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Destabilization of a Sat nematic-isotropic interface
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We present experiments on the directional solidification of a moving nematic-isotropic interface.
We study the bifurcation and marginal stability of the interface in a system of 4,4 -n-

octylcyanobiphenyl (8CB) with the impurity hexachloroethane C2C16 added. In the velocity,
temperature-gradient parameter space, we can trace the marginal stability line, in qualitative agree-
ment with theory. A quantitative analysis shows that three-dimensional efFects, such as solute-
driven convection and the thickness of the sample, must be considered.

I. INTRODUCTION
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FIG. 1, Basic experimental setup. A thin sample is drawn
across two ovens separated by a small gap. Because the temper-
ature field is stationary in the laboratory frame, the interface
may be observed via a fixed microscope, as indicated.

In this paper we study the directional solidification of a
liquid crystal, in particular the marginal stability of a
nematic-isotropic interface as it is dragged along at a
fixed, controllable velocity by a moving temperature gra-
dient, also controllable. In previous work, ' we reported
observations on pattern formation in such a system and
suggested that the impurity-diffusion version of the
Mullins-Sekerka instability was responsible. Armitage
and Price had earlier observed the Mullins-Sekerka in-
stability in undercooled melts of the liquid crystal p-
azoxyanisole (PAA). Their qualitative analysis neglected
the impurity effects which are dominant.

A primary purpose of the present work is to examine
whether the observed pattern formation is due to the
Mullins-Sekerka instability. In Sec. II we summarize the
Mullins-Sekerka theory of the linear stability of a Aat in-
terface, as it applies to our experiment.

In Sec. III we describe the experiment itself. In brief,
as shown in Fig. I, a (nearly) two-dimensional sample is
placed into a temperature gradient that points in the

plane of the sample. The temperature gradient is set by
putting a thin sandwich of glass filled with chemical
across a gap between two ovens. The temperatures of the
two ovens are chosen so that there is a phase transition in
between the ovens, giving rise to a straight interface. The
sample is set into motion at a velocity v; after a transient,
the interface freezes at —

U in order to stay at the same
temperature. At low velocities, the interface remains a
straight line; at high velocities, the interface destabilizes
into a wavy pattern, the understanding of which is our
primary goal. The experiment may be set up in such a
way that the interface pattern formation is the result of
adding impurities to the sample. The interface remains a
straight line in the absence of impurities for the range of
velocities and temperature gradients accessible in our ex-
periment.

Figure 2 shows steady interface profiles as a function of
velocity. As we have remarked in earlier work, ' the bi-
furcation from the fiat interface in Fig. 2(a) to the slightly
deformed interface in Fig. 2(b) is supercritical. In this
paper we shall be concerned only with the quantitative
analysis of the loss of stability of a Aat interface. The
reader should note, though, that the nonlinear behavior
of the interface is rich and barely explored. '

In Sec. IV we present our primary experimental re-
sults, namely, the determination of the marginal stability
curve in the space of velocity and imposed temperature
gradient. The main features of the stability curve are in
qualitative agreement with theory. Further, we observe
solute-driven convection on the isotropic side of the in-
terface and present a quantitative analysis suggesting that
this physical process, ignored in previous theoretical
treatments, must be considered.

Finally in Sec. V we discuss in detail the results and try
to propose possible explanations for the discrepancy be-
tween the physical parameters of 4,4'-n-octylcyan-
obiphenyl (8 CB) and the onset values of velocity and
wavelength. Also, the thickness dependence of samples is
investigated further.
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The subscript (N) refers to the nematic phase and the (I)
refers to the isotropic phase. In the reference frame mov-
ing along with the interface, the diffusion equation can be
written
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where v is the average interface velocity. At y =+~, the
concentration is co. The moving coordinate system is il-
lustrated in Fig. 3. Ordinarily, the specification of our
problem would be given by a boundary condition for c at
some known location. Here, the boundary is unknown,
but we specify both c and VC at this unknown boundary.

The equation for c requires consideration of several
points of thermodynamics. The first is that impurities
alter the melting temperature of a material. By consider-,
ing the change in chemical potential due to the addition
of impurities, one can derive the van 't Hoff law

, :-:-I,:::;j ' I4 RTN2 r
Tm =T~ I — (ci —c~) . (3)

FIG. 2. Interface patterns as the velocity is increased. The
numbers to the right of each pattern give the velocity, in
pm/sec. G =43'C/cm, co =3.0 mol%, d=28 pm. Phase con-
trast illumination.

II. THEORETICAL BACKGROUND

Here, T is the phase transition temperature in the im-
pure material, TN r is the nematic-isotropic transition in
a pure material, R is the ideal gas constant, 1. is the mo-
lar latent heat of the pure nematic-isotropic transition,
and cr and CN are the concentrations of impurities in the
isotropic and nematic phases and are here evaluated at
the interface. By equating the chemical potential of the
impurity, one can also show that

CN —Af(P, T)/R TN-I=e
c

The "standard model" of directional solidification fol-
1ows a macroscopic thermodynamic approach in which
the interface is a surface of zero width separating the
phases. Every point is assumed to be in local thermo-
dynamic equilibrium; kinetic processes at the interface
are neglected. While such an approximation is valid for
low interface velocities, nonequilibrium effects begin to be
important for interface velocities of the order of meters
per second in solid-liquid systems. ' For liquid crys-
tals, it is possible that such effects enter at lower veloci-
ties.

We further assume that the temperature field is im-
posed by the experimenter, and, in particular, that the
release of latent heat may be ignored. See below, Sec.
III C. Finally, we begin by assuming that a two-
dimensional description is sufficient. In previous work on
solid-liquid systems, de Cheveigne et a1." established
that a meniscus in the vertical plane could have a large
efFect on the quantitative predictions of the Mullins-
Sekerka theory. Subsequent calculations by Caroli
et al. ' have qualitatively confirmed these ideas. In the
experimental case, we will clearly have to worry about
three-dimensional effects. See Sec. IV, below.

