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The mean first-passage time (MFPT) of random walks on one-dimensional disordered lattice seg-
ments is considered. Disorder is modeled by prescribing random transition and sojourn probabili-
ties to the lattice sites. %'e consider several models of disorder: models with symmetric and asym-
metric random transition probabilities, random sojourn probabilities, and models with bond ran-
domness. For these models we present exact results on the MFPT and disorder-averaged MFPT.
%e do not find any anomalous dependence of the disorder-averaged MFPT on the size of the lattice
segment. The distribution of the MFPT resulting from the disorder is Gaussian for the models with
symmetric and site symmetric transition probabilities and non-Gaussian for models with asym-
metric transition probabilities.

I. INTRODUCTION

The problem of diffusion in a one-dimensional lattice
with random, nearest-neighbor transition probabilities
has attracted much attention in recent times. ' This is
mainly because it provides one of the simplest models of
disordered systems. ' Properties such as diffusion con-
stant, conductivity, etc. , of disordered systems have been
studied employing such random-walk models. ' How-
ever, mean first-passage time (MFPT) problems in disor-
dered systems have not received as much attention until
very recently. ' Indeed, MFPT is a very useful concept
in random-walk theory and has found wide applications
in a variety of fields.

In this paper, we study disorder-averaged MFPT of
random walks on segments of disordered lattices. The
problem of the influence of disorder on the MFPT has
been addressed by Noskowicz and Goldhirsch. Employ-
ing recursion-relation procedures, ' they have obtained
upper and lower bounds for the MFPT. However, using
the method of Zwerger and Kehr, " explicit expressions
for the MFPT in terms of the transition probabilities on a
disordered lattice can be obtained. ' This method is dis-
cussed in Sec. II, and forms the basis for our subsequent
derivations.

We consider in this paper four specific models of disor-
der. In the first, called the random-barrier model, the
transition probabilities are symmetric. For this model,
we obtain expressions for the MFPT and the disorder-
averaged MFPT. We find that the asymptotic depen-
dence of MFPT on the length of the lattice segment is
like that of a pure diffusive process, but with a modified,
disorder-dependent diffusion constant. The distribution
of the MFPT due to disorder is still Gaussian for this
model. The details are discussed in Sec. III ~

The second model we consider is called the random-
trap model. In this model, the sojourn probabilities at
the lattice sites are random. The expressions for the
MFPT and disorder-averaged MFPT are similar to the
random-barrier model, and hence the conclusions are the

same for both the models. The details are discussed in
Sec. IV.

The third class of models considered is the one with
asymmetric transition probabilities. These models have
motivated a lot of work in the theory of probability. ' '
The Sinai model' is a particular case of these models
where a certain condition on the transition probabilities
is fulfilled. In this model the mean and mean-square dis-
placements exhibit anomalous dependence on time. We
report in Sec. V our studies of this class of models. The
exact result on the disorder-averaged MFPT shows that
this quantity behaves like a negatively biased walk under
the Sinai condition. We also establish upper and lower
bounds for the typical MFPT by employing methods
similar to the ones given in Ref. 6.

The fourth model we consider is the one with bond ran-
domness. ' The line joining two adjacent lattice sites
constitutes a bond. The transition probabilities between
the sites of a bond can be correlated, and those belonging
to different bonds are uncorrelated. Our results on
MFPT for this model are discussed in Sec. VI. In partic-
ular, we find that disorder-averaged MFPT behaves like
that of ordinary and biased walks.

Finally, in Sec. VII, we briefly summarize the principal
results and conclusions of the study and indicate possible
future work.

II. MEAN FIRST-PASSAGE TIME ON A SEGMENT

We consider random walks on a one-dimensional lat-
tice segment of N+1 sites, as shown in Fig. 1. The lat-
tice sites are denoted by the integers, j =0, 1, . . . , N.
Disorder is modeled, as usual, by prescribing random
nearest-neighbor transition probabilities to the lattice
sites. Thus for any site j, p denotes the probability for
the random walk to jump to site j +1 (right jump), per
step. The left-jump probability at the lattice site j is
denoted by q . In general, q +p (1, and we define
1 —(q +p ) as the probability for the random walk to
stay at site j per step, also called the sojourn probability.
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first time in n steps. Let G; .(z}be the corresponding gen-
erating function, also called the z probability, ' defined
as

1 g p G, ,(z)= g z" G;, (n) .
n=0

FIG. 1. Segment of a random lattice. Right and left jumps
are indicated by arrows and sojourn by loops.

