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Langevin approach to polymers in Sow
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A Gaussian polymer chain in simple shear How is studied using Langevin equations. Incorporat-
ing hydrodynamic interactions to first order in a=4 —d (d is the spatial dimensionality) with the aid
of field-theoretic methods, we solve these nonlinearly coupled kinetic equations for polymer-solvent
dynamics and analytically evaluate the second normal stress coefficient %2 for small shear rates. It
is found that the mean-field (consistent preaveraging) approximation for hydrodynamic interactions
(HI) produces an unphysical positive +2, while inclusion of fluctuations in HI leads to a negative
value for 4&, in agreement with experimental evidence.

I. INTRODUCTION

Recent years have seen a great deal of research activi-
ties in polymer physics. ' Many properties of polymers
can now be understood from a theoretical point of view,
ranging from equilibrium conformations of a single self-
avoiding chain to reptation dynamics of polymer melts
and to spinodal decomposition in polymer blends. Nev-
ertheless, in spite of enormous efforts, ' theories of the
non-Newtonian flow characteristics are unsatisfactory
and incomplete. This is because non-Newtonian phe-
nomena involve strong flows and their adequate under-
standing requires sophisticated treatments of a highly
nonequilibrium many-body system. The most widely
used theory is that of Kramers and Kirkwood, based on
the Kramers formula for polymer contributions to the to-
tal stress tensor and on the Kirkwood diffusion equation
for polymer configurations. Many workers have applied
this theory to study both linear and nonlinear viscoelasti-
city of polymers. For weak flows, Zimm modeled a po-
lymer chain with beads connected by massless springs
and developed a successful theory of linear viscoelasticity
by replacing the hydrodynamic interaction Oseen tensor
with its equilibrium average. Pyun and Fixman (PF) in-
vestigated fluctuations of the hydrodynamic interaction
(HI) about its equilibrium average, in a subspace of eigen-
functions corresponding to the lowest excitations of the
polymer normal modes. Bixon and Zwanzig improved
the PF results by performing calculations in a larger
eigenspace. For strong flows, Peterlin considered defor-
rnations of the polymer chain in flow to obtain an aniso-
tropic steady state distribution for polymer conforma-
tions. Neglecting fluctuations in dealing with the HI,
Fixrnan also studied the non-Newtonian intrinsic viscos-
ity. More recently, availability of large computers for the
first time has allowed Ottinger' to adequately treat HI
and to systematically evaluate rheological properties of
polymers.

In all theoretical studies of polymer dynamics and hy-
drodynamics (rheology) of polymer solutions, the proper
treatment of hydrodynamic interactions (HI) between po-
lymer segments has presented a great challenge and led to

severe mathematical complications, regardless of whether
there is fiow or not (i.e., in both linear and nonlinear
response regimes). While recent field theoretic calcula-
tions of polymer properties have met some success in
treating HI for zero" and weak' flows, similar calcula-
tions for rheological features in strong flows have not
been reported. Since these modern field theoretic
methods apply independently of the presence of any sys-
tematic flow, it should be possible, in principle, to per-
form such studies of non-Newtonian fluid dynamics of di-
lute polymer solutions.

Parallel to the dynamical theory of the Kirkwood
diffusion equation, kinetic Langevin-type equations' for
coupled polymer-solvent dynamics have recently been
proposed in analogy to Onuki and Kawasaki's treat-
ment' of critical dynamics of fluids under shear flow.
Using these kinetic equations, several calculations have
been made of the diffusion coefticient and dynamic chain
correlation function in the absence of flow' and of dy-
namic mean-squared end-to-end distance of a Gaussian
chain in weak homogeneous flows. ' This Langevin ap-
proach, as opposed to the Fokker-Planck method (Kirk-
wood difusion-equation approach), appears to be particu-
larly useful for studying polymer dynamics and rheology
involving strong linear and nonlinear flows. Here we
adopt the Langevin description of polymer dynamics to-
gether with a Navier-Stokes Langevin equation for the
solvent velocity field. ' ' '

We discuss the Langevin formulation and evaluation of
the polymer stress tensor cr in as general a fashion as pos-
sible, specializing to particular examples only when fur-
ther development can not proceed without detailed
specifications. We consider directly the stress tensor a
because it is the central quantity in polymer rheology; for
example, shear viscosity of dilute polymer solutions is re-
lated to the oS'-diagonal 12 component of o (1 denoting
the fiow direction and 2 that of the velocity gradient). In
this paper we evaluate the second normal stress %'z for
small shear rates by performing lengthy calculations of
the diagonal elements of a. Hydrodynamic interactions
are explicitly incorporated using the Gell-Mann-
Low —type renorrnalization-group methods, in the limit

2137 1989 The American Physical Society



2138 SHI-qiNG WANG

II. GENERAL FORMULATION AND SOLUTION

A. Coupled Langevin equations

Suppose that a homogeneous (laminar) flow

vo(r)=y r (2.1)

is applied to a dilute polymer solution at time t =0,
where the velocity gradient tensor y is a traceless d Xd
unit matrix (d is the spatial dimensionality). The total ve-
locity field in the polymer solution is then given by
u(r, t)=vo(r)+v(r, t), where v(r, t) is the deviation from
the unperturbed field vo(r) due to the presence of poly-
mers. The Fourier transform of the perturbation v(r, t)
obeys the following Na vier-Stokes Lan gevin equa-
t1On12&13&16

