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Isolated solitons in an ultrarelativistic electron-positron plasma
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The nonlinear propagation of intense electromagnetic radiation in an electron-positron plasma of
a pulsar magnetosphere is investigated. Basic equations describing a macroscopic behavior of an ul-

trarelativistic plasma (T )&mc ) in a covariant form are used to treat the problem. Relativistic and
time-derivative ponderomotive nonlinearities are considered. Earlier results of envelope solitons in
the weak relativistic case are confirmed, while isolated solitons are found to exist in the ultrarela-
tivistic plasma.

Pulsars are regarded as rotating magnetized neutron
stars with a strong magnetic field ( —10' G). Theoretical
models' has been developed to predict the production of
electron-positron plasmas in the pulsar magnetosphere.
According to the current polar-cap pulsar model, the
pulsar magnetosphere is composed of secondary electrons
and positrons which result from pair production induced
by high-energy curvature-radiation photons, emitted by
primary positrons or electron beams coming from the
pulsar surface. The problem of pulsar emission and pul-
sar magnetospheric structure stimulates the investigation
of some physical processes in the electron-positron plas-
ma, such as the propagation of electromagnetic waves
and the nonlinear mechanism related to the pulsar emis-
sion.

In our previous paper we showed the relativistic exci-
tation of envelope solitons in an electron-positron plasma
of a pulsar magnetosphere. Large-amplitude localized
electromagnetic radiation is found to exist in the pulsar
environment. In this Brief Report we extend our earlier
investigation on the nonlinear propagation of intense
electromagnetic radiation in a pulsar magnetosphere to
include the ultrarelativistic effects. We consider the mac-
roscopic behavior of an ultrarelativistic plasma
(T))mc ) in a covariant form. Relativistic and time-
derivative ponderomotive nonlinearities are accounted
for. Weak relativistic effects are found to excite the en-
velope solitons, while the ultrarelativistic nonlinearity
generates isolated solitons in the plasma, which means
the electric or magnetic fields appear as isolated spikes.

Basic equations describing the macroscopic behavior of
an ultrarelativistic plasma in a curved space-time were
derived in Ref. 5. The system consists of the Einstein
equation, Maxwell equations, the conservation law for
particles, and the equation of state of matter. We rewrite
the formulation here.

The Einstein equation is written as

4m.G
Rap —

—,'gapR =
4 Tap ~

c

where R p is the Ricci tensor, g p the space-time metric
tensor, R the scalar curvature given by R =g pR p,

T p is the energy-momentum tensor consisting of plas-
ma and electromagnetic field,

TaP TaP(M)+ TaP(EM)
7

Tap(M) (p +g ) u au p pg ap

Ta@EM)= ( —Fa~Fp + i F papg ap)1

4 A, 4 op

(4)

where p is the plasma pressure, 8 the mass-energy densi-
ty, u the Quid's four-velocity, and F p is the covariant
electromagnetic field tensor given by potential A

F.p= Ap..—A..p=a. Ap —apA. ,

where i) =(BIBx)a denotes the usual derivative.
The Maxwell equations are written in the curved

space-time as

a,r.p+a~p, +ape, .=0,
p 4n.F.p = j

(7)

where J is the four-current density given by

PC dX
J &—g dx''

in which g is the determinant of g p and p is the charge
density.

The particle conservation law is given by

(nu ). =0, (l0)

where n is the proper number density.
For adiabatic changes in plasma the equation of state is

considered as

G =6.67X10 cm g 'sec is the gravitational con-
stant, and T p is the energy-momentum tensor. The Ein-
stein equation itself presumes no form for T p, but the
Bianchi identity implies

T.P=o,')p

where the semicolon denotes the covariant derivative for
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P =const X n

B T~~[EM~= P~~&1
(12)

where I is the ratio of specific heat.
The case of special relativity can be realized on a point

in the curved space-time. At this point the gravity is
completely canceled in a moving frame. In such a case
g ~ changes to q ~ and the covariant derivative takes the
usual form. From Eq. (2) with Eqs. (3), (4), and (5) one
obtains

are used.
The continuity equation is written as

B—(ny)+div(nyv)=0 .
at

(23)

(y, n, )+div(y, n, v, ) =0,
Bt

p, (B,+v, V)v,

(24)

For a two-species plasma (subscript s denotes species), the
basic equations are

and

B&T ~' '=8&[(p +4')u u~ p—rt ~]= F~jt3 —. (13)
1

c

v Bp
=pq, E+—v, XB —,pq E v +

C

—Vp, ,

On the other hand, the four-velocity u (a = 1,2,3) is
given by (p, c )

—div(p, c v, )+p, E v, =0,

(25)

(26)
Va

( 1 P2) 1 /2

u'= 1

( 1 P2)1/2

where P= u/c. From the above expression we get

(p+6')u u&T'tt'= +p5 p (PRO),c(1—P)

(14)

(15)

(16)

4m. 1 BE
V B= )+—
divE=4mp,
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P, =const X n, ',

(27)

(28)

(29)

(30)

(31)

c(1—I3 )
(17) where

(p+@)
(1 —P')

(18)
3 s

pm, s p (ps @s) pq, s qsys "s
C

Bt Bt
——[y~(p + v ) ]—div[y (p + 8 )v]+E.J=0, (19)

where the relations T~=T~, and
T &=T ~are used.

From the component (a =0) of Eq. (13), we obtain the
energy-conservation law in a three-dimensional-vector
form,

~=ep~pnp p+&e'Ve e e~ p=Xplpnp+'Veqe e

y
—(1 u2/c2) —1/2

For the limiting case: v, «c, p, «c, the usual two-Auid
equations in the nonrelativistic case are recovered.

