
PHYSICAL REVIEW A VOLUME 40, NUMBER 4 AUGUST 15, 1989

Two-exponential decay from a double-well potential
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We consider tunneling from a double-well potential to the continuum. Simple expressions are
found for the decay rate. For a special configuration of the potential, where the energy levels in two
wells are coinciding, the decay time dependence reveals a peculiar quantum-interference behavior.
A possibility for observing these effects is discussed.

INTRODUCTION

Considerable attention has been recently paid to
quantum-mechanical effects at the macroscopic level. '

One of such effects, the macroscopic quantum tunneling
has been observed. However, a more spectacular effect
that violates Bell inequalities may be observed in quan-
turn coherence of macroscopically distinct states in a
double-well potential. It was proposed to look for such
effects in oscillations of a trapped magnetic field in Super-
conducting quantum interference device (SQUID)
rings. ' We wi11 show that similar quantum-coherence
effects may also be observable in tunneling from a
double-well potential to continuum, and there the
quantum-interference results in a peculiar behavior of the
two-exponential decay rate.

bound state of Ho '.) Equation (1) is supplemented with
the initial condition bo '(0)=1, bI, '(0)=0. Substituting
Eq. (1) into the Schrodinger equation and extracting the
singular parts of the noncompact potential W&o(r) (cf.
Refs. 4 and 5) we obtain a system of coupled equations
for bot '(t), b'„'(t). Following the same procedure as in
Refs. 4 and 5, we obtain for the Laplace transform of
b ( )2( )t

vo-

I. GENERAL ANALYSIS

We discuss here the double-well problem where tunnel-
ing to continuum is allowed from the second well [Fig.
1(a)]. [For the sake of simplicity, take V(R, )=V(Rz)
= Vo.] Let us assume that each of the wells, taken sepa-
rately [Figs. 1(b) and 1(c)], has bound states @o"(r) and

4z '(r), at energies of Eo'" and Eo ', respectively, and that
Eo"—Eo ' is much less than the spacing between levels in
the wells. We shall start with the system localized in the
second well at t =0, as a prepared state ~40 '), so that
H' '~4' ')=E' '~4' ') [where H' '= —V' /2m
+ U2(r)]. The potential Uz(r) is shown in Fig. 1(c), and
U2(r)= V(r) for R, ~ r ~Rz, while Uz(r)= Vo outside
this region. As soon as the distorting potential
W,o(r)= V(r) U2(r) is s—witched on, the state ~@0' ') is
no longer an eigen state of the total Hamiltonian
H=Ho '+ 8',o, but 'is a wave packet 4o(r, t) spreading in
time, written as
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in terms of the bound and the continuum eigenfunctions
of the Hamiltonian Ho '. (We take into account only one

FIG. 1. The potential V(r) and the auxiliary potential func-
tions used in the approximation of Sec. II, ro, rl, r2, r3, r4 are
the classical turning points.
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b"'(e)=$'[e—((I)' '~ W,o~(I)"')

—&~'o"
~
W(o«Eo" +&}W(ol~'o"&]

'

where the Green's function G(E) satisfies the equation

G(E)=(1 A)—(E+ V() Ho—) '(1+ W', oG) . (3)

Let us assume that the barrier separating the first well
from the continuum in the potential W, o [Fig. 1(d)] is so
wide, that the tunneling can be discarded and the level
Eo ' can be considered as a stable one. Then G~(E) is

given by GU (E)+G~ (E) for E-Eo ' —Eo( ', where GU
1 0 I

and G~ correspond to potentials U, (r) and
0

Here W, o(r) = W,o(r)+ Vo [Fig. 1(d)] and A
=~(I)o( ')((I)o '~ is the projection operator onto the state
~@o '). Since bo '(t) corresponds to the inverse Laplace
transformation of bo )(e), complex poles of bo '(e) in the
lower half of the e plane would generate an exponential
falloff of bo '(t), i.e. , bo '(t) —exp( —I t/2), where
I = —2Im(eo) is the decay width. Positions of these
poles are obtained directly from Eq. (2) by solving the
equation

+(@()'~ W, ()G(E(() '+eo}W)o~C)() ') .