Po
' + blok v(k, t) = T(k).[F(k, t)+ f(k, t)],Bv(k, t } (2.2)

where pp and gp are solvent density and viscosity, respec-
tively. The transverse projection tensor

T(k ) = I —kk /k (2.2a)

arises from use of the incompressibility condition to elim-
inate the hydrostatic pressure. F(k, t) is the Fourier
transform of the polymer force density,

+o —ik c (~ f) $0
a=1 6c

(2.3}

H is the dimensionless Edwards Hamiltonian' for a poly-
mer chain with configurations I c I. The random force f
is associated with solvent hydrodynamic fluctuations and
therefore is present without polymers. Furthermore, we
assume that f remains unaffected in presence of a small
amount of polymers in dilution. We use here a standard
continuum chain model for the polymers: c (r, t) denote
the position at time t of the polymer segment at the con-

of dilute polymer solutions where dynamics of a single
chain in How plays a crucial role. Calculations of poly-
mer properties —other than 4'2 —such as viscosity, dynam-
ic scattering factor, and radius of gyration in strong
homogeneous Aows, will be made in future studies.
Those who are not interested in the details of the present
calculation may skip to Sec. IV for discussions and sum-
mary.

This paper is organized as follows. In Sec. II, we first
describe the kinetic Langevin-type equations for coupled
polymer-solvent dynamics and formally solve these non-
linearly coupled dynamical equations by decomposition
of polymer dynamics into drifting motion of the center of
mass (c.m. ) and internal dynamic motion of the chain rel-
ative to c.m. Then the Kramers-type formula for the
stress tensor is derived in the present language. Explicit
calculations for the stress tensor are carried out in Sec.
III. In particular, we consider a simple shear Sow and
evaluate the stress tensor with and without the mean-
field-type preaveraging approximation. In Sec. IV we dis-
cuss our results in the light of other previous calculations
and present a brief summary of this work.

tour point r along the ath continuous chain (of length
No). X~ is the total number of polymer chains in solu-
tion.

The single-chain dynamics is governed by a Langevin
equation (omitting the subscript a)

r}c(r,t) 1 5H[cI—vo(c(r, t) )+ =v(c(r, t), t )+8(r, t),
at ' '

g, 5c

(2.4)

where go is the friction coeflicient of a chain segment and
8(r, t) at r is an uncorrelated random noise describing the
Brownian motion of the segment ~. The random noises 8
and f each have zero mean and their covariances are
given by (in units where kii T = 1)

(8(7r, t)8(r', t') ) =(2/go}5(r r')5—(t —t')I, (2.5a)

( f(k, t)f(k', t')) =2rtok 5(k+k')5(t —t')I, (2.5b)

with I being the d X d unity matrix. Equations
(2.2) —(2.4) are analogous to those employed to study criti-
cal Auids under shear Aow' and have become a well es-
tablished description of polymer dynamics. ' ' ' '

In writing (2.2) we have neglected the nonlinear fluid
inertia term since the applied Bow vp is laminar and poly-
mers are very small at hydrodynamic scales. For Gauss-
ian chains the polymer force 5H [cI/5c can be modeled
by harmonic springs so that it is linear in Ic(r, t) I. Then
the left-hand side of each of (2.2) and (2.4) is linear in its
own variable v(k, t) and c(r, t) respectively. However,
due to the inhomogeneous terms on the right-hand side
(RHS), Eqs. (2.2)—(2.4) are highly nonlinearly coupled,
making exact solutions difficult to obtain.

B. Solutions to Egs. (2.2) —(2.4)

Solution of (2.4) relies on obtaining the velocity pertur-
bation v(x, t} near the polymer chain from the solution to
(2.2). In the long-time limit (steady state), the fluid dy-
namics represented by the first term of (2.2) can be ig-
nored, i.e., the Markovian approximation is legitimate. '

The real space solution to Eq. (2.2) is first derived
through inverse Fourier transformation

v(c(r, t), t}=J(rtok') 'T(k) [f„(t)+F(k,t)je'""'"

=vf{c(r,t), t)+v~{c(r,t), t }, (2.6)

where f =(2m } J d "k in d dimensions and vf and vF
denote the contributions from the random force fz(t) and
F(k, t) respectively.

Polymer dynamics involves the internal motion of a
polymer chain and the drifting motion of its center of
mass. In the present study the internal dynamics plays
the crucial role. Therefore we decompose the polymer
motion into that of the center of mass R, (t} and rela-
tive motion R(r, t), namely, c(r, t)=R, (t)+R(r, t).
Denoting the c.m. velocity by v, (t)=BR, (t)/Bt, we
transform (2.4) to a dynamic equation for polymer inter
na1 motion
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BR(r, t) 1 5H{Rj

=[vo{R, (t))—v, (t)]+v(R, (t)+R(r, t), t)

+8(r, t), (2.7)

where use is made of (2.1). The first term on the RHS of
(2.7) is independent of the contour variable r and is
denoted below as v (t).

