

(p)
V )IL

(m)

rL

(q)
)LL

+ g PumabPmuab + X PmnvaPmnva
mna

g (PvmvaPma P vmuaPma }

ma

(22)

FIG. 2. The 20 Brueckner-Goldstone graphs representing
all-orders corrections to matrix elements corresponding to Eq.
(21). Notation is the same as in Fig. 1, and again exchange
graphs are not shown.
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y

y ii

(a)

y)I

(b)

y

+I\+
y ih

(c)

y il
)E

(cI )

y JL

y i(

(i„,

FIG. 3. Brueckner-Goldstone graphs contributing to the
valence normalization factor given in Eq. (22). Graph (a) corre-
sponds to first term in Eq. (22), etc.

W"

our all-order formalism, because the various contribu-
tions are mixed together and are difficult to separate. For
example, the diagram in Fig. 2(a) leads to both RPA and
SR contributions as the equations are iterated. Even the
normalization terms, as defined in Ref. 13, are not
uniquely associated with the denominator in Eq. (19); the
normalization terms presented in Ref. 13, in fact, result
from subtle cancellations between the denominator in Eq.
(19) and the BO-like diagram of Fig. 2(t). We shall,
therefore, not attempt to make any detailed breakdown of
the matrix element when presenting results.

One important point is that RPA terms are not fully
incorporated into the present approximation. While
RPA terms are complete through third order, certain
fourth- and higher-order RPA terms are absent ~ The
missing diagrams are of a type in which the "bubbles"
characteristic of RPA graphs are directed both upwards
and downwards, as shown in Fig. 4, where we give an ex-
ample of a fourth-order RPA term which is omitted, and
an example of a fourth-order RPA term which is includ-
ed. It is possible to devise all-order schemes in which the
full RPA approximation is included, but we shall not
pursue these at the present stage, because there is empiri-
cal evidence that we have already included the most im-
portant RPA terms, as we shall discuss in Sec. IV.
Furthermore, it is in a sense consistent to omit the
fourth-order RPA terms that we do omit, because these
would arise from the inclusion of coupled-cluster terms in
the wave function; in particular, powers of S2. Such
terms, however, have been neglected throughout in the
present approximation.

This completes our presentation of formulas. Howev-
er, before the expressions are suitable for coding into a
computer program, it is necessary to perform a rather
lengthy angular momentum analysis, and to cast the for-
mulas into the form of radial factors multiplied by angu-
lar coefficients. The appropriate all-order radial equa-

tions for one-valence-electron systems may be obtained
from those for closed-shell systems given in Ref. 5. The
fu11 radial form for the matrix element, however, is too
lengthy to include in the present article. To derive the
expression for the matrix element, we developed a pro-
gram writ ten in the symbolic manipulation language
REDUCE (Ref. 15), which embodies the standard graphi-
cal analysis rules of angular momentum. The results of
this program were checked by a hand evaluation. In
Table IV we give a term-by-term breakdown of the
hyperfine constant 3 of the 2s, &z state in Li and of the
2s, &2-2p&&2 reduced dipole matrix element in Li. This
breakdown can be used for detailed comparison with oth-
er calculations.

Owing to the complexity of the formalism, we
developed independently at least two computer codes to
calculate all of the properties discussed in this paper.
These codes were carefully tested against one another to
reduce the possibility of coding errors.

III. PRESENTATION OF RESULTS

A. Energies

The numerical method employed to solve the all-order
equations has been described in detail in Ref. 5. We use a
basis set consisting of 30 positive-energy states formed
from quartic splines; summation over the last five states
could be eliminated with no loss of numerical
significance. Details on the construction of this basis set
can be found in Ref. 17. Although the basis set enables
us to perform sums in one (radial) dimension with high
accuracy, there remains an infinite summation over the
angular momenta of the intermediate excited states; a
suitable scheme must be found to extrapolate this
partial-wave summation to infinity. In our work on ion-
ization energies, we have used two different extrapolation
schemes; we shall describe both, starting with the more
accurate and more computationally demanding scheme.

At a given stage of calculation, the orbital angular mo-
menta of all excited states are restricted to be less than or
equal to some L „;other angular momenta in the prob-
lern, such as the multipolarities of terms in the partial-
wave expansion of Coulomb matrix elements, are allowed
to take all values consistent with triangular conditions.
This restriction gives a finite number of pair coefficients
to be determined iteratively. A converged solution is ob-
tained for each value of L „=2,3, 4, 5, and 6, requiring
in all five, separate calculations. We present values for
the Li core energy 6E& and the 2s valence energy 6E, in
Table I for each value of L „.Noting the approximate
1/L, „depe dennce of the differences 5Ec(L,„)—6E&(L,„—1), and similarly with 6E„we fit these
differences to a polynomial in 1/L „ofthe form

(a) (b)
5Ec (L „)—oEc(L,„—1)= + +

L max max

FIG. 4. (a) Fourth-order RPA graph included in the present
formalism. (b) Fourth-order RPA graph not included in the
present formalism. This particular graph arises from inclusion
of the term —'S2' in

~ P~ ).

