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We have studied theoretically the movement of large molecular groups of DNA double helices in
solution, which are driven by the electromagnetic field. The longitudinal vibration of nucleotides
and the torsional movement of bases are taken into account at the same time. A set of coupled non-
linear partial differential equations has been established, and we have solved these equations by the
method of perturbation. The result shows that there exists resonant absorption of microwave ener-

gy for both longitudinal and torsional modes. The resonant frequencies for the former and the
latter are in the region of gigahertz and subterahertz, respectively. In addition to an nth-harmonic
resonance at co„,our theory also predicts a subharmonic resonance at co„/2. The strength of the
latter is proportional to I, where I is the length of DNA. The necessary conditions to observe
these resonances are also discussed.

I. INTRODUCTION

Edwards, Davis, Salfer, and Swicord' (EDSS) have re-
ported in 1984 a very important experimental result on
the demonstration of resonant absorption of microwave
energy by aqueous solutions containing DNA in the re-
gion of several gigahertz. The resonances observed by
EDSS have been assigned to the longitudinal acoustic
waves driven by a microwave field in DNA. Although
their result is still controversial, the work of EDSS has
attracted a lot of attention theoretically. The theory of
DNA lattice dynamics proposed by Prohofsky and co-
workers since 1974 seems to be the most accurate and de-
tailed theory for DNA (Ref. 4) (see also Ref. 2 and the
references therein). The theory takes into account the
helical conformation and all atoms besides the hydrogen
in the unit cell. One of the key problems related to the
EDSS experiment is the damping caused by the viscosity
of water. Van Zandt and co-workers have developed a
series of theories of the hydration layer around the poly-
mer to explain the result of EDSS. ' A theory of non-
linear dynamics proposed by Scott and co-workers has
been used successfully to explain several outstanding ex-
perimental facts. ' However, only one degree of
freedom —the longitudinal displacement —was taken into
account in Scott's theory. It is the purpose of this paper
to consider another degree of freedom in addition to the
longitudinal one. It is well known that the longitudinal
vibration of nucleotides, the rotation of bases (base rota-
tor) around the axis parallel to the helical axis, and the
sugar pucker are the main degrees of freedom for 8-
DNA. " In fact, Krumhansl and Alexander have
developed dynamical equations in considerable detail for
these degrees of freedom. " %'e think that the sugar
pucker is important for the 3 —8-DNA transition; how-
ever, it is less important for the microwave absorption.
Therefore we shall neglect the sugar pucker in our calcu-
lation.

The rotation of bases has been studied by Englander
et al. ,

' Yornosa, ' Hornma and Takeno, ' and Zhang'
in addition to the work of Krumhansl and Alexander
mentioned above. It is well known that the permanent
dipole moments of bases are considerably large. Accord-
ing to Devoe and Tinoco, ' the permanent dipole mo-
ments for bases A, G, T, and C are (in units of D) 2.8, 6.9,
3.5, and 8.0, respectively. The coupling of the external
electric field with these dipole moments may produce a
moment of force for each base. So a torsional acoustic
wave propagating along the DNA chain may occur. In
this paper we would like to point out the possibility that
a torsional acoustic wave driven by a microwave field in
aqueous solution containing DNA may exhibit a series of
resonances in the region of subterahertz frequencies. We
shall deal with the resonances of longitudinal waves ob-
served by EDSS and the resonances of torsional waves
predicted theoretically in a unified form. This paper is
organized as follows. In Sec. II we introduce the Hamil-
tonian and the coupled dynamic equations to be studied.
In Sec. III the equations are solved by a method of per-
turbation. In Sec. IV the parameters in this theory are
estimated. In Sec. V some discussions and conclusions
are discussed.

II. HAMILTONIAN AND EQUATIONS
OF MOTION

Let y„and g„' be the rotation angle of the nth base ro-
tator and of its complementary one, respectively, as in
Refs. 11—15. For simplicity the case of ~y„~= ~

y'„~ will be
taken into account only hereafter. In this case, the Ham-
iltonian H related solely to y„takes the form

H =2 g [ ,'Ijv „+V(qr„)+—,'S(y„—y—„,) ], (2.1)

where I is the mean value of the moments of inertia of the
base rotator, S is the stacking energy of bases, and V(y„)
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+ —,'g sin lp„+A, (1—cosy„), (2.2)

where B is the H bond energy, 11 is the dipole-dipole in-
teraction energy, and A, is a coupling constant associated
with the dipole-induced dipole interaction energy.