The Edwards Hamiltonian 0 is given by

of (2.10a) does not enter into the actual calculation; its
second term involves the initial polymer configurations
{R(r)j and therefore also becomes irrelevant in the
long-time steady-state limit. Thus only the third term in
(2.10a) contributes to o

The correction terms due to the velocity perturbation v
(i.e., hydrodynamic interactions) and excluded volume in-
teractions are similarly determined to be

RF(r, t)= f f dr'dt'Go(«'~(t t')—P(t —t')
0 0

No
+(v2/2) f dr f dr'5(R(r, t)

0 0

—R(r', t)), (2.8)

vF{R(r', t'), t'),
No

Rf(r, t)= f f dr'dt'G, («'(t t')P—(t t')—
0 0

(2.10e)

(2.10f}

where v 2 is the two-body excluded volume parameter and
5 is a Dirac delta function. The first term is the elastic
(entropic} free energy of a harmonic spring, correspond-
ing to a Gaussian backbone in a chain. The second
represents repulsive excluded volume interactions be-
tween different portions of the chain. The polymer force
in (2.7} thus consists of two parts, a linear spring force
and a repulsive one due to excluded volume interactions

5H{R(r, t) j (}'R(r,t) p (2.9)

Here the second term has been expressed in terms of the
monomer number density p(x, t) of a single chain, defined

Noasp(x, t)= jo'dr5(x —R(r, t)).
Inserting (2.9) into (2.7) allows the Langevin equation

(2.7) to be formally solved in term of its Green's function
G, as

R(r, t)=R()(r, t)+RF(r, t)+Rf(r, t)+R,„,((r, t) . (2.10)

XVp( x, t )i„, a(,, , ) .

where vz and vf have been defined by (2.6)

(2.10g)

C. Kramers formula

In order to obtain an expression for polymer contribu-
tions to the stress tensor, let us consider the sma11 wave
number limit of (2.2) and (2.3). The magnitude of the rel-
ative coordinate R is at most as large as the polymer size
Ro (radius of gyration}; thus at hydrodynamic scales—ik.R (w, t))
(small j k ~

R o) the factor e
'

can be expanded to
leading order in k R and the expression (2.3) becomes

&0 5H{R j;gRF(k, t)= g f dr ik R (r, t) e
0

' 5R(r, t

No d
R,„„(r,t)= —f f dr'dt'G, («'~t t')P(t —t')—

(v, /go)

(2.11)

where use is made of the fact that the total intramolecu-
lar forces sum up to zero. Now the stress tensor o. can be
identified through the relation F(k, t) = —ik oi.. Compar-
ing with (2.11),we obtain o in real space

P 5H{R jo = —+5(r—R, ) f dr R (r, t) . (2.12)

The leading order solution —i.e., that which would ob-
tain in the absence of hydrodynamic and excluded
volume interactions —is given by

t
R,(r, t)= f dt'P(t —t').v'(t')

No+f dr'G, (rr'i(t)P (t) R(r')
0

No+ f f dr'dt'G, («'I(t t')—
0 0

XP(t —t') 8(r', t') .

Here the flow propagator P is a matrix, defined by

P(t)=er'

and G0 is found to have the form

tGo(«'~t) =(2/No) g cos (pr)cos (pr')e
p=1

with the relaxation rate A, given by

A,~ =P /go, P =~p/No .

(2.10a)

(2.10b)

(2.10c)

(2.10d)

Consideration of a dilute solution of polymer chains with
a uniform distribution allows us to neglect interactions
between different polymer chains. In this dilution limit
the dynamics R (r, t) of the ath chain does not depend
on the motion of others. Thus averaging (2.12) over
Gaussian random forces {8(r,t) j and f(r, t) and over the
uniform distribution of polymers, and taking the long-
time limit, we derive the final expression for the steady-
state polymer stress tensor

5H {R(r,t) j
taboo 0 5R r, t)

For the evaluation of polymer stress tensor, the first term (2.13)
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where n =X /V is the polymer number density. Notice
that (2.13) is identical in form to the Kramers formula
for the stress tensor in the Kirkwood-Kramers theory.

III. EVALUATION OF STRESS TENSOR

A. First-order solution

The polymer dynamics, in terms of the dynamic posi-
tion variable R(7, t), has been treated here without ap-
proximations by the nonlinear integral equation (2.10)
with (2.10a)—(2.10g). If the integral kernel is small this
nonlinear integral equation for R(7, t) permits a perturba-
tive solution. Our observation is that Ro(7, t) is the
leading-order term in the integral equation and that the
other terms in (2. 10) are small corrections' of order 0 (e)

I

in higher dimensions than 3, i.e., in d =4—e. Namely,
RF(7 t) Rf(7, t) and R,„,'((7, t) are small when
e=4 d—~0. The reason for the smallness (in d =4 di-
mensions) of excluded volume and hydrodynamic interac-
tions among a polymer chain is that the fractional dimen-
sionality (which is 2 for a Gaussian chain) of a polymer is
very low at four dimensions (roughly equivalent to a line
of measure zero in three dimensions) and interactions
rarely occur between different parts of such a low dimen-
sion polymer. So it is justified to perform perturbation
calculations for hydrodynamic and excluded volume in-
teractions at a high dimensionality d =4—e, near 4 and
expand in the small parameter e. Below we employ this
widely applied e-expansion technique and perform calcu-
lations to first order in e. Thus O(e) corrections to the
zero-order polymer dynamics Ro(7, t) of (2.10a) are ob-
tained by iterating (2.10) a single time,