H +3L"„ (24)

After such a fit, it is straightforward to sum the series forL,„&6. In Table I we show the results from two three-
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TABLE I. Accurate L extrapolation of Li 2s energy and Li+
core energy.

L max

Extrapolated
(3-4-5)
(4-5-6)

(3-4-5-6)

Final

2s 1/2

—0.001 806 48
—0.001 835 32
—0.001 844 37
—0.001 848 07
—0.001 849 85

—0.001 852 60
—0.001 852 62
—0.001 852 62

—0.001 852 6(4)

Li+ core'

—0.042 394 6
—0.043 106 3
—0.043 364 2
—0.043 478 9
—0.043 537 1

—0.043 636 1
—0.043 635 1
—0.043 634 7

—0.043 635 (4)

'Core energy excludes energy-shift contribution and is not ex-
act.
Error in final result includes estimate of basis-set error.

point fits, based on L,„=3, 4, and 5 and L „=4,5, and
6, and on one four-point fit with L „=3,4, 5, and 6.
The results show the high stability of this extrapolation
scheme. Indeed, the error in the final result is dominated
by basis-set truncation error, which we have estimated
from an evaluation of second-order energies with basis
sets of size 30, 60, and 70.

The results for the 2s valence energy have been
transferred from Table I to our general summary in Table
II. For the remaining states in Table II, we have adopted
a cruder partial-wave extrapolation which requires less
computation. The all-order equations are solved for
L „=6only, and a partial-wave decomposition is made
for 6E„

max

5E, = g 5E, (K) . (25)
K=0

The values of K,„are related to those of L,„; for s

states, there is a sufficient number of pair coefficients to
permit evaluation up to K „=L „,while for p states
one can evaluate up to K „=L „—1. One can extra-
polate the partial-wave expansion (25) using a polynomial
fit as described above. However, it should be noted that
the extrapolation is in principle incorrect; in all of the
cases that we have tested, it overestimates the true limit.
The error in the extrapolation is caused by the slight
L „dependence of each term in the partial-wave expan-
sion (25). For example, one finds that the K=2 term be-
comes progressively smaller in magnitude as L,„ is in-
creased from 2 to 6. Performing the extrapolation just
described gives a result —0.0018534 a.u. , to be com-
pared to the more nearly correct result —0.001 825 6 a.u. ,
from Table I. One can regard this extrapolation method
as giving a lower limit to the valence energy; an upper
limit is provided by the truncated L „=6 result from
Table I, —0.001 849 9 a.u. One can now take the average
of these two values and assign an error which spans the
entire range from lower to upper limit; for the 2s energy
this would yield —0.001 852(2) a.u.

We have adopted this extrapolation approach for all
states considered in the present work apart from the Li 2s
state. The dominant error is now due to the partial-wave
extrapolation, and is about five times the expected basis-
set truncation error. However, the overall numerical er-
ror is still small enough, in the sense that the discrepancy
from experiment is somewhat larger. The principal error
in the whole calculation is, therefore, the missing correla-
tion corrections.

We turn now to a discussion of the 2p3/2 2p, &2 fine
structure, which we can in principle obtain by direct sub-
traction of the 2p3/2 and 2p&&z ionization energies. Our
results are summarized in Table III. It is evident that
many digits are lost in making the subtraction. However,
we have tested the numerical significance of the various
differences and find a high degree of stability, showing

TABLE II. Summary of energies for valence states of Li and Be+.

Li
Term

Hf
E(pair)
E(3) extra
Breit
Nuclear recoil

Total
Experiment'

2$1/2

—0.196320 4
—0.001 852 6(4)

0.000 0106(1)
0.000 003 2
0.000 016 2

—0.198 142 9(5)
—0.198 142 2(1)

2P 1/2

—0.128 638
—0.001 606(2)

0.000 010
0.000 002
0.000 007

—0.130226(2)
—0.130236(0)

2P 3/2

—0.128 636
—0.001 606(2)

0.000 010
0.000 001
0.000 007

—0.130225(2)
—0.130235(0)

—0.073 801 0
—0.000 389 0(4)

0.000 001 7
0.000 000 7
0.000 006 0

—0.074 181 6(4)
—0.074 182 0(1)

HF
E(pair)
E(3) extra
Breit
Nuclear recoil

Total
Experiment'

—0.666 183
—0.003 140(3)