We assume that the base pair can vibrate along the
screw axis OZ (longitudinal displacement). We assume
further that there is a Lennard- Jones potential between
two nearest-neighbor base pairs

'12 6

(2.3)

where J and cr are two parameters. Suppose that a is the
base spacing (a =3.36 A for B-DNA), and we expand
U(r) at point r =a,

U(r)= U(a)+ —U"(a)(Ar) +—U"'(a)(hr) + .1 „21

21 3'1

is the interaction energy between the two complementary
bases in a base pair. According to Ref. 15 we have

V(y„)=—,'B ( 1 —cos21p„)

S =So+X',(u„—u„ 1),

where g', is a parameter. Similarly,

(2.7)

K =K +X'(lp„—lp„,), (2.8)

where X2 is another parameter. Substituting Eqs. (2.7)
and (2.8) into Eqs. (2.1) and (2.6) we obtain the coupling
Hamiltonian H, as

H, =
—,
' g [2X'l(u„—u„ 1)(q „—lp„ 1 )

where I is the mean mass of the base pair; K is the longi-
tudinal elastic constant and L is an anharmonic constant,
both defined by Eq. (2.5).

To consider the coupling between y and u, notice that,
provided the longitudinal displacement of the base pair
takes place, the change in stacking energy S occurs. So S
is a function of u„—u„,. Considering that u„—u„,is
generally small, we expand 5 as

notice that U'(a)=0. From Eq. (2.3) we obtain

K—:U"(a) = 18J/a, L =—U'"(a) = —378J/a

(2.4) +X2('Pn Pn —1 )(un un —1)

Then the total Hamiltonian H is

(2.9)

Let u„bethe longitudinal displacement of nth base pair.
Making reference to Eqs. (2.4) and (2.5), we write the
Hamiltonian H„solely related to u„as
H„=g [—,'Mu „+—,'K(u„—u„,) + ,'L(u„—u„—,) ],

(2.6)

H =H„+H„+H,, (2.10)

where the parameters S in H„and K in H„should be re-
placed by So and Eo, respectively.

The equations of motion for y„and u„are soon ob-
tained:

Iy = —(2B +/3+ A. )lp„+So(y„+,—2'„+y„,)
X', [(u„+,—u„)(lp„+,—lp„)—(u„—u„,)(lp„—lp„,)]+—,X2[(u„+,—u„)—(u„—u„,) ],

Mu„=K0(u„~, 2u„+u„—, )+ ,'L [(u„+,—u„—)—(u„—u„,) ]

+Xi[(m. +1 0" )' —(V" 0"—1)']+X2[(V.+1—
9 ~ )(u. +1—u. )

—(O'. —V. —1)(u. —u. —I) l

(2.11)

(2.12)

where we have assumed sing„=g„,since y„is small in
this study. Next we shall take the continuum approxima-
tions lp„(t)~y(z,t), u„(t)~u(z, t) and expand p(zl+ t)a
and u (z+a, t) as

y(z+a, t) =y+ 1p, a+ ——lp„a +—y„,a]'1 z 21 zz 31 zzz

%«U 'pzz ~ olp+sX(2u, ), +X4s, ( ulp, ), ,

u« =c u„+eu„„+5(u,), +X,(y, ), +X2(lp, u, ), ,

(2.14)

Substituting Eqs. (2.13) into Eqs. (2.11) and (2.12) we ob-
tain

+—y a+. . .1 4
41 Zzzz

u(z+a, t)=u+ —u, a+ —u„a+—u„,a1! ' 2! " 3!

+ Q g + 0 0 ~
1

41 ZZZZ

(2.13a)

(2.13b)

(2.15)

where we have neglected the term y„„in Eq. (2.14) and
the terms y„„u„„.. . , in the nonlinear parts of Eqs.
(2.14) and (2.15). In Eqs. (2.14) and (2.15) the parameters
U and c are the torsional and longitudinal acoustic veloci-
ty of DNA, respectively,
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v =(S0/I)'~ a, c =(K0/M)'~ a . (2.16) III. SOLUTIONS OF EQUATIONS OF MOTION

The frequency parameter coo and the parameter for di-
mension transform s are

t00= [(2B +P+A. )/I]'

s =M/8I,
(2.17)