No

RiF(7, t)= f f d7'dt'G, (77'lt t')P(t —t') v—F[Ro(7', t'), t'],
0 0

R»{7,t)= f f d7'dt'G, (77'~)t t'}P(t —t') v&[—R, . (t')+R,(7', t'), t'],
0 0

No

R„„„(7,t) = — d7'dt'G, (77'~ t t')P (t ——t'). (U, /go)Vp(x', t') ~„=R ~, , ),
0 0

0 2 & x — ox, f

(2.10e')

(2.10f")

(2.10g')

8 Ro(7, t)
Q ( t)=p(Rt( , ppt) p t,a72

8 Rig(7, t)

d7
Qtt(t; t l = (Rtt(t; t )

(3.1a)

(3.lb)

Qttt(t, t)=(Rtp(t, t) (3.lc)

where the subscript l denotes the fact that
(2.10e')—(2.10g') are first order correc-tions. In terms of
Eqs. (2.6) and (2.10a), the first-order solutions
(2.10e') —(2.10g') are completely specified. Now we are
ready to evaluate the stress tensor to O(e) through the
derived expressions (2.13), (2.10a), and (2.10e') —(2.10g').
From now on we consider Gaussian chains only, defer-
ring calculations with excluded volume interactions to fu-
ture work. So we drop R,„,&( t7) in (2.10), keep only the
first term in (2.9), and introduce the following quantities
for notational simplicity:

In terms of these quantities, our expression for the poly-
mer stress tensor tr (2.13) can be concisely written as [in-
serting only the first term in (2.9) into o]

cJ=nz lim f d7[Q0(7, t)+Qff(7, t)

+Qio(7, t)+Qoi(7 t)] (3.2)

= —g f dt'2A, P(t')
p =1

T
—2A,.[P(t')] e ' cos (p7), (3.3)

where the subscript "Langevin" is dropped from now on,
with the proper understanding of this different Langevin
formalism for the stress tensor. Our next job is to evalu-
ate the Q's of (3.1a)—(3.1d) in the long-time limit.

Using (2.10a), (2.10f'), and (2.6) and averaging over 8
and f according to (2.5a) and (2.5b), we find for (3.1a) and
(3.1b) after some simple algebra

Qo(7, tab oo )=Qo(7)

Qpt(t;t)=(Rp(t', t) (3.1d) and similarly for t ~ ~ dropping the time variable t in all
s

No No 2

QIJ(7)= f 17' f d7"f dt'Go(7, 7'/t') Go(7, 7"/t') f 27iok [P(t') 0(k)] [P(t') 8(k)] So(k/7', 7"/y),
0 0 0 k

(3.4)

where the (zero-order) steady-state scattering factor is
defined by

(3.5)
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and the Oseen tensor is given by

@(k) = ( I /g()k ')T(k ), (3.6)

with T(k) defined in (2.2a); the superscript T denotes
transpose operation.

Before proceeding to (3.1c) for Q,o, we discuss, in gen-
eral, preaveraging approximations for hydrodynamic in-
teractions in the present Langevin formalism. Consider a
quantity X involving the following average:

ik. [RO(~', t') —Ro(v", t')]
X =(ZIR,(r, t)] IG(k)e

where J is an arbitrary function and the t I, ,„ involves
the hydrodynamic interaction between polymer segments
~' and ~" in Fourier space. The preaveraging approxima-
tion means breaking X into two separate averages as

X'P")=(JIRO(r t)I )e (t6(k)e ' ' ' '

)e t,
so that the hydrodynamic interaction is now replaced by
its mean value. Clearly such an approximation is un-
necessary in the present theory since we know how to

Q
—Q(pre) + Q(npc) (3.7)

where the superscript (pre) designates use of the preav-
eraging approximation and (npc) corresponds to contri-
butions from fluctuations of hydrodynamic interactions
(HI), i.e. , nonpreaveraging corrections to the preaveraged
value. The preaveraging result is given by

perform the average ( )() t according to (2.5a) and (2.5b).
Nevertheless, the preaveraging approximation as de-
scribed above can often immensely simplify algebraic
computations. It is noted that this approximation is
equivalent to the self-consistent preaveraging approxima-
tion (SCPA) introduced by Ottinger in his treatment of
hydrodynamic interactions. ' Consequently, with the
preaveraging approximation described above, we antici-
pate similar results' as obtained previously using the nu-
merically implemented SCPA.

It is straightforward to show Qo, =(Q,o), so that only
the evaluation of Q, o is needed. Further calculations
lead to the following exact expression for Q, o:

Q'po' (r)= f 'dr'f 'dr"f "dt'f dt"Go(r, r'}t')G((r, ~"(t'+2t")
0 0 0 0

X P t' k P t" - P t'+t" S0k~'~" y
k

where 6] is defined by

(3.7a)

G)(r, r"~t)=(2/Xo) g 2App cos(pr)cos(pr")e
p=1

Fluctuations in HI gives rise to a more lengthy expression

Q~p()p'(~)= —f d~' f dr" f dt' f dt, f dt, GO(r, r'~t')G, (z, r', z"~(2t(, t'+2t, )
0 0 0 0 0

X f P(t') O(k) IP(t, ) [k.P(t, )]I

X IP(t'+t2) [k P(t2)]IS,(k~r', r"~y),

where 62 is a double summation over polymer modes,

(3.7b)

G2(r, r', r"~2t» t'+2tz ) =(2/No) g g 4A, A. cos(Pzr)cos(P(r")[cos(P(~') —cos(P(r")]

—2A, t
I
—k (t'+2&2 )

X [cos(pzr') —cos(p2r" )]e

In principle there is no guarantee that the mean-field
preaveraging value (3.7a) is much larger than its correc-
tion (3.7b) due to HI fluctuations. In fact such
preaveraging approximations for HI are shown below to
be crude, leading to the possibly incorrect results.

