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Ground-state properties of the deformable jellium
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A self-consistent calculation is done to evaluate relevant ground-state properties of the electron
gas in the deformable-jellium model. We get the melting point of the Wigner crystal and the
ground-state energy per particle at all densities. The single-particle state function in the Slater
determinant is expanded in a basis of periodic functions. This expansion guarantees the existence of
a particle density centered on a simple-cubic lattice. The transition to the Wigner crystal is ob-
tained as the value of the Wigner-Seitz parameter at the point where the state function changes
from a periodic density to a plane-wave density. Our results for the transition density to the Wigner
crystal are close to values obtained using alternative methods. The ground-state energy obtained in
this work is compared to recently reported theoretical predictions.

I. INTRODUCTION

The ground-state properties of the electron gas have
been a matter of increasing interest. Beginning with the
pioneering work of Wigner, who predicted crystalliza-
tion at low densities, many methods have been proposed
in order to obtain these properties, in particular, the
Wigner crystal melting point. The reported values of the
transition point are very different depending on the mod-
el and the method used. ' They range from about r, =6
up to 700, where the Wigner-Seitz parameter r, is the in-
terparticle distance, in units of the Bohr radius. The
theoretical methods include the random-phase approxi-
mation; analysis of the behavior of the free energy for
both the crystal and the fluid phases; ' and variational
calculations ' and Monte Carlo variational calculations,
where the authors compare directly the energies of
different states. Stochastic simulation of the Schrodinger
equation' and the integral-approximant method" have
given similar results for the melting point. The density-
functional formalism for jellium' ' and self-consistent
calculations for the electron gas in deformable jellium'
can be mentioned among the relevant methods used to
find the transition point of the Wigner crystal.

Jelliurn is a simplified and useful model to describe
many-body systems in which the neutralizing background
is assumed to be uniform. ' ' ' In the deformable jelli-
urn, instead, the neutralizing background is deformed in
order to get local neutrality and consequently diminish
the energy of the system. ' ' ' The basic idea of a deform-
able background was first introduced by Overhauser, '

and has provided interesting descriptions for the ground
states of many-particle systems, in particular in the elec-
tron gas. ' ' In the past some of us have reported
Hartree-Fock (HF) self-consistent calculations to solve
the fermion gas in deformable jellium using an exponen-
tial basis for the orbitals in the Slater determinant.

In this work a different and more refined self-consistent
HF calculation is performed for the electron gas. Our
aim is to obtain the transition point (melting point) from
periodic solutions —which are charge-density waves
(CDW's) —to plane waves (PW's). The ground-state en-
ergy is also evaluated. The general method used has been
described in Ref. 20. The deformable jellium, as defined
in Ref. 18, is used in order to attain lower values for the
energy of the system. The spatial factor of the spin orbit-
als is proposed to be a periodic expansion in terms of
cosine functions. This expansion is given in such a way
that it guarantees the possibility for periodic nonhomo-
geneous density centered on a simple-cubic lattice. The
algebraic form in terms of cosine functions lets one han-
dle a larger number of terms than the exponential form,
with a considerably diminished computational effort.
Our results are compared with other theoretical models
recently reported for the electron gas. Some conclusions
about the convergence of the proposed expansion are also
made.

II. THE MODEL

In the deformable jellium it can be shown that the
equations for the ground-state HF energy only have the
particle kinetic energy and the exchange terms. ' The
HF equations are written including the orthonormality
condition for the HF doubly occupied orbitals. The spin
orbitals in the Slater determinant are expanded in terms
of a cosine function series
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where y& is the spin function and V is the volume in
which normalization conditions are imposed. The first
term in this expansion (n =n~=n, =O) corresponds to
the PW solution. The expansion gives the possibility to
describe a lot of systems with different symmetries. In
this work, we study a system that may present periodic
density centered on a simple-cubic lattice. Therefore we
selected A„=IV =JV, =JV. Consequently, all the sums
run from 0 up to the same positive value JV. In this way
the number of terms in the expansion of Eq. (1) is equal
to (JV+1) The coefficients C„„„areself-consistentlyx' y' z

determined, and the value of qo is selected in order to
satisfy the HF equations.