(2.18)

e/c =a /12, 5/c = ——", (2.19)

The two coupling constants y, and g2 are defined by

respectively. The parameters e and 5 are called the
dispersive and anharmonic parameters, respectively, by
Scott, and determined from Eqs. (2.5) and (2.15) to be

E = @costvt (3.1)

where 6 is the amplitude. Let the angle between the vec-
tor of external electric field and the Z axis be denoted by

Then the electric field will exert a moment of force to
each of the bases. Let the moment of force for the nth
base be denoted by T„;we have

To solve Eqs. (2.25) and (2.26) we have to give the de-
tailed expressions of e and e„.Suppose that a mi-
crowave of linear polarization with wave number k and
angular frequency cu is exerted to a linearized DNA of
length I. Since kl =0, the electric field E takes the form

a /M, g2=gza /M . (2.20)
T„= P„Es—ing sinO„, (3.2)

If g, =hz=0, Eqs. (2.14) and (2.15) reduce to

2 2
U O'ZZ ~OV' ~

urr c uzz+Euzzzz+6(u )~

(2.21)

(2.22)

where P„is the dipole moment of the nth base, and 0„is
the angle between the vector of the projection of electric
field (perpendicular to the Z axis) and the vector of dipole
moment. The symmetry of double helix demands

8„+ =(9„+mrt/5=8 +no. /5 .

Equation (2.21) is the Klein-Gordon equation and Eq.
(2.22) is the Ostrovskii-Sutin equation. ' Considering a
circularly cylindrical homogeneous elastic rod, Ostrovskii
and Sutin have derived Eq. (2.22) for the longitudinal dis-
placement u. Defining the longitudinal strain as Q =u„
Eq. (2.22) becomes

So we can always set O„=n~/5 without losing generality.
Then Eq. (3.2) becomes

T„=—6'P„sinitr sin(nor/5) costvt . (3.3)

Taking the continuum approximation for Eq. (3.3) we
have

Q„=cQ„+eQ„„+6(Q)„, (2.23) e = T(z)/I

which is the Boussinesq equation. Scott and co-workers
have used Eqs. (2.22) and (2.23) to study the resonant ab-
sorption of DNA. The dispersion relations for Eqs.
(2.21) and (2.22) (5=0) are

CO
—CO0+ U q, 6) —C g Eq (2.24)

+«v '(vzz tvoV' aV'r +sXz(u, ):2 2 2

+4syi((p, u, ), +e (2.25)

u« =c u„+eu„„+5(u,),

—yur +y, ((p, ), +yz((I(), u, ), +e„, (2.26)

respectively, where q is the wave number.
Suppose that an external electric field is exerted to the

DNA chain. Let Ie„and Me„represent the moment of
force and force produced by the electric field, respective-
ly. Let —apt and —yut represent the damping of water
to the torsional and longitudinal movement, respectively.
Then Eqs. (2.14) and (2.15) become

= —6I 'P (z) sing sin(zrz/Sa) cosset . (3.4)

The driven force for the base pair is —2eE cosg, where e
is the proton charge. So

e„=—2eM ' cosf6' costvt . (3.5)

Equations (2.25) and (2.26) are a set of nonlinear and
coupled partial differential equations. We use a method
of perturbation to solve it. Since the external electric
field is weak, we expand cp and u by a series of D. Setting

@+(0)+ gz+( i ) +
u =au"'+a'u")+

(3.6)

(3.7)

(0)—
U

2 (0) 2 (0) (0)+U g„~g ay, e

u' '=c u' '+Au' ' —yu' '+e
tt ZZ u z pu, e„
(1)—U2 (1) ~2 (1) ~ (1)+e(1)

0'tr U f'ZZ ~0%' ~V'r

u"'=c u"'+ 6u'" —-u'"+e'"
tt ZZ ZZZZ l' t u

where

(3.8)

(3.9)

(3.10)

(3.1 1)

and substituting Eqs. (3.6) and (3.7) into Eqs. (2.25) and
(2.26), we have

where a and y are damping constants. Equations (2.25)
and (2.26) are the complete equations to be studied in this
paper.

—sy ((u ))z) +4 y (
(0) (0))

"=&((u' )') +g ((q' ')') +yz(y, 'u,' '), .