In order to proceed with the evaluation of (3.8), we need
to know y in (2.10b) which appears in (3.3), (3.4) and
(3.7a), (3.7b). In this paper we consider a simple shear
Aow which is a most widely studied Aow for polymers.
Thus the velocity gradient tensor y introduced in (2.1) is
specified as

B. Preaveraging results
y&2=y, y, =0 otherwise, (3.9)

+[Q(pre)( )]Tj (3.8)

According to (3.2) and (3.7), we define the preaveraged
part of cr as

Norr(P") = n f dr I QO(~)+ Qff (r)+ Q,()"'(r)

where subscript 1 denotes the x direction of shear Aow
and 2 that of the velocity gradient perpendicular to 1,
e.g. , the y direction. The scattering factor S0 in a shear
flow is first calculated by inserting (2.10a) with
(2.10b)—(2.10d) and (3.9) into (3.5),
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I 2 1 (3.10a) b =
—,'(2/No) g (2P ') '(y/k~)'

p =1

a =(2/No) g (2P ) '(y/k~)
p =1

X [cos(Pr') —cos(Pr")] (3.10b)

where the subscripts i on k indicates the ith Cartesian
component of k and the quantities a and b have the fol-
lowing forms, respectively:

X [cos(pr ) cos(P1 )] (3.10c)

Due to shear How, the scattering factor is no longer iso-
tropic in k space as a result of chain deformation. This
How-induced chain deformation also affects hydrodynam-
ic interactions (HI) among chain segments since HI ex-
plicitly depends on chain configurations. Consequently,
the Oseen tensor O(k) for HI is modified by the presence
of the matrices P as shown in (3.7a) —(3.7b).

Substituting (3.4) and (3.7a) into (3.8), we obtain

0 0

2(
~ 0 )2 ~ 0 ()

0 0

0

No No
+ n g f dr' f d r(2/N„)(g /o2)cos(P r)cos(P r)

0 0

L =P(ar ) T(k).

0 0

X f I dae (1/took )(L+L )So(k~r', r" ~y),
1t; 0

(a+2)(y,')' y ~

0 0

0

(3.1 1)

where the dimensionless bare Row parameter is defined by

'V n=3'&p

with the bare polymer relaxation time given by

r" =
—,'k =(go/2)(N~/~) p

(3.12a)

(3.12b)

So has been given by (3.5) and (3.10a)—(3.10c). The isotropic portion of oI "', involving a unity matrix, is omitted since
it only contributes to the hydrostatic pressure.

Since in our continuum chain model no cutoff' is introduced along the chain contour to forbid r'=r" in (3.11), some
singularities arises due to short-distance hydrodynamic interactions. This singularity occurs" even in absence of a mac-
roscopic flow {'2.1). If we denote the singular part of (3.11) by o I "'=o' ""'(y =0), then the nonsingular part is defined

by rr„'~" =o'~"'(y) —o'""' (y =0), so that o t'"'=o. ,t'"'+o.„'t,
'" . The singular part o,'~"" involves the isotropic zero flow

scattering factor S(ko~ ',rry=0)=e ' ' for which T(k) of (2.2a) can be replaced by the unity matrix I times
(1 —1/d) in carrying out the k integration in (3.11). Then the integration over a can be readily performed, yielding

(pre)
S p ~

p =1
0

0 0

2(y ) [1—2zH(2/e —lnp f )] y [1—zH—(2/e —lnp f )] 0—
[ 1 —

z~~ ( 2/e —lnp f )]—0 (3.13)

where use is made of (Al) for the k integration and of (B5a) and (B5b) for contour integrations in Appendixes A and B.
The function f is given in (B5b) and the parameter zH in (3.13) is the bare hydrodynamic interaction (HI) variable,
defined as (here e =4 —d, with d being the dimensionality)

zH =(2rrNo)' (go/go)[(1 —1/d) l(d l2 —1)](2~) = uH(2vrNo/L)' (3.14)

where the second equality identifies another natural parameter uH for HI which is independent of chain length N0, and
2~N0/I. measures the hydrodynamic "blob" size. '

The nonsingular portion of a '""' is more involved and has the following structure which we derive after integration
over a and matrix multiplication in (3.11),
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o No
o'„,"'=n~(2/Np)((p/rip) g y ~ f dr' f dr" cos(p r')cos(p r")f k '[Sp(k~r', r" ~y) —Sp(k~r' —r" ~y=0)]M(k, y) .