II. APPROXIMATION

Equation (4) might be treated perturbatively by ex-
panding G(E) in power series of the potential W, o. The
first term in such a series for ep would correspond to the
Weisskopf-Wigner approximation, since it neglects the
continuum-to-continuum transitions in the original equa-
tions for bo ' and b), ' (see Ref. 5). However, the potential
W, o [Fig. 1(d)] is not small and such an expansion would
not be practical. Therefore, one has to look for a
different series for ep with a small expansion parameter.
The desired series was found ' by expanding G(E) in
powers of

G ~= ( E + V' /2m —W, () )

The first term in this series [G =6~ in Eq. (4)] is the ap-
proximation for ep to be employed here. Higher-order
terms were evaluated and found to be small.

Some intuitive reasons in favor of our approximation
are the following. It is only the projection operator A
which makes G different from the total Green's function

G =[E+V /2m —V(r)]

The projection excludes the bound-state wave function
~@o(

) ) from the spectral representation of G (E), and only
the nonresonant wave functions do appear in the spectral
representation of G(E) for E -E(o '. [The resonant wave
functions correspond to exponentially increasing solution
of the Schrodinger equation for r (r4 (Fig. 1}which can
be matched only to ~&I)o ') decreasing exponentially for
r &r3.] Since the nonresonant wave functions are ex-
ponentially suppressed in the inner region, the second po-
tential well in V(r) can be filled up, so that
V(r)~ W,o(r) [Fig. 1(d)] which leads to our approxima-
tion, G ~G~. Finally the desirable perturbation series
for ep can be found from iterating the equation

Wo(r) = Wi()(r) —U, (r)+ V(),

respectively (Fig. 1). [Notice that the potential Wo(r) is
obtained from W, o(r) by "filling" the first well up. ] One
can show that the error owing to such an approximation
has the order of magnitude

exp[ —+2m ( Vo Eo)(r—4 —r, )] .

Substituting G~=GU +G~ into Eq. (5) and then into
1 O

Eq. (4), we obtain after some algebra an equation for the
energy levels E =E

p
'+ ep,

E =E' '+ ((I)'"~ W ~C)"')

) ( (I)(2)
i
W

i

(I)(1)) [2

+ ( (I)o( )
i W() + W G - W

i (I)()
' ),

0

where Wi(r) —Vo and W2(r) = Uz(r) —Vo. Apparently,
this is the secular equation det(E H, (()=0 w—ith

Ep +d[
(7)

Ep '+d2+b, p
—i

2
J

Here di 2
= ((I)o' '~ W2 i ~(I)o' ') is the "diagonal" energy

shifts of the levels Ep" ' and

5=2((I)(') '~ W, ~(I)(')") =2(C)o '~ W~~(I)()")

is the energy splitting due to the tunneling between the
two wells. An additional complex energy shift appears as
well,

bo —iI ()/2=(@' '~ W + W G- W ~(I)' )),
0

due to tunneling to continuum from second well [cf. Eq.
(3)]. In the quasiclassical limit ' 5=(N)NzP, 2)' /2m,
I p=N2P34/4m, where

r(

P&(
= exp( —2 J ~p (r) ~dr )

J

is the barrier penetration probability, N, and N2 are
quasiclassical normalization factors of the bound-state
wave functions Np" and 4p ', respectively. It is
noteworthy that in the case of overlapping levels the
quasiclassical approximation cannot be applied straight-
forwardly to calculations of the level widths, but it is val-
id for matrix elements in the secular equation (7) (cf. Sec.
V).

Solving Eq. (7), we obtain the energy levels

G =G~+G~( U2 —
V() )G —G~A(l+ W, ()G)

obtained directly from Eq. (3) (see Ref. 5).

(5) E+ =
—,'(Ei +E2 —,'i I"())—
+—'[(E, E+ ,'il ) +5 —]'—
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where E, =Ep" +d& and E2=Ep +d2+Ap. For degen-
erate levels (E, =E2), one has a peculiar physical behav-
ior resulting from an interplay of the "coherent" tunnel-
ing between two wells and a tunneling from the second
well to the continuum. We find that if 26& I p then

E+ =E, —
—,'iI ()+—,'(45 —I ())'

i.e., the system has two diff'erent levels with the same
width, (I p/2). In the opposite case, 25 & I p, and

i( [I +(I 2 452)1/2]

the system has the same level with two different widths.