0.000 011
0.000 018
0.000 042

—0.669 252(3)
—0.669 242(1)

—0.519447
—0.004 364(6)

0.000 018
0.000 022
0.000 016

—0.523 754{6)
—0.523 764(1)

Be+
—0.519406
—0.004 360(6)

0.000 018
0.000 008
0.000 016

—0.523 724(6)
—0.523 734(1)

—0.266 523 4
—0.000 733 6(8)

0.000 001 6
0.000 004 4
0.000 016 7

—0.267 234 4(8)
—0.267 231 3(5)

'C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser. , Natl. Bur. Stand. (U.S.) Circ. No. 35 (U.S. CAPO, Washington,
D.C., 1971),Vol. I.
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TABLE III. Fine structure of the 2p levels in Li and Be+.

Term

HF
E(2;n=70)
E(pair;L ~ 6;n =30)
E(2;L + 6;n =30)
E(3+;pair;n =30)'
Breit
Nuclear recoil

Total 1

Total 2'
Experiment

HF
E(2;n =70)
E(pair;L ~ 6;n =30)
E(2;L ~6;n =30)
E(3+,pair;n =30)'
Breit
Nuclear recoil

Total 1'
Total 2'
Experiment'

2p &/z

—0.128 638 491
—0.001 375 340(60)
—0.001 604 309(250)
—0.001 371 693(250)

0.000 002 149(2)
0.000 006 840

—0.519446 721
—0.003 964 220(80)
—0.004 357 088(600)
—0.003 952 244(600)

0.000 021 875(14)
0.000 016269

2p

Li
(c=1.800 fm, t=2.3 frn)

—0.128 635 940
—0.001 374 890(60)
—0.001 603 789(250)
—0.001 371 227(250)

0.000 000 653
0.000 006 840

Be+
(c=2.067 fm, t =2.3 fm)

—0.519 406 115
—0.003 960 770(80)
—0.004 353 365(600)
—0.003 948 755(600)

0.000 007 610(5)
0.000 016 266

2p3/z —2p I/z

0.000 002 551
0.000 000 446(1)
0.000 000 521(25)
0.000 000 466(25)
0.000 000 055(3)

—0.000 001 496(2)
0.000 000 000

0.000 001 501(3)
0.000 001 556(5)
0.000 001 534(2)

0.000 040 605
0.000 003 436(3)
0.000 003 723(130)
0.000 003 489(130)
0.000 000 234(12)

—0.000 014 265(16)
—0.000 000 003

0.000 029 773(17)
0.000 030 007(25)
0.000 029 980(25)

'E(3+,pair;n =30)=E(pair;L 6;n = 30)—E(2;L 6; n =30).
Total 1 equals HF+E(2; n =70)plus Breit+ nuclear recoil.

'Total 2 equals E(3+,pair;n =30) plus total 1.
C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser. , Natl. Bur. Stand. (U.S.) Circ. No. 35 (U.S. GPO, Washington,

D.C., 1971),Vol. I.
'L. Johansson, Ark. Fys. 20, 489 (1961).

that much of the basis-set truncation error is systematic
between the 2p3/p and 2p»z calculations and cancels on
performing the subtraction. For example, for Li, we have
evaluated the second-order valence energies with a basis
set consisting of 70 positive energy states, and with one
consisting of 60. In both cases the difference of 2p3/p and

2p, zz second-order energies (truncated at 1. ,„=6) is 466
nhartree. With a basis set consisting of 30 positive ener-

gy states, however, this difference becomes 466 nhartree,
indicating a truncation error of about 5% with this re-
duced basis set.

The contribution to fine structure of the Coulomb
correlation energy beyond second order may be estimated
by subtracting the second-order energy from the con-
verged all-order correlation energy; each calculation is
performed with the same basis set (of size 30) and
I. ,„=6. The details of this subtraction are given in
Table III. We assume a basis-set truncation error in this
higher-order correlation correction of 5%, that is, the
same percentage error that we found in the second-order
contribution when evaluated with a basis set of size 30.
Finally, we add contributions from the Breit interaction
and nuclear recoil, the latter in fact being negligible.
These two contributions were evaluated as described in
Sec. II, using a basis set with 70 positive energy states.

(26a)

C
iV

Dv=i —g (26b)

where m is positive and equals the transition energy; in
our calculations we use the experimental value of the

B. Matrix elements

We next present our results for hyperfine constants 3
and B, and for reduced dipole matrix elements. The
hyperfine constants 3 and B have their usual
definitions because the electric quadrupole moment Q
of Li or Be is not accurately known, we present values
for B/Q for each element. In our hyperfine calculations,
we take account of the reduced mass effect at the end of
the calculation by multiplying all contributions by
[m, /(m, +M„„,)] . The lowest-order radiative correc-
tion to the electron magnetic moment is also included in
our hyperfine calculations. These multiplicative correc-
tions make slight, but significant, differences for 2s and 3s
hyperfine 3 constants. For E1 transition matrix ele-
ments we use two forms for the dipole operator, the
length form DL, and the velocity form Dv,
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transition energy for co.