0 0 k

The symmetric matrix M is given by

(3.15a)

—k, k2+(4 —3k, —k 2)y —4k, k~(y )

1 —( —,
' )(k, + k 2) —2k, k2y

—k2ki/2 —( —', )k, k3y

1 —( —,
' )(k, +k ~) —2k, k~y

k, k

—( —,
' )k, k3

—k2k3/2 —
( —,
' )k, k3y

—( —,
' )k, k3 (3.15b)

(pre)o, n
p=1

2(yr„) (1+2uHf ) yw (I+uHfz) 0

yr (I+uHf~) 0 0

(3.16)

where the Rouse-Zimm relaxation times are defined as

where k=k/k with the subscript i on k denoting the ith
Cartesian direction, as specified in (3.9), and y has been
defined before in (3.12a).

The presence of 1/e pole terms in (3.13) is due to use of
the continuum chain model and to the neglect of a cutoff
in hydrodynamic interactions' and therefore requires a
Gell-Mann-Low —type "mass" renormalization. These
singular terms (singular as e~0) can be removed through
the following renormalization procedure. The renormal-
ized variable uH is related to the bare u& through the ex-
pression uH=uH[1+(2/e)uH+ ]; then according to
(3.12b) and (3.14), the bare relaxation times r also need
to be renormalized as ~ =r [1+(2/e)uH+ ]. The
renormalized o.,' "' has the form

rp =r (2rrNp/L) (3.17a)

with the parameter ~ defined by

r~ =(g/2)(Np/7r)'p (3.17b)

The renormalized friction g is related to uH in the same
way as gp is related to uH in (3.14). Thus r~ scales with

2
the chain length N0 as N0, namely, ~ -N„ in the
strong hydrodynamic interaction (HI) —Zimm chain—
limit (i.e., at the nondraining fixed point uH =e/2= —,',
d =3). When excluded volume interactions are present
the scaling law is modified as ~p N0 for the Zimm
chain with v=0. 6.

In this paper we are interested in the evaluation of the
second normal stress difference for reasons that will be
clear later. To this end, we consider the second and third
diagonal elements of o't'"' in (3.8). Since these two ele-
ments are zero in o',~"' of (3.16) we are only concerned
with those of o'„~"" in (3.15a) and (3.15b). In particular,
we write down their difference

(pre) (pre) p (pre) y

22 ~33 a ~ ns f22

1, 1= —n uH[d(d —2)/(d —l)](2') (yr, ) f dx' f dx" g p cos(7rpx')cos(vrpx")K, i(x', x"),
p =1

(3.18)

where K, 2 is given by

IC»(x', x")=f q, qzq [Sp(q~x', x "~y)
q

—Sp(q~x', x" y=0)], (3.19a)

Using the identity (81) in Appendix 8, and inserting
(3.19b) into (3.18), we finally arrive at the preaueraged
second normal stress dilference to 0 (e), with aid of (86)
for the double integration over x ' and x ",

with Sp's given by (3.10a)—(3.10c), where x'=r'/Np and
q=kNp ~ The explicit result for E,2 is presented in
Appendix A and here we expand it to first order in the di-
mensionless flow parameter j ~, to obtain

(pre) (pre ) (pre )

~22 33 ~22

= —nzuH(vr /38 880)(yr&) +O[(yr&) ],
(3.20)

K„=—( —„', )(yr, )[3(x'+x")—~x' —x"
~

—( —', )(x'+x") ]+0[(yr, ) ] . (3.19b)
where n is the polymer number density, uH is the hydro-
dynamic interaction parameter, y' is the shear rate, and ~]
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is the longest polymer relaxation time. We note that
within the preaveraging approximation cr33 =0, as is
evident from (3.15b). Thus a negative (Tz~2"' shown in
(3.20) tells us that in a two-parallel-plate device which
generates the simple shear flow, the force due to polymers
on any surface in the solution parallel to the middle y =0
plane would be directed towards the latter. This is just
the opposite to our anticipation that elastic polymer
chains should resist their deformation —they are
compressed by flow in the y direction —and produce out-
ward forces on the two plates. Similar unphysical results
have been found in previous consistent preaveraging cal-
culations' using the Kirkwood difFusion equation theory.
All this suggests that the preaveraging approximation
could be seriously in error and should be avoided when
describing the compression in the direction of velocity
gradient.

C. Nonpreaveraging correction

The preaveraging approximation for hydrodynamic in-
teractions would be a good one if the solvent motion was
so slow that the polymer chain had enough time to sam-
ple all of its conformations before hydrodynamic distur-
bances could propagate appreciable distance between
chain segments. In reality, it is the opposite which is
true: namely, the solvent dynamics is always much faster
than that of a long polymer. ' Therefore it is crucial that
we be able to correctly describe hydrodynamic interac-
tions in a chain. This implies that we must incorporate
the nonpreaveraging corrections neglected in Sec. III B.
Inserting (2.10c) into (3.7b) and integrating over r ac-
cording to (3.2) and (3.7), the "ffuctuating" part of the
stress tensor for a general homogeneous flow (2.1) is
found to have the form

No
(npc} d (npc} + (npc} T

No No= —(n /2)(2/No) g g f dr' f dr"cos(P)r')cos(P2r")[cos(P, r') —cos(P)r")][eos(Pzr') —cos(P2r")]
p) =1 p2 =1