Let us introduce the density momentum in the relativ-
istic plasma:

where

( 1 P2)
—1/2

J=pv=eynv . (21)

From the component (aAO) of Eq. (13), one obtains the
equation of motion,

y' (p+6') —+v V v
a

C2 Bt

The equation of motion is

d, p,
dt

1
pq 5 E+ vq X8 —VP

where

d
=B,+v, .V .

dt

~$
P, =

2 (p, +@,)v, —=p, v, .
c

(32)

(33)

= —Vp+pE+ XB—i v Bp +E J
c 2

(22)

For the nonlinear propagation of a circularly polarized
wave along the ambient magnetic field Boz in an
electron-positron plasma,

where Eq. (19) and E„hiE =E(z, t) =E (z,t)e— (34)

1 1 o . 1 . 1F~J = F~j + ——g F ~j =pE+——JXB
c 0 c 0 c P cP=1

p, +ip, =p, (z, t)=p,*(z,t)e (35)

the plus sign denotes the R polarization, the minus sign
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denotes the L polarization of the wave and E—+ and p,
—

are the slowly varying complex amplitudes), the trans-
verse oscillations of plasma are governed by the equation

E =—IE e—' '+' ' (8, 1(. are constants),

it can be shown that

(45)

+
ki 0,p, =p, E —+p, v„f (3,E dt-,

dt
(36) IEI'=f(g), g=z —v, t, u, = Kc K1+

k
(46)

where

pq, .&O

Vs
(p, +(, )

c

pq, .&O

Pm, sc
(37)

lp E 1—kvsz

For the slowly varying amplitudes of the propagating
waves, from Eq. (36) we get

(47)

Equation (44) shows that the ponderomotive force is
charge independent; therefore the ambipolar potential in
the electron-positron plasma may be neglected. Further-
more, neglecting the mass inertia (which means that the
time variation of low-frequency electrostatic oscillation is
less than the plasma frequency) in Eq. (41), we get

cu 2kuoA IE
2

1+
CO 0 (v(tv —Q ) 8vr

Ps =
co+ Q, —kvsz

The wave equation is

(38) where po is the initial (background) pressure density.
Under the WKB approximation the wave evolution is

governed by the nonlinear Schrodinger equation

BE —— BE —= Bz 2 t 2 t~ Ps
C s Pm, s

(39)

2 2

i B+ B, E—+ B E—+DE—=0,
CO 2' (48)

which in the linear response determines the dispersion re-
lation

k c
CO

4m(pq, )

Pm, s

kvsz1—
CO

(v(co+ fl, —ku„)
(40)

The longitudinal plasma motion is governed by the pon-
deromotive pressure, thermal pressure, and the ambipo-
lar potentia1 due to the charge separation, i.e.,

where

2
COCO&

~ —Q np

6p
2(po+6 )

Then

is the nonlinear frequency shift.
We consider the isothermal state of plasma,

P =nKT with kT =const .

(49)

(50)

= —p, ,V,4+f~ —V,p, .
Q)CO&

4

(tv' —~')' KT 2(p, + (. )

kvon
1+

(v((u —0 )

(e,—»a, IEI'

+—— [(v (e,—1)]B 2

co 6) BcO
(42)

We consider (v/k » Iv„I and fl, = —0, Qz =0; then,
from the dispersion relation (40), we get

2c2
e~= =1-

CO

with

2cop

0 (43)

Here, 4 is the ambipolar field and f is ponderomotive
force. An expression for the time-derivative ponderomo-
tive force is given in Ref. 7:

IE-I'
X

8~

Thus the evolution equation takes the form

i (a, +u, a, )E +P"'a,'E +Q-I E 'E =-0, --
where

C
2

pt
2'

1 ~u(u& 1 1

8~ (tv' —g')' KT 2(p, +(:)

2kvpA
X 1+

cv(cv —fl )

(51)

(52)

(52a)

4ne no
2

COp-
(po+( )/c

For P'Q& 0, the wave is modulationally unstable and ad-
mits a solution

and accordingly
2

cc) Q2 2
B

2kB
(v(cv —fl )

(44)

E—=Eo sech

where

2P' E gOexp( i QE o /2 ),— (53)

For a linear phase shift of the wave Eo =(A/Q)'i
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and A =~(V +P'x) 8—is the soliton amplitude and
5= ~2P'/QEO)' is the soliton pulse width.

For co & 0 and weak relativistic plasma (KT &Po
+6) an analysis shows that Eo —A '~ v'T /no, which
means that the amplitude of the soliton is proportional to
the square root of the temperature, and inversely propor-
tional to the density. It predicts that a large-amplitude
localized field is possible in the pulsar environment where
the temperature is high and the plasma density is rela-
tively low.

The pulse width is

iE +—
i =ED csc (pg), (54)

with

Eo =(2A/Q)' p=(A/P')' (54a)

which means it is fully determined by the phase shift of
the wave, not by the temperature and density.

Let us investigate the case of an ultrarelativistic plas-
ma, i.e., KT & Po+ C. For this case, as we see from Eq.
(52a), Q & 0, and we have the solution

1/2

5=
QE0

k]r 1+
2k

1/2 7

coQ

C
2

The solution Eq. (54) describes a soliton which is cusped
at the center, where B&E becomes infinite. Thus the elec-
tric or magnetic fields appear as isolated spikes.
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