In Table IV we give a diagram-by-diagram breakdown
of the 2s hyperfine constant A for Li, and of the length
form of the 2s-2p

& &2 reduced dipole matrix element in Li.
The terms correspond to the 20 diagrams in Fig. 2 and
Eq. (21); in addition there is a normalization contribution
defined by

norm (Zt }conn

1

I [1+(5N )„„„][1+(5N, )„„„]j '/~

(27)

which gives the additional effect of including the normali-
zation denominator in Eq. (19). We also give a diagram-
by-diagram breakdown of the valence normalization for
the 2s state of Li, as defined in Eq. (22) and Fig. 3. For
each quantity, we give the result with fully iterated and
with lowest-order coefficients. The lowest-order pair
coefficients are given by

stituting (28) into the right-hand side of the singles equa-
tion (9a} and (9c) with p, =0. A comparison of lowest
order with iterated results enables one to judge the im-
portance of iterating certain classes of correction to high
order.

In Table V we give our results for the theoretical
hyperfine constants of 2s, 2p, and 3s states in Li and Be+.
In Table VI, our values for the quadrupole hyperfine con-
stant B of the 2p3/2 states in Li and Be+ are presented.
Reduced matrix elements for E1 transitions between 2s
and 2p states and between 2p and 3s states in Li and Be+
are presented in Table VII. The calculations presented in
Tables V —VII were all performed with L „=6; the
effect of the partial-wave extrapolation being negligible.
The dominant source of numerical error arises from the
finite basis set and was estimated by evaluating Z „, in
lowest order (as defined above) with basis sets of various
size.

IV. DISCUSSION OF RESULTS

gmnav
(28}

A. Energies

and the lowest-order singles coefficients result from sub-
It may be seen from Table II that the general level of

error in valence removal energies is 10 phartree, or

TABLE IV. Contributions to matrix elements in Li. x [y]=x X 1(Y.

Figure
A (2s]g2&MHz)

Lowest order Iterated
& 2p i/2 llez ll»1/2 )

Lowest order Iterated

2(a)
2(b)
2(c)
2(d)
2(e)

2(A

2(g)
2(h)
2(i)
2(j)

2(14)

2(1)
2(m)
2(n)
2(o)

2(p)
2(q)
2(r)
2(s)
2(t)

Normal
Total

70.33(1)
2.7[—2]

12.13
0.13
6.3[—7]

—2.7[—3]
3.3[—5]
2.11
8.6[—2]

—2. 1[—2]

1.8[—3]
1.2[—2]

—1.7[—2]
1.66
0

0.19(4)
1.30
2.91

—0.82
—1.43

—0.14
88.44(5)

95.52(2)
0.70

13.52
0.16
4.3[—4]

5.1[—3]
8.5[—4]
1.50
0.12
2.6[—4]

5.7[—2]
5.1[—3]

—6.6[—3]
2.70
0

0.28(4)
1.87
4.75

—1.18
—1.97

—0.22
117.82(5)

—0.011 60
—1.1[—6]
—0.029 20(1)

0.000 47
0

1.1[—7]
—4.2[—10]
—0.000 10

3.3[—6]
0

1.1[—8]
—4.5[—7]
—4.1[—7]

0
0

0.000 57
—1.2[—5]

0.000 19
3.2[—5]

—8.3[—5]

—0.001 49
—0.041 21(1)

—0.014 28
—2.7[—5]—0.032 86(1)

0.000 61
0

—2.0[—7]—6.0[—8]
—0.000 13
—3.8[—6]

0

3.3[—7]
—2.0[—7]

2.6[—6]
0
0

0.000 77
—1.5[—5]

0.000 26
4.6[—5]

—0.000 12

—0.002 09
—0.047 84(1)

3(a)
3(b)
3(c)
3(d)
3(e)

2s valence normalization
7.81[—5]—5.33[—11]—7.14[—5]
3.76[—4]—7.06[—7]

9.62[—5]—3.62[—8]—9.99[—5]
5.37[—4]
7.95[—7]
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TABLE V. Magnetic dipole hyperfine constants, 3 (Mhz), for 2s, 2p, and 3s states of Li and Be+.
Conversion factor: 1 a.u. =6.579684X 10 MHz.