With these assumptions, the field of impurity concen-
tration obeys a diffusion equation in each phase:

where we have defined the equilibrium partition
coefficient k and where AP(P, T) is proportional to the
free-energy difference of the impurities between the
phases. Note that at a second-order transition, k=1 as
all thermodynamic quantities must be continuous.

The phase diagram corresponding to Eqs. (3) and (4) is
shown in Fig. 4(b). The liquidus line setting off the iso-

I ~ I
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X

FIG. 3. Coordinate system for directional solidification. The
interface pattern has wavelength A, and is described by the func-
tion P(x). The z axis, not shown, is perpendicular to the plane
of the figure. The figure shows an aspect ratio (width/A, ) of 6.
Actual samples have aspect ratios of 10 to 10 .
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The constant To can be adjusted so that y=-0 corre-
sponds to the position of the Rat interface at U=O. Put-
ting together all our thermodynamic relationships, we
have

1 Gy TN-I
c&(x,P) cl—(x,g) co—1 do

Position The second boundary condition requires that impuri-
ties be conserved across the interface:

O
~ ~
V)
O

CL

Tm ~
Q)
CL
E

OP IC

Liquidus

Solidus

Co Co/ k

Concentration

(n v)cl(x, g)(1 —k)

=Dzn Vc~(x, g) Din V—ci(x,g),

BCN
DNV CN+ U

By

BCN
y &P(x)

Bi '

where v is the velocity of the interface in the frame of the
sample, and n is a unit vector perpendicular to the inter-
face, pointing from the nematic phase into the isotropic
phase.

This completes the specification of the standard model
of directional solidification. Collecting the various equa-
tions, we have

FIG. 4. Concentration profiles for a moving planar interface.
(a) Concentration as a function of position. (b) The concentra-
tion profile superposed on the impurity-phase diagram. Since
the temperature gradient is linear, the y axis is both temperature
and position. Curve (i) has U (U, ; curve (ii) has U =U, ; curve
(iii), which dips into the coexistence region, has U ) v, .

BCI BCI
DIV cI+U =, y )p(x)

By Bt '

lim c~(x,y)= lim cI(x,y)=co,
J7 ~ oo y —++ oo

cd(x~ 4) Gy T& I=ci(x,g) =co 1 — —do a
k mco mco

(10)

tropic phase from the coexistence region has a slope
whose absolute value is m =RT~ I(1 k)/L Th—e.
solidus line separating the low-temperature nematic
phase from the coexistence region has a slope of absolute
value m /k. In addition to illustrating a jump in concen-
tration across an isothermal interface, Fig. 4(b) shows
that an impure material will have a melting range. Be-
tween liquidus and solidus lines, the two phases will coex-
ist in equilibrium. Note that any material will satisfy Eq.
(3) at low-enough concentrations. The only question is
how low.

The second point of thermodynamics is that surface
tension and impurity effects alter the melting temperature
of curved interfaces. The Gibbs-Thomson law' relates a
shift in melting temperature to the curvature ~ of the in-
terface:

T = Tx 1(1—do~)-
do=yM /LPN .

Here, do is the therma1 capillary length, y is the surface
tension, M is the molecular weight of the liquid crystal,
and pN is the density of the nematic phase at TN I.

To get the boundary condition for c, we recall that the
sample is subjected to a uniform temperature gradient G,
hence

T(y)=TO+Gy .

~(x)=
—6"(x)

[I+/' (x)]
(n v)cl(x, g)(1 —k)

=D~n-Vc~(x, g) —Din Vci(x, g) .

In these equations, P(x) is the position of the interface
and 1~(x) is the interface curvature.

The standard model considers three physical effects:
the diffusion of impurities, the depression of the interface
temperature due to impurities, and the change of inter-
face temperature due to curvature. With the imposed
temperature gradient there are three length scales for
diffusion, thermal, and capillary lengths, respectively,

D
lD—=

U

ATlT=

TN -I
lc —=do AT

Here, b T=mhc:—mco(1 —k)/k represents the tempera-
ture difference between liquidus and solidus lines on the
equilibrium phase diagram, for a concentration co, and
hc=—co(1—k)/k is the difference in concentration be-
tween the liquidus and solidus lines on the phase diagram
[see Fig. 4(b)]. Each length scale has a clear physical
meaning. lD is the length over which the concentration
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field falls to 1/e of its original value in front of a moving
flat interface. lz- is the length over which one moves from
the liquidus to the solidus line on the temperature-
concentration phase diagram. (On the diagram, this is a
temperature, which is converted to a length via G. ) lc
will be interpreted below as the smallest length scale of
interfacial pattern one can observe. For the moment, we
note that it is the length that appears when we ask what
concentration difference will balance the chemical poten-
tial jump across a curved interface. The factor T~ z/AT
in /z accounts for the adjusted surface tension due to the
shift in melting temperature due to impurities.

Because there are three length scales in the problem,
there are obviously several ways to define the two dimen-
sionless control parameters. In this paper we will adopt
the following convention: we shall scale position vari-
ables by lc and define the control parameters lc/lv and
l&/lz-. This convention has several advantages in com-
paring theory with experiment. ' The capillary length l&
is an intrinsic scale of the system, whereas the other two
scales are imposed by the experimenter. /~ will turn out
to be the smallest length scale of a pattern observable for
a given material. The control parameters as defined
above are easily interpreted as the dimensionless velocity
and temperature gradient, respectively. They can be
varied independently by the experimenter. Explicitly, we
rescale x,y, P, ~ by lc, t by lc/Dt, c~ and ct by ca, and
define q = Dz /Dz. After rescaling one gets the equation

is just v =G (in our dimensionless units). This is called
the constitutional-supercooling criterion.