Formally the MFPT is given by

d
to, x = lnGo, z(z)

z=l
(2)

At the lattice site j =0, there is no left jurnp. We set
qo =0 and thus 1 —po is the sojourn probability per step
at j =0. The set IPo,P„.. . , P& „q„q2, . . . , qz
constitutes 2N —1 random variables and each of these is
restricted to the range (0, —,') since we require q, +pJ ~ 1.
The disorder is modeled by prescribing, in general, a joint
distribution for the 2N —1 random variables.

Consider a given realization of the set [q:
j =1, N —1;p: j =0, X —1) that defines a particular
random lattice. The random walk starts at j =0. Let
to y(q~, qq, . . . , qy ~, po, p~, . . . ,pg ~) denote the ran-
dom variable called the first-passage time (FPT). It is
defined as the number of steps required for the random
walk to reach the site N for the first time. The average of
FPT over the ensemble of all possible random walks on a
given realization of the random lattice is called the
MFPT and is denoted by to ~(q, , q2, . . . , q~
po, p&, . . . ,pz, ). We shall be further interested in cal-
culating ( to z ), called the disorder-averaged MFPT, the
angular brackets denoting an average over the distribu-
tion of the random variables (q;p ). To this end we
proceed as follows.

We define G; .(n) as the probability for the random
walk to start at site i and eventually reach site j for the

The key step in our formulation" consists of deriving a
continued-fraction recursion relation for G, , +,(z)—the z
probability for the first-passage time from site i to i +1.
As an auxiliary quantity, we need the z probability for
staying at a site. Let y;(n) be the probability for the ran-
dom walk to stay at site i, for n steps consecutively. Thus

g;(n)=[1 —(q;+p;)]" .

The corresponding generating function or the z probabili-
ty is given by

(4)

A random walk at site i can (i) stay there for any number
of steps, with z probability y;(z), (ii) jump to site i —1,
with z probability zq;, (iii) make a first passage from site
i —1 to site i, with z probability G; &,.(z), (iv) stay at site
i for any number of steps, with z probability y,.(z), and
eventually, (v) jump from site i to site i + 1, with z proba-
bility zp, .

After the process (i), the random walk can carry
out the processes (ii), (iii), and (iv), m times
(m =0, 1,2, . . . , ~ ) before the last process (v). This
leads to

G;;+,(z) =g;(z) t 1+zq, G;, ;(z)g;(z)+ [zq; G;, ;(z)y, (z)][zq;G. . .(z)y;(z)]+ ]zp;

zp;X;(z}
1 —zq; G;, ;(z)y;(z)

Substituting for y, (z) from (4) we get

zpt.
G, , +,(z) =

1 —z [1—(q;+p; )+q, G. . .(z)]

Note that Go, (z) is known, and is given by

Go, (z) =zpo/[1 —z (1—po )] .

(6)

Let us di6'erentiate both sides of this equation with
respect to z and set z =1. Denoting di6'erentiation with
respect to z by the prime, we get,

N

to ~:Go ~(z = 1 ) = g Gj ] i(z = 1 )
j=1

We dift'erentiate G, , +,(z), given by (6), with respect to
z, and set z = 1, to obtain

Thus we can successively obtain expressions for
G, 2(z), Gz 3(z), . . . , G~ »(z) employing the recursion
relation (6). It can be easily verified by setting z =1, in
(6) and (7), that G;;+ &(z = 1)= 1 for all i =O, X —1.

We have, for the z probabilities,
N

Go ~(z)= + Gi, i(z)
j=1

G,';+, (z =1)— + G, , (z =1) .
1

(10)

This equation forms the central result of this paper.
Starting from Go, (z =1)=po ', obtained by substituting
i =0 and qo=0 in (10), we get successively expressions
for G& z(z =1),G2 3(z =1), . . . , and G& &

&(z =1). Fi-
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nally summing these terms up as given by (9) we obtain
an expression for the MFPT,

X —1

to ~=
k =O~k k=0~k i =0+1 j=k+1 ~j

Note that the above expression for the MFPT contains
explicitly the basic jump probabilities [po, p „.. . ,p~
q, , q2, . . . , q~, ), unlike the one given by Noskowicz
and Goldhirsch. An equivalent expression has been ob-
tained by Van den Broeck' by a rather different method.