With the proposed HF basis of states, it is possible to
obtain the periodic density

JV JV' JV
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FIG. 1. Energy difference per particle between the trivial PW
and the expansion in Eq. (1) as a function of the parameter r, .
The results for JV= 1 up to JV= 5 are shown in curves 1 —5.

where po is the PW density.
In order to calculate the ground-state energy per parti-

cle, using Eq. (1) for the spin orbitals, it is necessary to
evaluate terms of the form

JV= Ho g ~C„~ [1+—", (n„+n +n, )]
n

for the kinetic energy and for the exchange energy

( P') Ai

X 512 g g g g C„* C„*C„C„I(n, , n4)
l 2 3 4

X F (n, , n2, n3, n4), (4)

where X is the number of particles and C„=—Cn „„.We
x y z

have used g„ for g„g„g„and n =n, i
x y z

+n j+n,k. I' is a sum of terms which are products of
Kronecker 6 functions in the components n, n, and n,
of the four n, 's. Finally, I is a function that stems from
the integrals of the Coulomb potential in terms of the
components of n, and n4.

It is interesting to notice that the exchange term, Eq.
(4), has been greatly simplified taking into account sym-
metry considerations: We have to evaluate 8 terms in-
stead of 8 for each triad of values (n, n, n, ) in the
sums. With a basis in terms of cosine functions the ma-
trices have dimension (JV+ 1 ), instead of (2A'+ 1 ),
which is the matrix dimension with the exponential ex-
pansion.

III. DISCUSSIC)N

Self-consistent calculations were done to determine the
coefficients C„, for a different number of terms in the ex-
pansion of Eq. (1). The values considered for JV range
from 1 up to 5. In the first two cases, the coefficients in
the state function were determined with an approxima-
tion of 10 with respect to the last iteration. In the larg-
est expansions, JV=3 up to 5, the coefficients were deter-
mined with an approximation of 10 . The number of
iterations needed in each case to get self-consistency in

TABLE I. Number of terms for the equivalent state func-
tions with the exponential and the cosine basis.

Exponential basis Cosine basis

27
125
343
729

1331

8

27
64

125
216

the accuracy required explodes near the transition point.
Naturally the results for the melting point and the
ground-state energy depend on the number of terms in
the expansion for the state function. However, due to the
fact that the proposed basis is adequate to describe this
system, we expect that the results converge rapidly start-
ing with a given value of JV=JV,„. This fact justifies the
cutting in the number of terms for that value of JV'.

For all the expansions we have considered, it is ob-
served that the self-consistently determined state function
is a CDW in the low- and intermediate-density regions.
But it reduces to a PW for high densities. The value of
the parameter r, where the solutions transform from
CDW to PW will be taken as the melting point. ' This
criterion is similar to that given in Ref. 12, where the au-
thors consider a CDW instead of a close-packed struc-
ture. It is worthwhile to comment that near the transi-
tion, r, ~ r, (melting), the electrons are not strongly local-
ized. That result was also reported in Refs. 12 and 13.
However, as the value of r, increases, the electron's den-
sity rapidly resembles a close-packed structure.

The difference in energy per particle hE between the
results with the trivial PW solution and the state function
in Eq. (1) is displayed in Fig. 1. The results are given in
rydbergs in terms of the interparticle distance r, . We
show the results for expansions with values of Ã from 1

up to 5. The matrix dimensions in all cases are given in
Table I, and these values are compared with those corre-
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TABLE II. Energy difference per particle in units of 10 Ry
for three values or the parameter r„as a function of the number
of terms in the state function.