(3.12)

(3.13)
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After getting Eqs. (3.8)—(3.11) we then set A"=1 in Eqs.
(3.6) and (3.7). It is pleasant to point out that Eqs.
(3.8}—(3.11) are all linear. To solve these equations we as-
sume the boundary conditions and the initial conditions
as
g(O, t) =y(l, t) =u (O, t) =u (l, t)

=u„(O,t) =u„(l,t) =0, t )0, (3.14a)

qr(z, O) =p, (z, O) = u (z, O) =u, (z, O) =0, 0 (z ( I .

(3.14b)

%'e have used Duhamel's method' to solve these equa-
tions. Since the derivations are trivial, we neglect the de-
tailed calculations here. The exact solution of Eq. (3.8)
under conditions (3.14) takes the form

ao (
—1) a sincot /2 —( —1) [co—( —1) 0„]coscot

9 "'(z, t) = a„(z)
2 I [co—( —1 ) 0„]+a /4 I

(3.15a}

A„(z)=&2/I sin
n~z Fn

I 0„ (3.15b)

F„=v2/I J F(z) sin
0

nmz

I
(3.15c)

F(z)= —BI 'P(z) sin11tsin(nz/5a),

Q2 co2+n 2U 2~2/I2 a2/4 n 1 2 3

It is easy to see that when co~A„aresonance occurs

(3.15d)

(3.15e)

qr' '(z, t ) =&2/I sin
nmz &Fn sincot

(co —fl„)+a /4
(3.16)

where the resonant frequency Q„is determined by Eq. (3.15e). The full width at half maximum (FWHM) is found to be
equal to a. Similarly, the exact solution of Eq. (3.9) under conditions (3.14) takes the form

u' '(z, t)= g' g B„(z)
n=1 m =0

( —1) y sincot/2 —( —1) [co—( —1) co„]coscot

2I[co—( —1) co„]+y /4]
(3.17a)

where g' means the summation is performed for
n = l, 3, 5, . . . and

u' '(z, t)=&2/I sin
n ~z XGn sincot

I 4co„(co—co„)+y /4

B„(z)=&2/Isin
n~z Gn

I con

6„= 4&21e @M ' c—os//n n. ,

co =c n 7T /I An "rr /I y /—4—
n =1,3, 5, . . . .

%hen co~co„aresonance occurs,

(3.17b)

(3.17c)

(3.17d)

co~co„, n =1,3, 5, . . . , (3.18)

where the resonant frequency co„ is determined by Eq.
(3.17d). In this case FWHM =y.

Next we substitute Eqs. (3.15) and (3.17) into (3.12) and
(3.13) and then solve Eqs. (3.10) and (3.11). However, the
resulting expressions are too complicated to write down
here. Now we give the result for u"' approximately and

briefly

5(e AM ' cosg) y
" . nnz Mn cos2cot +Q sin X 1 X2I3 (2co —co„)+y /4

(3.19a)

oo oo J
pi y m n k 1 1

(co —co„)+y /4 (co —co ) +y /4
(3.19b)
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IV. ESTIMATION OF PARAMETERS

There are ten parameters in our theory: coo, U, c, e, 5, s,
y, a, g, , and g2. We shall estimate them in due course.
Using the values of parameters in Ref. 15, from Eq. (2.17)
we have

mo/2m=1. 2X10" s '=0. 12 THz . (4.1)

f is the terms of the argument and they have similar
structure and J „kis a number of dimensionless.

It is seen from Eqs. (3.19) that when co —+ai„/2 another
resonance occurs. We shall call the resonance at co=co„
the main resonance or the harmonic resonance, and at
co=co„/2 the subharmonic resonance. Of course, the
former is stronger than the latter. This implies that a
mechanism of double frequency exists in DNA, because
the DNA in our theory is a nonlinear system. That is to
say, if the forced frequency is co, then the vibrators will
vibrate in frequency co and 2' at the same time. When
co=~„or2~=m„aresonance may occur. It is also seen
that u"' contributes a resonant factor at co=co„,too. So
the FWHM at co=co„is not simply equal to y, it is also
dependent on 5 and g2 terms. Since u"'~l, both
effects discussed above are remarkable for DNA chain
with short length I. A similar conclusion can be obtained
for q"'.

y=1.53X10 s

v —= 1/1' =6.5 X 10 s =650 ps,

(4.8)

(4.9)

which is in agreement with the estimation of EDSS (Ref.
1) in order of magnitude. Lacking direct experimental
data of a, we assume that

a=y .