Term 2s i/2 2p 2p3/2 s 1/2

HF
Pair

'Li
I=3/2 gi =2.170 949 (1) M=7.014 36 a.m. u. m„'/m, '=0.999 765 4

284.65 32.32 6.46
117.83(5) 13.63(1) —9.49

66.95
26.29(2)

Total
Experiment

402.47(5)
401.75'

45.96(1)
46.17(35 )

—3.03
—3.07( 13)'

93.24(2)

HF
Pair

'Be+
I=3/2 gz = —0.784955 (2) M=9.00999 a. m. u. rn„'/m, '=0.999 8174

—498.23 —93.37 —18.66
—127.40(9 )

—24.57( 1) 17.62( 1)

—128.06
—30.92(2)

Total
Experiment

—625.63(9 )—625.01

—117.94( 1 )
—118.6( 3.6)'

—1.04( 1)
/~/ &o.6t

—158.98(2 )

'R. G. Schlecht, D. W. McColm, Phys. Rev. 142, 11 (1966).
G. J. Ritter, Can. J. Phys. 43, 770 (1965).

'J. D. Lyons and R. K. Nesbet, Phys. Rev. Lett. 24, 433 (1970).
D. J. Wineland, J. J. Bollinger, and W. M. Itano, Phys. Rev. Lett. 50, 628 (1983).

'J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, Phys. Rev. A 31, 2711 (1985).
'O. Poulsen, T. Anderson, and N. Skouboe, J. Phys. B 8, 1393 (1975).

Term

HF
Pair

Total
Other

Li 2p3/2

5.492
—0.159(3)

5.333(3)
5.325( 1)'
5.363'

Be+ 2p3/2

43.86
—0.67(5)

43.19(5)
41b

'I. Lindgren, Ref. 1.
J. L. Heully and A.-M. MArtensson-Pendrill, Phys. Scr. 31, 169

(1985).
'R. K. Nesbet, Phys. Rev. A 2, 661 (1970).

0.01%. Two exceptions are the 2s and 3s valence ener-
gies in Li. As we shall discuss shortly, the extra accuracy
here is probably fortuitous. The treatment of the Breit
interaction and nuclear recoil should be accurate to about
1 phartree or less, and so the principal source of error is
presumably the omitted fourth-order effects, namely the
coupled-cluster terms and the fourth-order triples. We
can partially verify this conclusion by making use of the
coupled-electron pair approximation (CEPA) scheme
CEPA-1 described by Ahlrichs' to estimate the order of
magnitude of coupled-cluster terms. This scheme in-
volves modifying the energy factors on the left-hand sides
of (9a)—(9d) by adding certain energy shifts. We find a
contribution of order +10 phartree for 2p, &2. Alterna-
tively, we can infer the size of coupled-cluster terms by
subtracting our pair-correlation energy from that calcu-
lated by Lindgren, ' who included the dominant coupled-
cluster terms in his iterative procedure. This suggests a
contribution of size +22 phartree for the 2p, &2 state. We
expect the remaining discrepancy to be primarily due to
the omitted fourth-order triples, suggesting that these

TABLE VI. Electric quadrupole hyperfine constants, B/Q
(MHz/b), for 2p3/2 states. Conversion factor: 1 a.u. =234.9647
MHz/b.

contributions also enter at the 10-phartree level for the
2p, &z state. As for the 2s state, we estimate coupled-
cluster terms to be + 10 p hartree from use of the
CEPA-1 scheme, and infer them to be +19 phartree
from comparison with the calculation of Lindgren. The
discrepancy with experiment in the present calculation,
however, is on the order of 1 p hartree, implying that
there is a high degree of cancellation between the
coupled-cluster contributions and the fourth-order triples
for the 2s state. Interestingly, this cancellation does not
seem to persist for the same state in the next member of
the isoelectronic series, Be+.

We believe that the next level of accuracy, the 1-
phartree level, can be reached by including both the
fourth-order triples and the fourth-order coupled-cluster
terms in the calculation. While it is in principle possible
to do this within the framework of an all-order approach,
the computer memory required to store the triple excita-
tion coeScients p~«, b, in a reasonably complete calcula-
tion would be prohibitively large, especially in a fully rel-
ativistic formulation. An alternative scheme is to identify
the omitted terms from fourth-order MBPT, and to
evaluate them individually, in much the same way that
we have done with E,'„,'„ in the present work. Because
the MBPT terms can be coded essentially as nested loops,
there is relatively little demand on computer memory.

Turning now to the fine-structure results in Table III,
we find agreement with experiment at the 20-nhartree
level for both Li and Be+. As we shall see, the relatively
close agreement with experiment for Be+ is probably for-
tuitous. Some of the discrepancy is due to our incom-
plete treatment of the Coulomb correlation. From a con-
sideration of the size of the omitted fourth-order effects
in the 2p, &2 and 2p3/2 ionization energies, we expect the
omitted Coulomb correlation for the fine structure to be
on the order of lgo of the second-order correction, that
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TABLE VII. Reduced matrix elements for E1 transitions between 2$ and 2p states and between 2p and 3$ states in Li and Be+. L
and V refer to length and velocity forms [Eqs. (26a) and (26b)], respectively.