III. TIME DEVELOPMENT

There the effective Hamiltonian is a n X n matrix with all
elements zero except for diagonal H;;, and off-diagonal
H, , +& matrix elements describing transitions between ad-
jacent wells. When a well i is coupled to the continuum,
H, , acquires an imaginary part —I, /2.

IV. DECAY RATE AND A COMPARSION
WITH CLASSICAL MACROSCOPIC THEORIES

The time dependence of the decay rate

R (t) = —(d/«)[lb(')" (t) I'+ Ib,")(t)l']

is obtained from Eq. (11). If the system was initially in
the second well,

R (t) =(r +r )[r, exp( —
—,'I t)

In order to get the time dependence of the wave func-
tion, Eq. (1), let us perform the inverse Laplace transform
of bp '(e) [Eq. (2)] by closing the integration contour
around the poles in the complex e plane. Using Eq. (8)
and e=E —Ep ' we obtain

b p
'( t) = [ I + exp( —I + t /2)

—I exp( —
—,'I t)] /(I + —I )

R (t) has a maximum at t =0, then it goes to zero at

t =t() =[2/(I +
—I )] ln(I +/I' ),

(12)

—I exp( —I t/2)]/(I —I ),
where I +=[1p+(I p

—45 )'~ ]/2. In Eq. (1), the wave
function is given as a sum of two terms,

q(p(r, t) = ti()r2, t)+ $2(r, t),
so that ~gz(r, t)~ is the probability to find the system in
the second well, and ~it)2(r, t)

~

—outside the second well.
One can derive from the original equations for b p

' and
b'), ' (Ref. 5) that fz=GW(pg2, where the potential 8')p is
shown in Fig. 1(d). In the present approximation,
G =G~=GU +G~, and Pz is represented, in turn, as a

I p

sum of two terms: the first one would give the probabili-
ty to find the system in the first well, and the second
one —to find it in the continuum. Using the spectral rep-
resentation of the Green's function GU one obtains after

I

some algebra that the first term is GU 8 )pf2=bp 4p",
1

where

b(1)(E E(1) )

((I)(2)
~
~ ~(y( i) ) b(2)(E E(2) ) (10)

E —E(»

is the probability amplitude for finding the system in the
first well. One can see that the two-vector
B (t) =(b()"(t), b p '(t) ) satisfies the equation

i'B'" =H„B(t),
dt

where the nonHermitean 2X2 matrix H, tt is given in (7).
If the system starts from the second well, the initial con-
dition is B(0)=(0,1), if it starts from the first well,
B (0)=(1,0).

Equations like (11) have been used for describing de-
cays of two-state systems. They are usually derived by
neglecting the continuum-to-continuum transitions. A
similar equation can be derived for an n-well potential.

and reaches the second maximum at t =2t p. However, if
the system was localized initially in the first well, the de-
cay rate is quite diff'erent,

R (t)=I I (I +I )[exp( —
—,'I t)

—exp( —
—,'I t)] /(I —I ) .

(13)
It is zero at t =0 and reaches a maximum at t =tp.
Equations (12) and (13) describe the extreme cases of the
localized initial states. Unlike the one-level decay, the
time dependence of the decay rate depends essentially on
the state preparation. Practically, the initial state may be
not even pure. The general case will be considered in a
forthcoming work.