According to Eqs. (2.7) and (2.8)

(4.10)

as
Xl

az
t X2

z=a g= n/5
(4. 1 1)

c'=2. 22 km/s . (4.13)

Considering Eqs. (2.16) and (2.20) and (4. 11)—(4.13) we
have

2 2

Lacking better data of S and K we shall estimate these
parameters very roughly by the data of 3-DNA. The
base spacing a' and twist angle y' of A-DNA are 2.92 A
and 33', respectively. So

Az =a' —a = —0.44 A,
(4.12)

b,q&=y' rp= ——3'= —m. /60 rad .

The longitudinal acoustic speed c' of A-DNA was mea-
sured by Hakim et al. as'

The torsional force constant C =Soa was estimated from
the free energy of superhelical winding to be nearly
2 X 10 ' erg cm' . Substituting this datum into Eq.
(2.16) we find

So

60a C

y2- —10 m s rad

C
(4.14)

(4.15)
U = 1.3 km/s . (4.2)

c =1.69 km/s . (4.3)

The longitudinal acoustic speed c was measured by Hak-
im et al. as'

The torsional force constant C—:Soa was estimated to be
2 X 10 ' erg cm for B-DNA. ' Lacking the correspond-
ing constant C' for A-DNA, we assume C' —10
ergcm in order of magnitude. Taking M =260M „,„

and considering Eqs. (2.20), (4.11), and (4.12) we obtain
According to Eqs. (2.19) the dispersive and anharmonic
parameters e and 5 are y, ——10 "m4s ' (4.16)

E/c =a /12=0. 96X10 (3.6X10 ) m, (4.4)

5/c = —10.5( —9.2), (4.5)

respectively, where the data within the parentheses are
those estimated by Scott and co-workers. ' The param-
eter s is

s =M/8I =1.56X 10' m (4.6)

Now we use the resonant data of EDSS (Ref. 1) to esti-
mate the damping constant y. A linearized DNA of
length 1=948 bp has been found to have a fundamental
resonance at f, =2.65 GHz. Setting n = 1 in Eq. (3.17d),
we have

2
' I/2

c em2 l 2y2
f, =—1—

2l c l 4mc
(4.7)

Using the value of c in Eq. (4.3) and taking a =3.36 A,
we obtain

The overestimations in Eqs. (4.15) and (4.16) are so rough
that we regard them as an upper limit for y, and g2 in or-
der of magnitude only.

We should point out that only few parameters dis-
cussed above are most important for this model. In fact,
by carefully examining the model we have found that
there are two key parameters among the whole, i.e., the
damping constant y and n which will strongly inAuence
the general conclusion of this study. The numerical cal-
culation of Eqs. (3.17) shows that when y is larger than
10X 10 s ', the FWHM (height) of the resonances are so
wide (short) that it is difficult to regard this absorption as
resonances. A similar situation occurs for the damping
constant a. We think that the water is subjected to a
shearing motion when the torsional or longitudinal dis-
placement takes place. So the assumption a = y seems to
be reasonable. Finally, our theory depends on estimating
the y sensibly. However, the precise estimation or mea-
surement of y is still an unsolved problem. Nowadays
the EDSS experiment is a rather controversial issue in
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molecular biophysics. The key problem may be the
viscosity of water to the biopolymers. Recently, Sokoloff
studied the coupling of water to the surface atoms of the
macromolecules. It was found that the acoustic modes
are completely overdamped by using the viscosity of wa-
ter at room temperature and zero frequency. However, if
the viscosity were half of its zero-frequency, room tem-
perature value, the acoustic modes would be under-
damped. That is, the acoustic vibration sensibly depends
on the viscosity of water. Our result is consistent with
this.

V. DISCUSSIONS AND CONCI. USIONS

As for the so-caHed subharmonic resonance discussed
in Sec. III we hope to see some experimental evidence.
Making reference to the experimental result of EDSS, ' a
linearized DNA of length 2734 bp has resonant frequen-
cies near 2.75, 4.15, and 5.60 GHz. Noticing that 5.60:
2.75=2.04, we think that the weaker resonance at 2.75
GHz may be a subharmonic resonance for the harmonic
resonance at 5.60 GHz. According to the resonance as-
signment of EDSS, ' for a constant acoustic velocity the
above ratio should be 7:3=2.33. Edwards et aI. have ex-
plained this contradiction by an efFect of wavelength-
dependent acoustic velocities. The above two explana-
tions both seem to be possible.