50
I

IOO
I

l50
1

200

EE(r, =30)

0.04
0.29
0.36
0.37
0.37

AE(r, =70)

0.04
0.96
1.36
1.61
1.76

AE(r, = 120)

0.037
0.78
1.16
1.47
1.71

K -2.0—
a(z
N
O

4
5

sponding to the exponential basis. It follows from Fig. 1

that the transition from periodic to homogeneous density
occurs at r, =28.8, 26.2, and 26. 1 for the cases with
JV=1, 2, and 3, respectively. And it occurs at r, =26 for
IV=4 and 5. When the state function has more terms,
the transition point converges to a value of the density
parameter r, =26. As the values of the melting point us-
ing alternative models fall in a wide interval (6 ~ r, ~ 700),
it is interesting to comment about some results similar to
ours. Our HF, deformable-jellium value of the melting
point is near the result of Van Horn ' of r, =27, obtained
by an improvement of the de Wette stability criterion for
the Wigner lattice. In Ref. 14, Das and Mahanty, using
the density-functional method for the jellium, obtained a
value of r, =30 for the transition point with a fcc struc-
ture. Our results are also near to those of Refs. 12 and
13, where r, =25 and 26 are obtained, using the density-
functional method and the jellium model.

It is worthwhile to comment that a greater numerical
precision, in the determination of the C„coe%cients, is
required to evaluate the energy in the region near the
melting point than far from it. This fact, together with
the greater number of iterations needed near the melting
point, makes the evaluation of the energy in the region of
the Wigner transition extremely expensive.

As can be seen from Fig. 1, the difference in energy AE
increases with the number of terms in the expansion of
the state function. In table II we show some energy re-
sults in terms of r, for a different number of terms in the
expansion. Then, the lowest energy is obtained with the
greatest expansion for the state function. From the re-
sults in Fig. 1 and Table II, we can expect that our ener-
gies converge rapidly to limiting values when A' in-
creases. Notice that, even with an expansion in which
A'=1, we have good energy results as compared with
other values obtained with the deformable jellium. '

With JV= 5 our energy results converge in the
intermediate-density region 26 ~ r, 60.

In Fig. 2, the ground-state energy per particle in ryd-
bergs is shown, in terms of r, . Our results are given for
the orbitals with 27, 64, 125, and 216 terms in the expan-
sion. We also show other recent results for the ground
state of the electron gas in jelliurn. ' '" From Ref. 6 we
took the values that correspond to the ground-state ener-
gy of the solid, for the higher approximation. As can be
seen from Fig. 2, our energy values are close to those of
Ref. 6 and the "exact" solutions of Ref. 10 at r, =50. At
other densities it is seen that with the function with 27

Q+ CA and NNN

Qx CA and ABL

FIG. 2. Ground-state energy per particle in rydbergs as a
function of r, . The solid curve shows the results obtained in this
work with JV=2, 3, 4, and 5. The value of JV labels the curves.
The points (0) show the results of Ceperly and Alder (Ref. 10).
The results of Aguilera-Navarro, Baker, and de Llano (Ref. 11)
are indicated by X. The results of Nagara, Nagata, and
Nakamura (Ref. 6) are indicated by +.

terms, curve 2, we are close to the energies in Refs. 6, 10,
and 11. Naturally, if we use larger expansions our results
converge to a lower energy, because of the characteris-
tics of the deformable jellium used in this work. If corre-
lation corrections to the HF approximation of this work
are taken into account, the energy curves in Fig. 2 are ex-
pected to move up, becoming nearer to the results in the
above-mentioned references. It is worthwhile to remark
that we are comparing results of different models of the
same physical system: the electron gas. Different models
clearly contain distinct approximations. Therefore this
comparison reflects the differences between the physical
assumptions.

From a technical perspective the main difference with
other self-consistent HF calculations is the use of an im-
proved basis of state functions. In particular, we have to
handle matrices of dimension ( JV+ 1 ), instead of
(2JV+1), as would be the case with an exponential basis.
These expansions are excellent, as can be observed from
the rapid convergence of the energy results in the
intermediate-density region. Finally, the results for the
melting point of the Wigner crystal obtained in this work
are close to other results obtained with the density-
functional method.
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