B. Linear stability analysis

For u and G~0, the physically appealing picture of
constitutional supercooling is accurate. But for larger u

and G, the surface tension of the interface becomes im-
portant and the relation v =G must be modified. A prop-
er linear stability analysis of a moving flat interface was
first performed by Mullins and Sekerka. ' ' We let

P= —G '+ A (t)cos(qx),

ctv(t) =1+B(t)cos(qx)e (14)

1 —kct(t)= 1+ &
—v [y —p(t)]

X(G+q ), (15)

with

+D (t)cos(qx)e

where 3 (t), B (t), and D (t) are small compared to 1 and
where Q and Q are to be determined. Inserting these ex-
pressions into Eqs. (12), and we get

cu(q; v, G) = = —ku +vQ + [uk (1 —k) —(Q +gkQ )]
A

B
qV cz+u

BBy Bt
Q = —[1+(1+4q /v +4'/u )' ],

2
(16)
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y~ —oo y —++ oo

k ' k
=ct(x, P) = 1 — (Gy +x.),

(n.v}ct(x,g}(1—k) =rtn. [Vc~(x,g)]—n [Vct(x, g)] .

(12)

Q= [ —1+(1+4q r) /v +4g tulu )' ] .
271

At the onset of instability, cv=B~/Qq =Qtu/Q(q2)=0
gives the bifurcation curve, G (u), separating the region of
parameter space where planar fronts are stable from the
region where planar fronts are unstable solutions to the
equations of motion. In the limit v ~0, G~O, terms in
v may be dropped, so that Q = Q = q ((1. Then

co(q; v, G) = [v —G (1+rtk) ]q —(1+r)k)q (17)

A. Zeroth-order solution

The zeroth-order solution to Eq. (12) is a fiat interface:

$0= —G ', c~(x,y) = 1,
(13)

1 —k
ct(x,y) = 1+ 0

—v(y —P )

[see Fig. 4(a)]. Across the interface, the concentration
jumps from c&=1 to c~ =1/k. This "spike" of impurities
then decays over a length 1/u. The faster the interface
moves, the steeper is the decay of impurities in front of
the interface. In 1953, Tiller et al. proposed that the in-
terfacial instability was the result of "constitutional su-
percooling. "' Drawing the solution on a phase diagram
[Fig. 4(b)], we see that for large enough u, the interface
dips into the region of coexistence. It is easy to show
that the condition for dipping into the coexistence region

When g=O, i.e., when there is no diffusion in the low-
temperature phase, one recovers the constitutional-
supercooling result for the onset of instability, v =G.
More generally, we can solve numerically for G(v) and
show that there is a maximum velocity u,„=1/k and a
maximum temperature gradient G,„=1/16k,above ei-
ther of which the interface is always stable. In dimen-
sional units, these limits are

Dr Co 1 —k
u mBx (18)

and

1 (mco) (1 —k)
max 16d 7 3 f ( q)

0 Xr
(19)

The function f (k, g) is of order unity over the range
0 & k & 1 and 0 & g & 1. One should note the strong varia-
tion of u,„andG,„with the partition coefficient. Typi-
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cal solid-liquid transitions have k & 0.1, while typical
nematic-isotropic transitions have k =0.9. Changing the
partition coefficient from 0.1 to 0.9 reduces G „byfive

orders of magnitude and U,„bythree orders.
We will make one final change of variables to rescale U

and G to U/U, „andG/G,„.This way, the experimen-
tal relevant values of U and G go from 0 to 1. Although
one can derive an analytic expressions from v,„[Eq.
(18)], one can get only an approximate expression for
G,„[Eq.(19)]. Of course, numerically, there is no prob-
lem computing G,„given parameter values. The bifur-
cation curve, calculated numerically, is plotted in Fig. 5.

One can interpret nicely the features of the bifurcation
curve. The constitutional-supercooling limit corresponds
to lD=lT, I&~0. In this case, surface tension is ir-
relevant, and the diffusion of impurities takes place on a
scale commensurate with that provided by the tempera-
ture gradient.

The maximum velocity occurs when lD = I~ and

lT~ ~. Here, the thermal gradient is unimportant, and
the interface is stabilized when the length scale associated
with the destabilizing diffusion mechanism is comparable
to the capillary length. Surface tension then kills the in-
stability.

The maximum gradient occurs when l„=l&,where
there is a crossover between the two stabilizing mecha-
nisms, the temperature gradient and the surface tension.
Since lD is also comparable to IT and lc, it is hard to cal-
culate G,„analytically. Note that the expression for
G,„depends upon diffusion constants only through their
ratio, g, and only weakly on this.

The enormous reduction of scale of the bifurcation
curve is one of the most attractive features of working
with liquid crystals. Whereas solid-liquid systems have
U „=1m/sec and G „=10'C/cm, we can have
nematic-isotropic systems with U „=100—10000 pm/sec
and G,„=10—1000'C/cm. Quantitative exploration of
the bifurcation curve on solid-liquid systems has been
limited almost entirely to the U~O, G~O limit, where

the Mullins-Sekerka theory is relatively well confirmed. '

The only way so far to study the high-u, high-G regime is
through "Aying-spot" experiments, whereby a laser or
electron beam traverses the material at up to several me-
ters per second. ' ' Of course, under such cir-
cumstances, it is difficult to do any detailed modeling.
Liquid crystals thus offer the intriguing possibility of ex-
ploring the entire U-G parameter space in a single, well-
controlled experiment. This was first pointed out by
Caroli et aI.