&& f dt' f dt f dt e ' ' f So(klr', r" ly)(T+V'r),

7 =[7~ Ak(21)B),(2)+(1~2)] (3.21)

where vector functions Ak and Bk are, respectively, defined as

A&(21)=P(t', pz). 6(k). )a, B),(2) =P(t', p2).a2, (3.21a)
t

with a;=P(t, ,p, ).[k.P(t, ,p;)] and P(t,p;)=e '. The renormalized dimensionless fiow parameter y is related to the
shear rate as yr =y . 7 in (3.21) is a d Xd matrix and its transpose is given by the last term in the last set of
parentheses. The diff'erence between the second and third diagonal elements of ( V'+ 'T ) has the truncated form (to the
lowest nontrivial order in y ) after integrations over t, t), and t2

yr r~ [2k, k2(1 —2k 2+2k, )+k, (1 4k ~+2k 3)(y—+y~ )], (3.21b)

where k; s are defined below (3.15b). Thus the nonpreaveraging portion of the second normal stress is given by, with
the aid of (A4) —(A8) in the Appendix A

tr(nPc) o(nPc)
( 8n /3 )tt ( y& )2

oo oo

g f «' f dx "p) p2 (x' —x") cos(rrp)x')cos(mp2x")
Pl =] P2 =]

X [cos(~p, x') —
sc(corp ))x][c (vorps2) x—cos(np2x")]

X I
—

( —,', )lx' —x"1[3(x'+x")—lx' —x"
I

—( —,')(x'+x )2]+(I/6~2)(p) 2+p )I

(3.22)

Substituting (84) for the double summation over p) and

p2 into (3.22) and using (82) and (83), we find the value
for (3.22), according to (87) and (88) for the twofold in-
tegrals over x' and x",

(")"—tr(")'"=n u (417r /68040)(yr, ) +O((y ) )r.

(3.23)

Notice that this nonpreaveraging correction to the
second normal stress tensor is much larger in magnitude
than its preaveraged value (3.20) and has an opposite sign.

It is convenient to define the second normal stress
coefficient '@2 through o.

22
—a.

33 % 2y so that accord-s 2

ing to (3.20) and (3.23) we have, respectively, the preaver
aged %2,
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+&~re'=2. 23X 10 cM([g]prlp) /RT,

and the unpreaveraged '@2,

'I'z= —5.00X10 cM([g]pgp) /RT,

(3.24)

(3.25)

where %2 has been given in terms of experimental observ-
ables: c is the polymer concentration, M is the polymer's
molecular weight, [g]p is the intrinsic viscosity at zero
shear rate, R the gas constant, and T the temperature. In
the transition from (3.20) and (3.23) to (3.24) and (3.25),
we have used the relationship between the longest relax-
ation time 7& and the zero shear intrinsic viscosity:
7, =0 422[. tr] qp/pRT He.re 4'2's are obtained for small
shear rates so that %2 is independent of y, the shear
rate. In general, material functions of polymer solu-
tions such as 42 and the intrinsic viscosity are functions
of the dimensionless flow parameter yF, .

IV. DISCUSSION

With the second normal stress 42 as an example, we
have considered the analytical evaluation of the stress
tensor using coupled Langevin equations for polymer-
solvent dynamics. The distinct advantage of pursuing
such an alternative path to polymer dynamics and rheol-
ogy lies in the fact that in presence of a macroscopicPoio
it offers a more direct formulation of the dynamic motion
of polymer chains and a more convenient treatment of hy-
drodynamic interactions between polymer segments.
This superiority arises from the significant difference be-
tween the present Langevin formalism and the more fa-
miliar Kirkwood diffusion equation approach. In our
formulation the effect of flow on a polymer chain is de-
scribed by a Langevin dynamic equation so that the solu-
tion for its dynamic motion IR;(t)] contains all the non
equilibrium information involving flow. By contrast, in
the Kirkwood diffusion equation formalism the effects of
flow are reflected solely in the nonequilibrium distribu-
tion function P for polymer configurations, a steady-state
solution to the Kirkwood diffusion equation. This
difference should be evident from some of previous stud-
ies, ' but unfortunately it was not as fully recognized be-
fore.

Very often mean-field-type preaveraging approxima-
tions or some other approximations are necessarily in-
voked in dealing with the Kirkwood diffusion equation or
with equations of its moments, ' leading to undesirable
results. Here no such approximations are needed any-
where so that we are able to assess the validity of these
approximations. Clearly the preaveraging approximation
of hydrodynamic interactions (HI) is rather severe be-
cause propagation of the solvent mediated HI at length
scales of a polymer chain is very fast in terms of polymer
relaxation times. For example, the typical time scale for
propagation of HI through a distance of the polymer size
Ro is pp(RG) /i)p while the overall polymer relaxation
time is r)p(RG ) /k~ T, much larger than the former for a
long polymer chain in a typical solvent. Consequently
the propagation of HI —depending on the instantaneous
configuration of a polymer chain —can not be faithfully
described by its average over all the chain configurations,

as implied in the preaveraging approximation.
By numerically analyzing the Kirkwood diffusion equa-

tion ' with consistent preaveraging approximation, previ-
ous studies obtain a positive value for +2, whereas it
should be negative. It was thus natural for us to demon-
strate that avoidance of preaveraging approximations
leads ' to a negative 4'2. In this paper, the serious errors
due to the preaveraging approximation (PA) are exam-
ined by calculating the second normal stress +2, both
with and without using this approximation (in Sec. III B
and IIIC, respectively). Indeed, with the PA, we find
positive %2 in coincidence with previous theoretical stud-
ies. ' Indeed, without using the PA we analytically ob-
tain for the first time a negative 42 in (3.25) for a continu-
um polymer chain which is much larger in magnitude
than the preaveraged value in (3.24). This is the reason
for first calculating the basic material function +2 in this
paper, studies of many other polymer properties will be
pursued in later work following the Langevin formulation
presented here.