We should point out the limitation of our Hamiltonian
to include only the nearest-neighbor interactions. In fact,
before 1981 Mei et al. discussed the need for long-range
interactions far beyond the nearest neighbors. " Using the
measured values of the longitudinal acoustic velocity by

the Brillouin scattering, they found that the long-range
forces are needed for A conformation and are likely to
dominate in B conformation as well. With this con-
clusion in mind, we examine our whole derivation again.
In this case Eqs. (2.5) and (2.19) are no longer valid. That
is, the values of the two parameters e and 6 estimated
previously should be revised. However, since e and 5 are
not the key parameters in our model, i.e., the change in
values of e and 5 will not change our general conclusion
basically, this problem remains a topic for further study.

There are two important control parameters in this
study. The first one is co—the angular frequency of mi-
crowave; the second one is g—the angle between the vec-
tor of electric field and the helical axis OZ. In fact, the
two parameters constitute a plane (to, P). The longitudi-
nal or the torsional resonances are possible only for the
control parameters to, f falling into the particular area in
this plane. For example, when g=n/2 no longitudinal
resonances can take place according to Eqs. (3.17)—(3.19).
In our opinion it is possible to observe the longitudinal
resonances for a linearized DNA by arranging all DNA
chains with the same length parallel with each other in
solution and setting /=0.

In conclusion we have shown that the resonant absorp-
tion of microwave energy is possible for both longitudinal
and torsional modes. The resonant frequencies are ex-
pressed in Eqs. (3.17d) and (3.15e), respectively. The
former is in the region of gigahertz; the latter is in the re-
gion of subterahertz. For both modes the so-called
subharmonic resonances at to„/2 or 0„/2are possible.
It is pointed out that the two control parameters co and P
are important for the observation of these resonances ex-
perimentally.

'G. S. Edwards, C. C. Davis, J. D. Safer, and M. L. Swicord,
Phys. Rev. Lett. 53, 1284 (1984).

2G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord,
Biophys. J. 4, 799 (1985).

C. gabriel et al. , Nature 328, 145 (1987).
4J. M. Eyster and E. W. Prohofsky, Biopolymers 13, 2527

(1974); 16, 965 (1977); W. N. Mei, M. Kohli, E. W. Prohofsky,
and L. L. Van Zandt, ibid. 20, 833 (1981);M. Kohli, N. Mei,
E. W. Prohofsky, and L. L. Van Zandt, ibid. 20, 853 (1981);
Y. Kim and E. W. Prohofsky, Phys. Rev. B 33, 5676 (1986).

~L. L. Van Zandt, Phys. Rev. Lett. 57, 2085 (1986).
M. E. Davis and L. L. Van Zandt, Phys. Rev. A 37, 888 (1988).
A. C. Scott, Phys. Rev. A 31, 3518 (1985).
A. C. Scott and J. H. Jensen, Phys. Lett. 109A, 243 (1985).
A. C. Scott, Phys. Scr. 32, 617 (1985).
V. Muto, J. Halding, P. L. Christiansen, and A. C. Scott, J.
Biomol. Struc. Dyn. 5, 873 (1988).

J. A. Krumhansl and D. M. Alexander, in Structure and Dy-
namics: Nucleic Acids and Protein, edited by E. Clementi and
R. H. Sarma (Adenine, New York, 1983), pp. 61—80.
S. W. Englander et al. , Proc. Natl. Acad. Sci. U.S.A. 77, 7222
(1980).

i3S. Yomosa, Phys. Rev. A 27, 2120 (1983).
~S. Homma and S. Takeno, Frog. Theor. Phys. 72, 679 (1984).

' C.-T. Zhang, Phys. Rev. A 35, 886 (1987).
H. Devoe and I. Tinoco, J. Mol. Biol. 4, 500 (1962).
L. A. Ostrovskii and A. M. Sutin, PMM-J. Appl. Math. Mech.
41, 543 (1977).

'8E. Zauderer, Partial Differential Equations of Applied
Mathematics (Wiley, New York, 1983).

' M. B. Hakim, S. M. Lindsay, and J. Powell, Biopolymers 23,
1}85(1984).

oJ. B. SokolofF', J. Chem. Phys. 89, 2330 (1988).