Another result of linear stability analysis is a predic-
tion of the critical wavelength at onset. Figure 6 plots
the critical wave number q, as a function of the critical
velocity U, along the bifurcation curve G(U, ). Note that

q, ~0 as U, ~U,„=1/k within this model, and this limit
can be inadequate. The maximum wave number q, „

is
given by

1 1 —k
q =lc

2k
g(q, k), (20)

III. EXPERIMENTAL METHODS AND APPARATUS

This section is divided into three parts. The first
discusses the materials studied. The second describes the
construction of samples. The third describes the experi-
mental apparatus itself, along with the techniques of data
acquisition and analysis. For general references on the
techniques followed, the works by Hunt et aI., Esaki,
Chopra, and Kaukler are useful.

which confirms our earlier assertion that the smallest
length scale over which pattern formation may occur is
set by lc. The function g(g, k) is of order unity when
k=a=1. When k=0.9, the factor 1 —k increases A,, by
a factor of 10, or so. Further analytic details on the
linear stability analysis may be found in the review by
Corjell et al.
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FIG. 5. Bifurcation curve G(v). The axes of the plot are re-
versed because experimentally, the dependent variable is the
temperature gradient. This curve is calculated for k=0.88,
g=0.53. All other parameters are absorbed into v,„andG
which are here scaled to 1.

Ve I o city

FIG. 6. Critical wave number vs critical velocity, as one
moves along the marginal stability curve G(v), as calculated
from the Mullins-Sekerka theory. Same parameters as Fig. 5.
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A. Preparation of liquid crystals

One advantage of liquid crystals is that, at least for
8CB, they are "operationally pure" as recieved from the
manufacturer, meaning that no experimentally achievable
combination of velocity or temperature gradient led to a
destabilization of the interface. It is necessary to add an
impurity to see the Mullins-Sekerka instability.

To add impurities, about 500 mg of pure 8CB was
transferred to a small bottle that had been carefully
cleaned, dried, and weighed. The bottles were dried in an
oven overnight at 120'C. Chemical transfer occurred us-
ing a clean magnet wire while the liquid crystal was in
the nematic phase. An appropriate amount of impurity,
on the order of a milligram, was then added while the
bottle of liquid crystal was on a Mettler balance, sensitive
to 10 g. A clean Teflon stir bar (2 X 5 mm ) was add-
ed permanently to the bottle for good mixing. After pre-
paring each mixture of 8CB, the liquid crystal was
pumped under vacuum in the isotropic phase for at least
—,
' h to remove water and other volatile impurities. From
the change in G,„,we estimated that the unpumped
8CB contained approximately 0.2 mo1% volatile impuri-
ties [the manufacturer notes that the saturation concen-
tration of water in the nCB series is 0.15 mol% (Ref.
31)].

The choice of impurity was dictated by several criteria.
The impurity should be an ideal one in the thermo-
dynamic sense, both the melting and freezing points
should be depressed linearly with the concentration of
impurity. Any added material will satisfy these criteria
for small-enough concentrations. The question is wheth-
er the solution is ideal at concentrations large enough to
be experimentally convenient (c =1 mo1%). Differential
scanning calorimetry (DSC) measurements and visual ob-
servation showed that our chosen impurity, hexa-
chloroethane, only marginally meets those requirements.
Finally, the physical parameters characterizing the im-
purity should be known. In Sec. V A, below, we discuss
the parameters for the 8CB-C2C16 system.

B. Sample preparation

In general, the samples consisted of a thin "sandwich"
of glass, the system or chemicals to be studied, and glass.
The glass plates had to be treated to properly orient the
nematic into a single domain. It was also important to
keep the glass plates as parallel as possible.

For all samples, we began by cleaning the glass plates.
The plates were first washed by rubbing them in an ap-
proximately 2 vol % detergent —water solution (Micro
Laboratory Cleaning Solution ), then rinsed for 15 sec
under flowing distilled, deionized water, then placed in
hot distilled, deionized water in an ultrasonic clean for 30
min, and placed in individual beakers (sized just larger
than each plate so that the glass would stand nearly verti-
cal, touching the beaker only along the bottom edge and
the top two corners). Henceforth distilled, deionized wa-
ter will be referred to as pure water. The beakers were
filled with chromic-sulfuric acid (Fisher Glass Cleaning
Solution ), which was heated to 100'C for 4 —,

' h on a hot

plate. The plates were rinsed by swishing them in pure
water for 5 sec. They were then inserted into a new set of
beakers filled with a 10 vol% HCl —water solution and
were then soaked for 15 min. The purpose of the HC1
solution was first to remove chromium ions from the
glass surface, which are not well rinsed by water, and
second to attach OH groups to the, glass surface to aid
in the bonding of silane (see below). The glass plates were
rinsed under flowing pure water for at least 10 min, then
placed in an oven at 120'C overnight to dry. Glass that
was well cleaned showed no spots when dry.

The plates were then treated in order to align the liquid
crystal perpendicular to the glass plates (homeotropic
orientation). The techniques for achieving these orienta-
tions have been much studied, for they are used to con-
struct commercial liquid-crystal displays (LCD's).
The clean glass plates are dipped in a 1% silane solution
dissolved in 1,1,1 trichloroethane (Merck ZLI 3124).
The silane solution as received contained many small par-
ticles of undissolved silane in the trichloroethane. These
are largely removed by filtering through a disposable,
inorganic membrane, 0.2 pm syringe filter. After dip-
ping, the plates are exposed to air for 15 min and then
baked at 120 C for 10 min. The humidity in the room
catalyzes the hydrolyzation of the silane onto the glass,
forming a covalent bond between silicon groups on the
surface of the glass and that in the silane molecule. Be-
cause a very slight amount of water vapor is sufhcient to
hydrolyze the silane, the silane solution must only be
opened to a N2 atmosphere. We did all of our dipping in
a nitrogen-filled glove box.