Term L

HF
Pair

2$
& /p-2p 1/

co =0.067 906 07
3.364 3.419

—0.048 —0.101

2$1/2-2p 3/
CL) =0.067 907 62

—4.758 —4.835
0.068 0.143

Li
2p] /2 3$1/2

60 =0.056 054 13
2.487 2.470

—0.055 —0.038

2p3/2 3$, /2
&=0.056052 58

3.518 3.494
—0.077 —0.054

Total
Expt.

3.316 3.317
3.305(1)'

—4.690 —4.692
—4.674(2)'

Be+

2.433
2.48(11)

2.433 3.441
3.51(15)

3.440

HF
Pair

2$, /2-2p, /,
co =0.145 478

1.874 1.965
—0.024 —0.114

2$1/2 -2p 3/2

cu =0.145 508
—2.651 —2.780

0.034 0.162

2p 1/2 -3$1/2
Q) =0.256 533

0.882 0.890
—0.014 —0.022

1.258
—0.031

2p3/2 3$, /2

co =0.256 503
1.248

—0.020

Total
Expt. '

1.850
1.80(2)

1.851 —2.617 —2.618
—2.54( 3 )

0.868
0.89(6)

0.868 1.227
1.26( 8 )

1.227

'A. Gaupp, P. Kuske, and H. J. Andra, Phys. Rev. A 26, 3351 (1982).
G. A. Martin and W. L. Wiese, J. Phys. Chem. Ref. Data 5, 537 (1976).

'J. Bromander, Phys. Scr. 4, 61 (1971).

is, about 5 nhartree for Li, and about 40 nhartree for
Be+. However, a substantial amount of error must also
arise from our incomplete treatment of correlation
corrections to the Breit interaction. This seems likely in
view of the fact that the highest-order terms that we have
included in the Breit correlation, the third-order BO
terms (defined in Ref. 9), are —119 nhartree for the Li
fine structure and —545 nhartree for the Be+ fine struc-
ture. It would perhaps be interesting to incorporate the
Breit interaction into the iterative procedure to attempt
to refine the calculation of the fine-structural interval.
We note in passing that radiative corrections to the fine
structure are about 5 nhartree for Li and about 70 nhar-
tree for Be+.

B. Matrix elements

In general, a critical comparison of our matrix ele-
ments with experiment is hampered by the relatively
large experimental errors. An exception to this statement
is provided by the 2s hyperfine constant, which is known
experimentally with high precision. We shall, therefore,
discuss the hyperfine constant first and in detail.

Referring to the 2s hyperfine entry in Table IV, we see
that the dominant diagrams are Figs. 2(a) and 2(r), which
correspond mainly to the important RPA effects, and
Fig. 2(c), which corresponds to BO effects. Smaller con-
tributions come from Figs. 2(b), 2(s), and 2(t), which cor-
respond mainly to BO effects, and from Figs. 2(n) and
2(q), which are predominantly SR contributions. There
are very small, but just significant, contributions from
Fig. 2(d), a BO cross term, from Fig. 2(h), a BO
modification to an RPA effect, and from the normaliza-
tion. In general, diagrams which involve core singles
coefficients p, are very small or completely negligible.
The suppression of core singles relative to valence singles
may be understood on energy denominator grounds: the

energy required to excite a 1s electron to a 2s state is 2.60
hartree, while the corresponding energy for excitation of
a 2s valence electron to a 3s state is only 0.12 hartree.

In order to put the all-order calculation of hyperfine
structure in perspective, we have summarized in Table
VIII the result of our present calculation together with
results of our earlier calculations employing MBPT at
various levels. We see that RPA effects are very impor-
tant, accounting for about 90% of the correlation. The
second-order correction, which is the leading RPA effect,
is large, but there are substantial contributions from
higher-order RPA terms. The next most important term
is the third-order BO term. In general, the sum of all-
order RPA corrections and third-order BO corrections
forms an accurate approximation for the whole series of
alkali-metal atoms from Li to Cs, as shown by our earlier
work in Ref. 2. For Li, the level of accuracy achieved
within this approximation is about 0.5%%uo, and this rises to
about 3% in the heavier alkali-metal atoms, where the
BO contributions are relatively more important. We next
consider the effect of the additional third-order diagrams
besides the RPA and BO contributions already discussed;
these are the SR and normalization terms for which ex-
plicit formulas are given in Ref. 13. These enter at the
right level to account for the remaining correlation, but
have the wrong sign. We have found a similar situation
for matrix elements in Na, showing that at least fourth-
order MBPT corrections are required in order to produce
a significant improvement in accuracy beyond the results
given in Ref. 2. The present method leads to a significant
improvement over the results of third-order MBPT.
From Table IV, we see that to improve upon the results
of Ref. 2, one needs to add the third-order SR terms, and
in addition fourth-order terms in which an RPA effect is
modified by a BO eff'ect [Fig. 2(h)], and fourth-order BO
terms [from the difference between the iterated Fig. 2(c)
and the lowest-order Fig. 2(c)]. Other effects are general-
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TABLE VIIE. Contributions to the Li 2s, &2 hyperfine constant, A (MHz), in various approximations.