Let us substitute, in (11), q, =p =y for j. (Note that,
however, qo=O. ) This corresponds to simple random
walk and we recover the well-known result, '

to Jv =N(N + 1)/2y. As a second example consider
biased random walks by setting q =q (j&0) and p, =p
with qWp and q +p =1.We get, from (11),

1+a a(1+a)N+ a —1
1 —a (1—a)2

(12)

a(1+a)
, a~ if a)1.

(1—a)

(13)

The above results for biased random walks are well
known.

In what follows, we apply the formulation developed
above and in particular Eq. (11) to different models of
disordered systems.

III. LATTICE %'ITH RANDOM SYMMETRIC
TRANSITION PROBABILITIES

In this section we consider the random-barrier model
which is usually considered in connection with
continuous-time random walks. Here we construct a
discrete time version of this model and to this end we
proceed as follows.

For any lattice site j (WO) we set q =p. &, i.e., the
left-jump probability at site j is equal to the right-jump
probability at its previous nearest-neighbor site j —1.
The symmetry in the transition probabilities reduces the
number of random variables that define the random lat-
tice, to N. Thus at site j (WO) the left-jump probability
per step is q, the right-jurnp probability per step is q. +&

( =p, ), and the sojourn probability per step is
1 —(q +q +, ). At j=0, however q, (=po) is the right-
jump probability and (1 —q, ) is the sojourn probability
per step. We restrict the range of the random variables

q to be (0, —,'), for all j = l, N, to have q +q +, &0. We
treat the set of N random variables [q: j = 1,N ) as in-

dependent and identically distributed with a common dis-
tribution, formally denoted by p(q). In what follows we

where a = (1—p) /p. Letting N ~~, we obtain the
asymptotic behavior for two eases, one with a & 1 (p ) q,
the bias toward the right, aiding the motion of the ran-
dom walk) and the other with a) 1 (p &q, the bias to-
ward the left opposing the motion of the random walk).
These are

1 + cx ~ e f
1 —a

assume p(q) to be such that ( q ")= J '/2q "p(q)dq( oo, for all n ~ 0.
We can substitute q + &

=p& in (11) and obtain an ex-
pression for to ~ for the random-barrier model. A more
transparent way, which leads to the same result, is to
start with the recursion relation given by (10) and obtain

6, ;(z =1)=i/q; .

This leads to a very simple expression for the MFPT,

(14)

j
tO, N=tO, N(ql q2 ' ' ' qN) (15)

We can carry out the disorder averaging, and obtain
(t, „&=&q '&N(N+ I)/2.

Thus asymptotically (N —+ ~ ), the disorder-averaged
MFPT is proportional to X, a behavior similar to that of
a simple random walk, but with an effective, disorder-
dependent diffusion constant, D —=N /2( to ~ )
= (q ') ', a result that agrees with the one obtained
by calculating the asymptotic behavior of mean-square
displacement. Let q and q denote the lowest and the
highest value that q can take, respectively. Note that
q )0 and q &

—,'. It is easily seen from Eq. (15) that,
asymptotically (2q ) 'N & to z & (2q ) 'N, which
shows that the typical and disorder-averaged MFPT
have the same asymptotic X dependence.

For the random-barrier model, the probability distribu-
tion of the MFPT resulting from the disorder can be
characterized in more detail by exploiting the simple for-
mula (15). The variance of to tv can be easily calculated
and its asymptotic behavior is given by

((to„) & (to~) —((q & (q & )N (16)

&(t )'& ——'((q '& —3&q '&(q ')+2&q '&')N'.

Hence the relative magnitude, which is obtained by divid-
ing with ( to ~ ) and taking the cubic root, is proportion-
al to X . This means that the relative skewness of the
distribution becomes small in the limit of large X. The
fourth-order cumulant is found to be asymptotically pro-
portional to X,

((t, )'), ——'((q ')' —(q ')(q ')')N' . (18)

Hence its relative magnitude decreases only proportional
to X ' asymptotically. We expect analogous behavior
for the relative magnitudes of the higher-order cumu-
lants, i.e., our conjecture is that

( (t )n) 1/n/( t ) N
—I/n (19)

Hence the relative fiuctuations (defined as the standard
deviation divided by the mean) of to & go as N '/ . Thus
the distribution of to ~ becomes more and more peaked
as X~~. By virtue of the central limit theorem, as
N~ ~, the distribution of to ~ tends to a Gaussian. The
third-order cumulant is asymptotically proportional to
X4,
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for n & 4. Although the asymptotic form of the probabili-
ty distribution of to~ is Gaussian, this limit is ap-
proached very slowly.