The silane solution will deposit a monolayer on the
glass surface, which will entangle the first layer of 8CB
molecules, forcing them to stand perpendicular to the
glass plate. (See Fig. 7.)

The glass plates used in the experiment were of soda-
lime float glass, cut by Glass-Tek Industries. The bot-
tom plate measured 24 X 28 X 1 mm, the top plate
22X22X1 mm . The overall lateral dimensions of the
plates were chosen to given an aspect ratio of at least 100,
where we define the aspect ratio to be the number of
wavelengths of a typical pattern across the sample. The
bottom plate needs to be somewhat larger than the top
plate in order to assure good thermal contact with the
copper ovens and an effective sample holder. The 1-mm
thickness of the glass plates is a compromise between ri-
gidity and time constant.

The plates were spaced by placing four small lengths of
wire (either 12.5, 25, or 50 pm) between them and putting

FIG. 7. Homeotropic anchoring. Silane molecules are bond-
ed to the surfaces of the glass plates (shown shaded). The hy-
drocarbon tails of the silane molecules entrain the SCB, orient-
ing the liquid crystal perpendicular to the glass plates.
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two drops of epoxy (Devcon ) on each wire. By count-
ing interference fringes from a fluorescent light, the angle
between the two plates was typically measured to be
(1—2) X 10 rad. In order to make the plates as parallel
as possible, we constructed a brass jig that allowed us to
adjust the pressure on the top plate by tightening and
loosening screws. The epoxy should dry at room temper-
ature. If it cures at high temperatures, it changes dimen-
sion, warping the glass plates. The limiting factor in
making the plates parallel seems to be the rigidity of the
plates and glue rather than the flatness of the plates
themselves.

The assembled cell was then placed on a hot plate at
about 60 C, and the sample was then filled by placing
drops of liquid crystal at one corner and relying on capil-
lary action to draw the chemical between the plates. To
avoid dust, we assembled the samples in a laminar-flow
hood. "

C. Apparatus

The completed cells were mounted in a temperature-
gradient stage, adapted from the original design of Jack-
son and Hunt. (See again Fig 1.) . Two temperature-
controlled ovens are separated by a small 4-mm gap. The
sample straddles the gap, imposing a linear temperature
gradient across the material to be studied. The large
thermal conductance of the 1-mm-thick glass plates of
the sample ensures that the temperature gradient is im-
posed on the cell. The temperatures are chosen so that
an interface between two phases appears in the gap,
where it is observed via a microscope. The sample is then
pushed slowly by a motor at constant speed across the
gap. To a first approximation, the temperatures in the
glass plates will readjust adiabatically so that the temper-
ature gradient is fixed in the laboratory frame of refer-
ence. The interface will thus remain in its original loca-
tion in the gap. In the reference frame of the sample, it is
moving at a velocity equal and opposite to the velocity of
the sample. Thus, we can observe an interface propaga-
ting at a controllable velocity while moving along with
that interface.

Next, we review some of the points considered in the
design of the stage. The ovens should be as large as pos-
sible to provide the largest possible thermal mass. %'e
used copper plates anchored to larger copper blocks. The
use of thin copper plates was dictated by the need to per-
mit microscope observations by objectives with working
distances as short as 5 mm. The larger blocks compen-
sated for the small mass of the plates. One oven was
heated by an electrical heater, connected to a proportion-
al, integrating, and diff'erentiating (PID) feedback loop,
controlled by an Omega CN-9000 temperature regulator
hooked up to a platinum resistance temperature device
(RTD) (Omega F3105). Its useful range was 30—150'C,
with stability of O. l C over the long term and 0.03'C
over the short term (10 min). The other oven was regu-
lated by circulating temperature-controlled water
through the large copper block. Its useful temperature
range was —30'C to 90'C. (Temperatures lower than
5 C could be achieved by adding ethylene glycol to the
water bath. ) The water bath was a Neslab RTE-8DD cir-

Hot Cold

Screw
IIIIIIIIIIIIIIII fI-Stepping

Motor

Tl
Cold

FIG. 8. Diagram of experimental apparatus. A top view is
shown, with the top and bottom plates not depicted. The four
rectangles marked "T" are blocks of TeAon. The sample is
shown in the middle of the figure. Note the rotatable sample
holder.

culator, with short-term stability of 0.01'C and long-term
stability of 0.1'C (determined by changes in the room
temperature). In order to avoid a vertical temperature
gradient, we suspended thermally linked top plates 0.2
mm above the sample.

The ovens were separated by 4.00 mm and the sample
placed between them in a fiberglass holder that featured a
rotatable cutout for the sample in the center. The holder
was spring-loaded at the sides and front. The side spring
loading compensated for the thermal expansion of the
fiberglass over the temperature gradient. Small Teflon
pads gave stick-free motion against the copper side walls.
The front spring allowed the sample to be pushed in both
directions. (See Fig. 8.)

The stage was pushed by a fine screw (Newport AJS-
1). The screw was driven by a Berger Lahr stepping
motor (RDM 566/550, with Divistep controller), with a
resolution of 500—10000 steps/revolution. The motor-
screw combination gave velocities ranging from 0.1 to
300 pm/sec. The absolute accuracy of the velocity was
far from being the limiting factor of experimental pre-
clslon.