We have confined ourselves to considering the small
shear rate limit in the evaluation of the second normal
stress. In this limit we have obtained analytical results.
However, the power of the present Langevin theory lies
precisely in its ability to deal with strong homogeneous
and inhomogeneous flows while avoiding implementation
of mean-field preaveraging approximations. Future stud-
ies employing this formalism will explicitly treat strong
shear flows and evaluate, among other properties, intrin-
sic shear viscosity and the radius of gyration of a single
chain in flow, as a function of the shear rate.
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APPENDIX A

Derivation of (3.13) involves the following integration:

k
—2e —k l~' —~"I~2 —[I/(d 2)](2~)—d~&~r

k

@=4—d . (A 1)

d~'g y, ~x' —x "~

X f dx(1 —x)x [1+(Bx—A x )y, ]

=2 "n. d 'Ay, ix' —x "i '[ —,'+O(y', )], (A2)

where A and B are functions of x' and x" and are

The integral in (3.19a) can be evaluated by introducing
the identity

f "daae-&"=q'
0

into the former, permitting the q integration. Then, it is
found
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defined, respectively, as

=(m. /6)ix' —x"i[3(x'+x")—ix' —x"
[

—
( —', )(x'+x") ], (A3a)

B =(4/m )ix' —x"
~

' g p [cos(mpx') —cos(npx")]
p=1

(A3b)

& =(2/rr )~x' —x" ' g p [cos(mpx') —cos(mpx")]
p=1

K(12)=f q, q2q So(qlx', x"Iy)
q

= —( —,')(2') Ay, ~x' —x"
~ +O(y, ),

E(12 )= f q&qzq So(q~x' —x "~y)

= —
( —,', )(2m. ) Ay, ix' —x"

~ +O(y, ),
K(123 )= f q, q2q3q So(q~x', x"~y)

= —( —,', )(2~) 3 y& ~x' —x "~ +O(y, ),
E(1 2 )=f q, q2q So(q~x' —x")~y)

q

=( —,', )(2~) 'ix' —x "i '+O(y f),
K(1 )=f q, q So(q(x', x "~y)

=(—')(2m) ix' —x"
i +O(y f),

(A4)

(A5)

(A6)

(A7)

(A8)

and the flow parameter is given by y, =y~, . The second
equality in (A2) gives (3.19b) for d =4, although (A 1) can
be analytically integrated without the expansion in
powers of y].

Similarly, integrals corresponding to (3.21b) are given
as follows. To the lowest nontrivial order in y], we have

where A is given in (A3a).

APPENDIX B
Calculations in this paper often involve summations

over polymer normal modes. Here are some of the
relevant sums required in our evaluation of the stress ten-
sor:

gp cos(~px')cos(mpx")=(~ /2)[ —,
' —( —,')(x'+x" +ix' —x"i)+( —,')(x' +x" )],

p=1
(81)

g p cos(mpx')[cos(mpx') cos(np—x")]=(m. /4)[x" —x'+ ~x' —x"i+(x' —x" )],
p=1

(82)

g p cos(~px")[cos(~px') cos(npx")]—=(vr /4)[x" —x' —~x' —x"~+(x' —x" )],
p=1

(83)

I(x',x")= g g p, p2 (p, +p2 )(x' —x") cos(np, x')cos(mp2x")
p =1p =1

1 2

X [cos(np, x') —cos(np, x")][cos(~p2x') —cos(~p2x )]

=(vr /48)[[2 —(x'+x")](x'+x")[1—3x'+( —„')(x" +7x' )]
—(x'+x")[x'+x"—(x' +4x" +x'x")+(—,')(x' +7x" +7x" x'+x "x' )]J, (84)

which has been obtained for x ' )x ".
To get (3.13) we need to perform the following twofold integral:

1, 1dx' dx "cos(mpx')cos(npx")ix' —x"i' '=2/e —lnp f +O(e), —
0 0 p (85a)

where the mode-dependent function f is given by

f = C+lnm. —ci(mp)+(1 jmp)[si(mp)+m /2] . (Bsb)

(88)

where I(x', x") is defined in (84).

C is the Euler s constant ( =0.577), ci(x) and si(x) are cosine and sine integral functions. Also involved in our calcula-
tions are some other two-dimensional integrals whose values are listed as follows:1, 1dx' dx "[—,

' —( —,
' )(x'+x"+ ~x' —x "~ )+(—,')(x' +x" )][3(x'+x")—~x' —x"

~

—( —', )(x'+x") ]=——„', , (86)

f dx' f dx "[2 (x'+x"—)](x''—x" ')[2x'+4x" —(-,')(x'+x")']=,",,', ,

f dx' f dx "1(x',x")(48/~ ) = —
—,', ,
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