IV. LA'i l'ICE WITH RANDOM SOJOURN
PROBABILITIES

In this section we consider a discrete version of the
random-trap model. The class of random-trap models is
important for modeling transport with temporary trap-
ping of particles; see the review of Haus and Kehr. '

For this model we set at any lattice site j (%0),
q. =p =y . The sojourn probability at any lattice site j
(%0) is 1 —2y . At j =0, the probability for a right jump
is yo and the sojourn probability per step is 1 QO.

{y~' j =0, N —I] constitutes a set of random variables
defining the lattice.

We can substitute q =p =y in Eq. (11), and obtain
an expression for to ~. However, it is easier to start with
the recursion relation (10) to obtain

(20)

and thus

to, x=
j=1 XN —j

(21)

Equation (21) is very similar to (15) and the conclusions
are the same as for the random-barrier model. For in-
stance, the disorder-averaged MFPT is ( to ~ )
=(y ')N(N+1)/2. We can say that both models are
of the same universality class as far as the properties of
to & caused by the disorder are concerned and refer to the
discussion in Sec. III.

V. LA'I I'ICE WITH RANDOM ASYMMETRIC
TRANSITION PROBABILITIES

k=0 k=0 i =k+1 j=k+1

We can now perform the disorder average. Let (a)
denote the average of (1—p) /p over p(p). We get

1+&a) N+ &a& +&a&
(&

(1—(a &)'
(23)

This expression for the disorder-averaged MFPT is exact
and is valid for all N. Also note that (a)%1 in the
above. If (a) =1, we see from (22) that (to~)
=N(N+ 1).

For this model of disorder, we have at any lattice site j
(%0), q +p =1. Thus {po,p„.. . ,pz, } constitutes a
set of X random variables and we take them as indepen-
dent and identically distributed, with a common distribu-
tion p(p). Note that 0 (p ( l. Also note that at any lat-
tice site j%0, the sojourn probability per step is zero and
at j =0, the sojourn probability per step is 1 —po. Let us
denote a = (1—p ) /p and rewrite (11) as

tO, N =tO, N(PO&P1 i ' ' )PX —1)

N —1 N —2 N —1

=N+ g ap+ g g (I+al, ) P a . (22)

Equation (23) is exactly the same as (12) for biased ran-
dom walks if we set a= (a). Thus the disorder-averaged
MFPT behaves exactly like the MFPT of a biased ran-
dom walk, but with a disorder-dependent bias factor
a = ( a ) . Letting N ~ ~ in (23) we find the asymptotic
behavior of ( to z ) as

1+(a)
N ( )

1 —&a&

(t, )- N', (a)=1 (24)

&a&'+&a&
& &~ (

&a& —1'
For the Sinai model' the prescription is that ( ln(a) ) =0,
and the variance of ln(a), denoted by o, is finite. If
( ln(a ) ) =0, then ( a ) & 1. Thus we find that the Sinai
model' is analogous to biased random walks with an
effective disorder-dependent bias factor (a) & 1, oppos-
ing the motion of the random walk. Thus (to ~) does
not exhibit anomalous behavior, as was found for the
mean and mean-square displacement under the Sinai con-
dition. We will further comment on this point in Sec.
VII. However, for this model of a disordered system the
average behavior does not reflect the typical behavior, as
demonstrated by Noskowicz and Goldhirsch. They
showed that the typical MFPT goes asymptotically as
exp( tr v'N ), a behavior different from that of the
disorder-averaged MFPT. The asymptotic behavior of
the typical MFPT can be deduced by obtaining lower and
upper bounds. Since we have now the MFPT explicitly
in terms of the basic jurnp probabilities, the arguments
leading to the bounds are simpler and more transparent.
We present these briefly in the Appendix.

A model with asymmetric transition probabilities can
also be introduced by taking q; and p; at each site as in-
dependent random variables, with their values restricted
to the interval 0&p;, q, (—,', and qo=0. This is exactly
the general model introduced in Sec. II. In this case
there is a sojourn probability per step 1 —

q;
—p; )0 at

each site. An explicit expression for the disorder-
averaged MFPT is easily derived from (11). If the condi-
tion (q ) (p ') & 1 is fulfilled the results are equivalent to
the Sinai model. Indeed, this condition is met if p and q
are from the same distribution.