The temperature gradient was calibrated by construct-
ing a dummy cell with a thermocouple inside (3 mil
Teflon-coated, Chromel-Alumel wires, Type E, spot weld-
ed together) and running it across the gap at various ve-
locities. The cold junction was referenced to the cold
oven block, and the temperature difference was recorded
directly by a Keithley 195 voltmeter interfaced to a
Hewlett-Packard 9816 computer. " A typical run is
shown in Fig. 9. The run started 4 mm before the gap
and finished 4 mm after the gap. The gap runs from 4 to
8 mm on the scale of Fig. 9. The major conclusions were
that at even the highest velocities, the temperature gra-
dient was a constant over the central 80%% of the gap;
however, because of thermal short-circuiting of the ovens
by the glass plates, the actual temperature gradient was
calibrated to be only about three-fifths the naive value,
Go, defined to be the difference between the oven temper-
atures divided by the oven separation.

The temperature-gradient stage was mounted on an in-
verted microscope (Olympus IMT-2). An inverted mi-
croscope was chosen because it provides a large, stable
workspace to mount the heavy stage (5 kg). Much of the
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FIG. 9. Horizontal temperature profile in sample. The
profile was generated by running a dummy cell with a thermo-
couple through the apparatus. The profile varied with velocity,
as shown by scans at U=1 and 80 pm/sec, lower and upper
curves, respectively. The gap between the two plates started at
x =4 mm and ran to x= 8 mm.

FIG. 10. Experimental bifurcation curve. The concentration
co=0.46 mo1%, d=55 pm.

For a typical nematic-isotropic sample, D = 10
cm /sec, U = 10 pm/sec, and k =0.9. This gives N = 10 .

stability comes because the objectives move when focus-
ing, while the stage is bolted to the microscope frame.
The temperature-gradient stage was connected to an XY
table (Ealing 22-8171), which was also bolted to the mi-
croscope frame. Micrometer screws permitted horizontal
movements with better than 10-pm precision. The XY
table was used both for positioning and for measurement.

At various times, we used bright-field, dark-field, phase
contrast, polarization, and Nomarski difFerential interfer-
ence contrast. We measured the shape of the interface
under bright-field illumination because it shows only the
interface, which appears as a sharp line. Phase contrast
increases the contrast of the interface against the back-
ground, at the cost of some resolution. Crossed linear po-
larizers allowed us to probe details of the alignment of
molecules in the optically anisotropic nematic. Nomarksi
illumination was useful for its shallow depth of field (=2
pm), which allowed us to scan even thin cells vertically
and measure sample-thickness profiles.

Our run procedure was as follows: new cells were run
their entire length at 5 pm/sec (or some speed slow
enough to keep a stable interface) in order to push loose
dust to one side of the cell. We often had to repeat the
procedure 4 or 5 times until the sample had "cleaned it-
self." This procedure was fairly efFective.

Once the cell has been "cleaned, "we begin to use it im-
mediately. One important advantage of liquid crystals is
that their high critical velocities (1—100 pm/sec), com-
bined with a partition coefficient close to 1 means that
only small amounts of impurities are displaced during the
experiment. Thus one does not need to let the system
diffuse back to equilibrium. More precisely, the number
of passes to produce a 2:1 difference in impurity levels at
one end of the cell compared to the other is approximate-
ly

IV. EXPERIMENTAL RESULTS
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The most basic test of the Mullins-Sekerka instability is
to determine under what conditions a flat interface loses
its stability and what is the most unstable wave number
(q, =2m/1, , ) at the onset of instability. The predictions
of the Mullins-Sekerka theory for these questions were
discussed in Sec. II B and the results are summarized in
Figs. 5 and 6.

Our measurements of those curves are shown in Figs.
10 and 11. Qualitatively, they agree with the theoretical
prediction. In particular, we observe a maximum tem-
perature gradient 6,„=11.9'C/cm, beyond which the
interface is stable for all accessible velocities. Despite
qualitative agreement between Figs. 5 and 10 and be-
tween Figs. 6 and 11, attempts to fit the data lead to
unacceptable values of the physical parameters character-
izing the sample. Taking results from Sec. VA, we esti-
mate the parameter values, along with their uncertainties

1V ——'l I U k
samPle D (21) FIG. 11. Wave number at onset vs velocity. co =0.46 mol%%uo,

d=55 pm.
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and conclude from independent experiments that the par-
tition coefficient k ranges between 0.86 & k &0.93, the ab-
solute value of the liquidus slope m falls in the range
0.9 & m & 1.3'C/mo1%, the diffusion constant of C2C16 in
the nematic phase in homeotropic alignment is

D& p p
2 X 10 cm /sec, the diffusion constant of

CzC16 in the isotropic phase is Dr =4X 10 cm /sec, and
the thermal capillary length do =4.7+2.2X 10 ' cm.

These values predict at G,
„

the following values:
6 =230—2600'C/cm, V=230—760 pm/sec, and 1,=0.4
—1.2 pm. In contrast, we measure G =11.9 C/cm, v=67
pm/sec, X=125 p,m. The wide range of predicted values
follows from an extreme sensitivity to the value of k. (See
Sec. II B, above. )

It has been pointed out that elastic deforrnations of the
nematic director field may play a role in our experi-
ments. A length scale d, =(K/L)', where K is an

elastic constant and L, is latent heat, is on the order of 10
A for our system, however, substituting this for do does
not resolve the theory with the experiments, so it is yet
unclear how relevant this length scale may be.

We can take a slightly different approach and ask what
parameter values give a good fit to the experimental data.
Letting k, Dr, and do be free parameters, we get an ap-
proximate fit with k=0.851, Dr =1X10 cm /sec, and
do=1.4X 10 cm. The value of k is acceptable, that of
Dr is 25 times too high, and that of do is 500 times too
high, so clearly we have been neglecting some relevant
physics.