Approximation

Z(1)
Z(1)+Z(2)
Z(1)+Z(RPA)
Z ( 1 ) +Z(RPA) +Z(3;BO)
Z( 1)+Z(RPA) +Z(3;extra)'
Z (1)+Z(pair)

Experiment

Value

284.65
354.96( 1 )

390.29( 1 )

400.30(1)
399.19( 1)
402.47( 5 )

401.75

(from experiment)

—29.15
—11.65
—2.85
—0.36
—0.64

0.18

'Z(3;extra) indicates the sum of all third-order contributions besides the third-order RPA already in-
cluded in Z(RPA).

ly at the level of the present discrepancy with experiment.
As mentioned above, our all-order formulation of the

matrix element does not incorporate fully the RPA. We
would expect the 2s hyperfine structure to be quite sensi-
tive to omission of important parts of the RPA sequence,
as RPA effects constitute the majority of the correlation.
Since our final result is in such close agreement with ex-
periment, however, we conclude that the dominant RPA
terms are already included in the present approach. Nev-
ertheless, it may be interesting to consider schemes in
which the RPA is fully included, as it is possible that the
omitted RPA trems form a substantial part of the
remaining correlation.

Moving on to the hyperfine constants for the other
states, we note that our theoretical results for 2p&&2
hyperfine parameters (Table V) are probably rather more
accurate than the experimental values, with which they
agree. The hyperfine 2 factors for the 2p3/2 states are in-
teresting because there is a high degree of cancellation
between the HF value and the higher-order correlation,
notably the RPA contribution. Our previous result for Li
from third-order MBPT was —3.71 MHz, in significant
disagreement with experiment. In the present all-order
approach, however, we obtain —3.03 MHz, in agreement
with experiment. As for the electric quadrupole con-
stants (Table VI), the theoretical error is probably at
about the same level as the numerical error indicated in
the table, and we find good agreement with the calcula-
tion of Lindgren, ' which includes a slightly different set
of terms. As noted by Lindgren, it is not possible to use
these values for B/Q to improve the accuracy of our
knowledge of Q, as the experimental uncertainties in B
are too high.

Finally, we consider our results for El transition ma-
trix elements given in Table VII. The level of disagree-
ment between the length and velocity results is small, on
the order of 0.05%, and we tentatively take this as an in-
dication of the level of theoretical error in the calcula-
tion. As higher-order correlation effects are added, we
expect the length and velocity calculations to come into
closer agreement. The 2p-3s matrix elements are in
agreement with experiment, and are probably somewhat
more accurate than the experimental values. However,
there is a clear disagreement between theory and experi-
ment for the 2s-2p matrix elements; in every case, the ex-
perimental value is smaller in magnitude than our predic-

tion. Similar discrepancies have been found by other au-
thors: our value 3.317 a.u. for the 2s-2p, &z matrix ele-
ment in Li is in excellent agreement with the value 3.318
a.u. obtained by Sims et al. ' using a method based on
Hylleraas coordinates, and with the value 3.319 a.u. ob-
tained by Froese-Fischer using a multiconfiguration HF
code. The precise cause of these discrepancies with ex-
periment is not fully understood at present, but in view of
the close agreement between different theoretical ap-
proaches, it seems likely that the problem lies on the ex-
perimental side.