VI. LA'l I'ICE WITH BOND RANDOMNESS

In this model, the line joining two adjacent lattice sites
is regarded as constituting a bond. Thus the jth bond is
formed by the line connecting the site j —1 to the site j,
where j runs from 1 to X. The right-jump probability at
site j —1 is correlated to the left-jump probability at the
site j. Let us denote g, =qJ/p, for the jth bond. The
jump probabilities for the different bonds, however are
uncorrelated. Since at any site j, the left- and right-jump
probabilities are independent of each other and, since
q +pj «1, we require that q and p be restricted to the
range (0, —,'). Thus {g ) constitutes a set of N random
variables whose distribution can be obtained from the dis-
tribution of the pairs of random variables
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N —1 1
N —2 N —1 1

i

t.,
=X +X X —II

k=p Jk k=pi=k+1~i j=k+1
(25)

Performing the disorder average and taking the asymp-
totic limit of X~ Dc, we obtain

[qj,pj &.
. j = l, NI. This model of disorder, in the

continuous-time description, has been considered by
many authors. '

The MFPT for a given realization of this model is
given by (11), which can be rewritten in the following
convenient form:

sidered by Bernasconi and Schneider for which they find
that the disorder-averaged mean displacement behaves
anomalously.

We have not considered the distribution of tp N, result-
ing from the disorder, for this model. We expect it to be
similar to that of the lattice segment with asymmetric
transition probabilities. In particular, for case (iii), we ex-
pect tp N to show a behavior analogous to the Sinai mod-
el; cf. Sec. V.

VII. CONCLUSION

& p ') [ I —
& g & I

-'N,

&t, „)- &p '&N'/2, &g&=1

&p '&&0&
&(&~

(1—&g&)'

(26)

We discuss the different cases separately.

a result in agreement with that of Bernasconi and
Schneider.

Case (ii): (g) =1

For this case we find that

&to&�&

behaves like the
MFPT of a pure diffusive process with an erat'ective

disorder-dependent diffusion constant D =
& p

' )
Thus the disorder-averaged MFPT does not exhibit any
anomalous behavior. This case corresponds to the case
with A, = 1 —c, considered by Bernasconi and Schneider,
for which they find that the disorder-averaged mean dis-
placement behaves anomalously.

Case (iii): ( g ) ) 1

For this case, & to ~ & behaves like that of a biased ran-
dom walk with a disorder-dependent bias to the left, act-
ing against the motion of the random walk. Again we see
that &to N) does not exhibit any anomalous behavior.
This case corresponds to the case with A, &1—c con-

Case (i): ( g') & 1

It is seen that when & g & & 1, the disorder-averaged
MFPT behaves like the MFPT of a biased walk with an
effective disorder-dependent bias to the right aiding the
motion of the random walk. We can obtain an expression
for the velocity, V=N/&to~) =(1—&g&)&p ') ', a re-
sult in agreement with that obtained by Derrida. This
problem has also been considered by Bernasconi and
Schneider. These authors prescribe that the pair
(p~, q, +, ) takes values (u, 0) with probability c and (AU, U)

with probability 1 —c. Actually Bernasconi and Schneid-
er have considered continuous-time models and hence
the parameters u, v, and A, v are the transition rates which
can take any positive values. But since we are dealing
with discrete time, we require these parameters to be re-
stricted to the range (0, —,

' ). The case with A. ) 1 —c corre-
sponds to & g & & 1 and we get

V=uu (A, —I+c)/(cAv +u —uc),

We have presented in this paper a method to calculate
the MFPT of random walks on one-dimensional random
lattices. We reported expressions for the MFPT explicit-
ly in terms of the basic transition probabilities. We con-
sidered four important models of disorder and for these
we obtained exact analytical expressions for the
disorder-averaged MFPT.

For the random-barrier and the random-trap models
we find that the disorder-averaged MFPT behaves like
the MFPT of a pure diffusive process. For the Sinai lat-
tice we find that the disorder-averaged MFPT does not
exhibit any anomalous behavior. Indeed, it behaves like
the MFPT of a biased random walk with a bias acting
against the motion of the walk. For the model with bond
randomness we find again that the disorder-averaged
MFPT behaves like the MFPT of an ordinary walk [case
(ii) in Sec. VI] or a biased walk [cases (i) and (iii) in Sec.
VI].