Until this point, we have discussed the equations as if
the samples were only two dimensional. Our evidence for
an inverted meniscus' and a solute-driven convective roll
suggest that the third dimension plays an important roll.
The solute-driven convective roll we observe on the iso-
tropic side of the interface will certainly enhance impuri-

ty transport away from the interface, thus increasing the
apparent or operational diffusion constant Dr by a factor
of 10 (see Sec. VB for details). Furthermore, the ex-
istence of a convective roll possibly brings a new and
fourth length scale to the problem. If we define I to be
the length scale associated with the roll, then possibly the
capillary length could be rescaled to do =(dol)'~ . Thus
if I is of the order of 20 pm, this implies a do 100 A.
This is a plausible explanation, but is not theoretically
tested. To test the importance of the third dimension, we
looked at a sample with varying thickness and for thick-
ness below 5 pm; a reasonable agreement with theory is
observed.

V. TECHNICAL ANALYSIS

Here we take a closer look at the detailed technical
analysis of the physical constants associated with the sys-
tem. First we review previous experiments bearing on
these quantities for our system. Then we discuss in Sec.
VB the solute-driven convection in detail. Since the
third dimension is clearly important in our system, we
end the analysis with a look at the thickness dependence
of the experiment.

A. Estimates of parameter values

The average concentration of impurities co is for our
experiments nominally 0.46 mol %%uo hexachloroethane
(CzC16) in 8CB. The figure is determined by direct weigh-
ing of impurity and host during the preparation of the
mixtures. We believe that these values should be accu-
rate to about 10%, the accuracy of the scales used to
weigh the chemicals. (Typical mixtures used about 500
mg 8CB and a few mg C2C16. ) As for other impurities,
we note that the primary contaminant in the 8CB as re-
ceived from the manufacturer is water, ' which has a sat-
uration concentration of c„„„=0.15 mo1%. This water
is removed by pumping under vacuum in the isotropic
phase.

The temperature-concentration phase diagram is
characterized by the slopes of the liquidus and solidus
lines [see Fig. 4(b)]. In place of the latter, we can use the
partition coefficient k (the ratio of liquidus to solidus
slopes). Although the value of the partition coefficient
for C2C16 in 8CB is yet to be measured, the phase dia-
gram of 8CB with a large number of nonmesomorphic
solvents has been studied. For 13 cases, the partition
coefficient ranged between 0.73 and 0.93. If one restricts
oneself to short rodlike impurities (like CzC16), then the
range was 0.86 to 0.93.

Knowing k, one can calculate the slope m of the
liquidus line. From Sec. II, we have the relation

R Tx-r
(1—k) . (22)

If one plots m versus k for the impurities measured by
Ghodbane and Martire, the points are well fit by a
straight line, although the x-intercept differs from 1

slightly (1.08+0.03). The magnitude of the slope is
m 0

=5.7+0.7 'C/mol %. Equation (22) predicts that
m 0

= 13.4+0. 5 'C/mo1%. (In computing mo, we have
used the value of the latent heat measured by Marynissen
et al. ,

' as described below. ) In computing m, however,
we shall use the least-squares fit m =6.2 —5.7k to get the
liquidus slope. For 0.86 & k & 0.93, this gives
1.3 & m )0.9 'C/mol % as estimates for the liquidus
slope.

We also need the values of the diffusion constants of
C2C16 in the nematic and isotropic phases of 8CB, near
T~ r. Although these have not been measured for CzC16,
there is data on the self-diffusion of 8CB and on the
diffusion of methyl red in 8CB. Experimentally, the
diffusion constants that have been measured obey Ar-—E /RT
rhenius laws, of the form D =Doe ', where E, is an
activation energy which can loosely be thought of as the
probability for an impurity molecule to hop into an adja-
cent "hole" in the liquid. A conclusion one can draw
from this is that for dilute solutions, at a given tempera-
ture, the diffusion constants will depend primarily on the
molecular weight of the impurity. For 8CB, this is 291.2,
for methyl red, it is 269.31, while for CzC16, it is 236.74.
We thus assume that the diffusion constants are (at least
roughly) the same. For methyl red, Takezoe et al.
measure via forced Rayleigh scattering that
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D~ „,i„,=2.6X10 cm /cec, D~ „=2.0X10
cm /sec, and Dr=3. 8X10 cm /sec (at T~ I). Here
again, the subscript N denotes the nematic phase, while I
denotes the isotropic phase. The rodlike structure of
SCB leads to two different diffusion constants, one paral-
lel to the long axis, the other perpendicular. For 8CB,
Moseley et al. measured via NMR pulsed-gradient
spin-echo techniques, DI =5.2 X 10 cm sec. Ghosh
and Tettarnanti obtain Dr=4. 6X10 cm sec by the
same method. Since the sample is homeotropic, we take
D& ~„~=2X10 cm /sec and DI=4X 10 cm /sec
Although the precise values may differ somewhat, we ex-
pect the order of magnitude and the ratio
rI=D&/DI =0.5 should hold.

The final parameter is the thermal capillary length do
defined in Sec. II. The surface tension has been mea-
sured by the sessile-drop method to be 0.95+0.4X 10
erg/cm . Although the value of the surface tension is
small and the error large, the result is well corroborated
by independent measurements on different rnateri-
als. All of these measurements give y& I=O(10 )

erg/cm .
Values of the latent heat of the nematic-isotropic tran-

sition have been measured often, usually by differential
scanning calorimetry. The published results range from 6

T R 0110 6
io=10 ' cm,

Tx-I 2 400 2
(23)

supporting the unusually small values of do inferred
above.

to 12 X 10 erg/mol. ' Ratna and Chandrasekhar have
recently traced the source of the discrepancy and confirm
the value Marynissen et al. ' obtained: L~ I =6.12
+0.05 X 10 erg/mol.

Using the above values of y and L and the tabulated
values of M and p~ (see Table I, below), we obtain a
thermal capillary length of do =4.7+2.2X 10 ' crn. Al-
though a value of do=0(10 ) A may seem surprising,
one can show (see Appendix) that do becomes very small
for weakly first-order phase transitions.