The results for the decay rate obtained in the frame-
work of quantum-mechanical description, Eqs. (12) and
(13), in particular, the dip due to destructiue interference
with the fiux from the first well, Eq. (12), apparently,
contradicts the classical probabilistic approach. Accord-
ing to that approach, ' the macroscopic system at a
given time t must be in one of the wells [with respective
probabilities n'"(t) and n' '(t)], or in the continuum.
Using the standard arguments of the probability conser-
vation one gets a system of master equations for n "(t)

n'(t)= —y, n "(t)+y, n' '(t),

Y(2n (t) (r)2+r2p)n

where y, 2 stands for the probability of nonradiative tran-
sitions between the wells, and y2p is for the probability to
escape from the second well to the continuum [corre-
sponding to 5 and I'p in Eq. (11)]. (Equations of this type
were used for description of the nuclear fission in pres-
ence of a double-humped barrier. ) In contrast to Eq.
(11), all the matrix elements were real there. This would
destroy the interference effects in quantum-mechanical
descriptions. Actually, if the system was initially in the
second well, i.e., n'"(0) =0, n '(0) = 1, the decay rate



BRIEF REPORTS 2169

as given by Eq. (14), would be

R (t) =
—,'y~o[(1 —P)e +(1+P)e +

] .

Here P= ( 1+4y f2/y20)

(15)

m(n+ —,'), which corresponds to the quantization condi-
tion for the state bound in the second well. For E, close
to E2, cosy= —,'(E, E—2) Tz, where

is the classical period of motion in the well. The resulting
expression

Unlike the quantum expression in Eq. (12), this result
shows no dip in the decay rate.

V. NONOVERLAPPING LEVELS

Equations (7) and (11), which are fundamental for the
present work, have been derived for close levels,
~EO" Eo '~ &5—, I O. The method is valid, however, also
in the case of nonoverlapping levels, ~E& E2 —

~
))5, I 0, as

soon as these levels can be considered as isolated from
other discrete states. We will show it by the comparison
of E+ given by Eq. (8) with the result of the semiclassical
approach which can be applied for nonoverlapping levels.

First of all, if 5 « ~E, E2 ~
in E—q. (8), the width of the

state localized in the outer well is just —2ImE =I o.
The width of the state localized in the inner well is given
by expanding the square root in Eq. (8),

—2ImE+ =I O5 /4(E, E2)— (16)

On the other hand, the width can be calculated by means
of the semiclassical approximation, which stems from a
simple formula of Ref. 5,

I =(4a /mk)lq(R )X (R )I' . (17)

Matching the semiclassical expressions for gk at the turn-
ing points r2, r3, r4, we get finally

I + =N, P,2P34/16m cos g, (18)

where g= I„'p(r')dr', and P,2, P34 are the penetration

probabilities for the barriers.
The width is increasing sharply, if g is close to

Here a =2m [ V(R
&

) —E& ], R
&

is shown in Fig. 1,
k =2mE, , y(r)—=@0"(r) is the bound-state wave func-
tion, and y&(r) is the wave function of the continuous
spectrum (with the first well filled up), normalized to
gk(r) = cos(kr +51, ) as r ~ ~. The semiclassical expres-
sion for q&(r) under the barrier is

qp(r) = [N& /4~p (r) ~]' exp —f ~p (r') ~dr'

I"+ =N)P)qP34/4mT2(E, E2)—

coincides with (16), as I O=P34/T2, 5 =N, P, 2/mT2,
and Nz =4m /T2 in the semiclassical limit.

CONCLUSION

If the shape of a two-well potential can be controlled, it
is possible to detect a sort of resonance in the decay of
two close levels. (A similar resonance in the penetration
probability was considered by Ricco and Azbel. ) When
the levels are not overlapping, each corresponds to a state
localized mainly in one well, and their widths are quite
di6'erent. Yet as soon as the potential parameters are
tuned to make the levels coinciding, the states are rear-
ranged drastically, and the widths become comparable.
In this situation the quantum interference makes the time
dependence more complicated than just the sum of two
exponents. The preparation of the initial state is also im-
portant now, as the level population number is no longer
sufhcient for its complete description. Probably, the
efFect which manifests itself as a dip in the time depen-
dence of the decay can be observed experimentally. This
can be realized for a particle moving in a "washboard po-
tential" with small tilt. Such a potential is obtained in
the current-biased Josephson junction in experiments for
observation of macroscopic quantum tunneling. For ob-
servation of two-exponential decay one has to choose the
potentia1 tilt in such a way that some level in the inner
well would coincide with an initially higher level in the
outer well.
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