It would be useful and interesting to extend the formu-
lation presented in this paper to the calculation of higher
moments of first-passage time (random-walk average) and
perhaps the distribution itself. Recently, Van den
Broeck' proposed a formulation, very different from
ours, and obtained an equivalent expression for the
MFPT in terms of basic transition probabilities. His for-
mulation enables calculation of higher moments of first-
passage time (random-walk average). Study of higher
moments in general, and the distribution in particular,
would be helpful in characterizing the behavior of the
MFPT.

The main theme of our investigation was the disorder-
averaged MFPT, & to & ), for the various models of disor-
dered segments. Also some properties of the distribution
of t0 N resulting from the disorder were studied. For the
random-barrier and random-trap models the distribution
is asymptotically a Gaussian. Here the disorder deter-
mines more subtle features such as the behavior of the
fourth- and higher-order cumulants for large N. In con-
trast, for the Sinai model, the distribution of tp N is not
Gaussian. This is already evident from the fact that the
typical and average MFPT behave quite differently as
functions of the segments lengths; see Ref. 6 and the Ap-
pendix. Clearly the study of the distribution of the
MFPT for this class of disordered models is a challenging
problem, and is currently under investigation. Also the
results on the mean and mean-square displacements for
the Sinai model should be reexamined. The question is to
which extent does the reported anomalous behavior of
these quantities reAect typical and average behavior.
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Note added in proof. Related results on MFPT were
obtained by Doussal' and by Matan and Havlin. '
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APPENDIX' UPPER AND LOWER BOUNDS FOR to ~

Here we obtain asymptotic behavior of upper and
lower bounds for the typical MFPT.

Upper bound

P(x & trN +') =—' —erf(N') =$

where erf( ) denotes the error function defined as
r

erf(r) = I exp — dy .
r y

277

(A2)

(A3)

Thus, for any e, however small, we can render 5 as small
as desired, by taking N sufficiently large. Hence, the

Let a denote the highest value that a can take. We as-
sume that a & ~, which implies that p &0, for all j. Let
II(a, b) =g. ,ct . . Then, from (22), we see that

N —2 N —1

t ~N(1+a)+ g g [II(k+ l,i)+II(k, i)] . (Al)
k =Oi =k+1

Let x =ln[II(O, N —1)]. It is clear that x is the displace-
ment of an ¹tep random walk, whose statistics are
determined by those of lna. Note that by the Sinai condi-
tion (x ) =0. The variance of x is Ntr, where cr ( Do is
the variance of lna. For N~ ~, x is normally distribut-
ed, by the central limit theorem. It is easily seen that

highest value of ln[II(a, b)] does not exceed
exp(crN" '+') for any a, b such that b —a ~N. Since e
is arbitrary, we conclude that the upper bound of to N

goes asymptotically as exp(o &N ).

Lower bound

S —1 (k+1)n —1

totv& g g a, .
k =0 j=kn

(A5)

The S products in the above summation can be regarded
as S independent random variables. Let Q denote the
probability that at least one of the S products is greater
than exp(oN" ' '), where e&0 is arbitrarily small. To
calculate Q, we proceed as follows.

Let xk=g'"+k„"" 'ina . When n is large xk is nor-
mally distributed with mean 0 and variance no. . Then,

P(x & oN" ' ')= ' erf(S"——' 'n ') .Xk (A6)

It follows immediately that

Q =1—[—'+erf(S" ' 'n ')]
2 (A7)

For a given n (large) and e (small), we can choose S such
that nS »S' '. Thus we see that Q can be made as
close to unity as desired, for a given arbitrarily small e
and a given large n, by taking S sufticiently large. It fol-
lows that asymptotically the lower bound of t0 N goes as
exp(a&N ).

It is easy to see, from (22), that
N —1

totv& g ai (A4)
j=0

Following Noskowicz and Goldhirsch, we consider the
lattice (O, N), to be made up of S subsegments

t 0, n I, I n, 2n I, . . . , t (S —1)n, Sn ], such that nS =N. It
is obvious that to tv & gk:0tk„~k, ~„. Let us use the in-
equality (A4) for each subsegment, and get
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