In summary, we have presented the results of a numer-
ically accurate, fully relativistic implementation of the
basic pair approximation in Li and Be+. The approxima-
tion gives valence removal energies accurate to about
0.01% (or 10 p, hartree), and matrix elements accurate to
0.2% or less. The principal error in the calculation arises
from omitted correlation effects, which enter in fourth or-
der for both valence removal energies and matrix ele-
ments. We believe that the accuracy of these calculations
could be improved, perhaps to the 1-phartree level for re-
moval energies, by including these omitted fourth-order
effects perturbatively. However, the next stage in our
calculations is to apply the present treatment to heavier
one-valence-electron atoms, notably Rb, Cs, and Tl,
which are of great interest on account of the need to in-
terpret measurements of parity-nonconserving and time-
reversal violating effects. Here a fully relativistic many-
body treatment such as we have given in essential ~ We
expect the level of accuracy for these heavy atoms to be
somewhat worse than for three-electron atoms, where
MBPT converges relatively quickly. In Cs, for example,
third-order MBPT gives hyperfine parameters and al-
lowed E1 transition matrix elements accurate at the
3 —S%%u& level, while one is already obtaining accuracies of
order 0.5%%uo at this level with three-electron systems.
Our hope is that the present technique, or a slight
modification of it, will yield hyperfine parameters and E1
matrix elements accurate to the 1% level (or less) in these
heavy atoms. If this is so, then the technique could be ex-
tended to the parity-nonconserving and time-reversal
violating problems with great profit.
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This equation may be understood by considering Wick's
theorem expansion of the left-hand side. Each term in
this expansion must have the form of a connected part in-
volving Z, multiplied by a residual factor containing the
uncontracted operators S and S. By Wick's theorem,
this residual factor must be proportional to

APPENDIX

In this appendix we shall prove Eq. (19). It is sufficient
to show

&P. lzlg. & =5„.(z, ),.„.& lt. lg. &+(z, ),.„„N, , (Al)

The numerical factor in Eq. (A6) is a weighting factor
giving the number of ways in which m objects can be
selected from m, and n ' objects from n. One may now in-
sert Eq. (A6) into Eq. (A5), and resum the exponentials
by means of

5N, = (5N, )„„„No, (A2)

&qlzlq& = &ply& & ylzlq&, .„„. (A3)

We shall assume the result of Lindgren and Morrison,

where the core normalization No is defined by (18).
As a preliminary, we shall outline briefly a proof of the

following well-known result for a diagonal matrix ele-
ment in a closed-shell system,

n 00 oo

v=n —n' . (A8)
n =0 n'=0 n'=0 v=o

This yields the required result (A3).
We shall now extend this proof to situations involving

one-valence-electron systems. Here the exact wave func-
tion is given by

~P& = [exp(S) j ~0 (A4)
~ g, ) =Q, a„~oc ) = [exp(S„)}a,~oc ), (A9)

where S is a purely connected operator, and ~oc ) is the
closed-shell core in the zeroth-order approximation.
Thus, expanding the exponential,

&qizil()= g g '
&o, l[(s')-}z[s"}lo,& .

n=om =0

(A5)

Now, the crux of the proof is the following "partitioning"
identity

&o, i
[(s')-}z[s"}!0, &

where U denotes the valence electron, S, is purely con-
nected, and ~oc) is again the closed-shell core. Let us
consider the numerator first:

&q Izl@, &= g g, &0 Ia. [(S.') }Z[s„"}a,'IO &

n =0 m =o n!m!

(A 10)

m!n!

0
m'!n'!(m —m')!(n —n')!

x & o, i
[(s')-'}z[s"'}~0, &,.„„

x &0, /

[(s')--- }{s" "
} io, & . (A6)

We again factor the terms in Wick's theorem expansion
of the right-hand side into connected parts involving Z,
and a residue. This time, however, there are two
categories of connected part, according to whether a
and a„are or are not included with Z (a and a, must go
together, otherwise there would be an odd number of an-
nihilation and creation operators and the expression
would vanish). The generalization of (A6) is thus

m!n!

0 m'!n'!(m —m')!(n —n')!

X(&O, i[(S„')-'}Z[S,"'j/0, ),.„„&O,/a [(S ) j[S," "}a,/oc)

+ &Oc/a [[(S ) '}Z [S„"'j]a, IO, &„„„&Ocl[(S ) 'j [S," "'}10c) ) . (A 1 1)
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lzl0. &=&ocl& z&. loc).„&ocla & fl, a, loc &

+ & o, la. (n'. zn, )a,'l o, ),.„„
x&o, n'. n. lo, ) . (A12)

The first term contains the overlap & f„l tt, )
=$, & g, l g„), while the second involves

&oc lQt 0, loc ) =No (the parts of f1 and O„depending
upon the valence states do not contribute). Thus finally

The bar notation used here is explained below Eq. (17).
Using this expression and resumming exponentials as be-
fore gives

we obtain the desired identity Eq. (Al).
Similarly one has

5N„= &oc a, (Q, A, ) a, loc)

=&o, la, (n', n, )atlo, &,.„„&o,n,'n, lo, )

=(5N, )„„„No . (A13)

where the second line follows from the usual sort of parti-
tioning argument.

This completes the proof of Eq. (19). Note that this
proof applies to any operator Z, whether of one-body,
two-body, etc. , type.
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