A final confirmation of these ideas comes from a direct
measurement of do in the liquid crystal PAA. Armitage
and Price showed via differential scanning calorimetry
that the nematic-isotropic transition of PAA is depressed
by about 0.1'C when the liquid crystal is absorbed in
porous silica of pore size R =100 A. This may be due to
curvature of the N-I interface, however, it gives

TABLE I. Properties of 8CB, both general and those specific to the nematic-isotropic transition.

General

Quantity

Chemical name

Structure

Symbol Value

4,4'-n-octylcyanobiphenyl

C,H, 7 ~/ ~ CN

Units Ref.

61

Molecular weight
Chemical abstracts No.

M8CB
RN

291.2
52709-34-9

g/mol 31

N-I transition Transition temperature
Pseudo-second order point

Latent heat
First Landau coeff.
Correlation length

TN -I

TN -I T
L

40.5
2.0+0.3

(6.12+0.05) X 10'
(1.9+0.1)X 10
(70 40) X 10

'C
'C

erg/mol
erg/cm' 'C

cm

61
72
51
72
57

Bulk prop. at TN I Density

Elastic constants

Viscosity

PN

PI
I( ll

%22

%33
7l

0.979 96+0.0002
0.978 31+0.0002
(1.2+0. 1 ) X 10
(1.9+0. 1 ) X 10
(2.4+0. 1)x 10-'
(3.0+0.3) X 10

g/cm

dyne

Poise

73

74

75

N-I interface Surface tension
Thermal capillary length
Surface anchoring coeff.

Tilt angle

y
do
8
L9,

0.0094+0.004
(4.7+2.2) X 10
(8.5+2. 1)x 10-'

48.5+6

erg/cm'
cm

erg/cm rad
deg

57
this work

76
76

Binary phase Mol. wt. C2C16

Liquidus slope
Partition coe%cient
Chemical diffusivity

Mc2ci6
m

k

D

D

236.74

1.35
0.85

2.6x10-'
2.0x10-'
3.8 x 10-'

g/mol

C/mol %

cm'/sec

77

this work
this work

54
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B. Convection in detail

Although we have considered the physical parameters
of the system, we must now look closely at the missing
physical process we have identified as solute-driven con-
vection. Roughly, the buildup of impurities on the liquid
side of the interface leads to a heavy layer of fluid. Be-
cause the density gradient is horizontal (i.e., perpendicu-
lar to gravity), convection starts with a zero onset Ray-
leigh number. An obvious effect of such convection will
be a larger DI because of the enhanced transport of im-

purities away from the interface. Less obvious effects will
be described, below.

The presence of convection may be established directly
by looking for dust particles in front of the interface.
Most dust particles are either too heavy to be moved by
the isotropic fluid or are pinned to the glass plates. Oc-
casionally, however, we are able to see dust particles
moving along with the fluid flow. Observing such parti-
cles, we conclude that there is a single convective role
parallel to and immediately in front of the interface.

The first step is to justify our claim that the convection
is driven by the buildup of impurities in front of the inter-
face. Other possibilities include thermally driven convec-
tion and impurity-driven convection caused by the Soret
effect.

In all cases, convection is a competition between buoy-
ancy (the driving force) and diffusion (the dissipative
force). In thermal convection, the buoyancy is supplied
by the expansion of the fluid in response to temperature
changes. Typically, hot fluid is lighter and rises. The
amount of convection is quantified by the Rayleigh num-
ber

Gd4c g (24)

Here, G is the temperature gradient, d the plate spacing,
a= —(1/p)('dp/B)T) the thermal expansion coefficient, g
the acceleration due to gravity, v=p/p the kinematic
viscosity, and ~ the thermal difFusivity. Typical values
for 8CB in our experiment are (in cgs units) G= 10,
d =3X10, +=10, g =10, v=10, and ~=10
This leads to JVR, =10 . This is seven orders of magni-
tude smaller than the Rayleigh number needed to initiate
convection with a vertical gradient. However, in a hor-
izontal gradient, the critical JVa, =0.

Next, we consider solute-driven convection. The con-
trol parameter is again the Rayleigh number, except that
now the buoyancy terms are due to the concentration
dependence of the fluid density. Thus we have

where U is the interface velocity. In cgs units, v = 10 to
10, c0=10, (1—k)/k =10 ', d =3X 10, 13=1,
g =10,v=10, DI =4X10 . We arrive at

JVR, = 10-10 (27)

(28)

where we have chosen ks„„=3as representative of the
largest observed values of the Soret coefficient for organic
molecules. By contrast,

VcMS co
1 —k

k
U =10 cm

D
(29)

so that the Soret efFect is negligible.
The above discussion leads us to expect that the Ray-

leigh number quantifying solute-driven convection de-
pends linearly on velocity. Studying the motion of a dust
particle in a convective roll, one indeed sees that the roll
velocity depends on the front velocity (see Fig. 12). The y
axis is the inverse of the time for the particle to complete
one cycle. The interpretation is complicated because
sometimes the dust particle follows the roll's motions and
traces out a circle in the vertical plane. At other times,
the particle seems to be caught at the center of the roll
and tumbles in place. The latter motion is more rapid
than the former. This is not surprising, as we expect the
convection roll to spin fastest at its center and then to
slow down as we approach the interface or the glass
plates, where the flow velocity must vanish. Once we
separate the two motions, roll and spin, we see indica-

0.4

0.2

Thus solute-driven convection is more important than
thermal-driven convection: JVR, /JVR, =10 .

A final possibility is that the temperature gradient will
induce a concentration gradient via the Soret effect. The
magnitude of the induced concentration gradient is given
by

V'cd Pg
D

(25)

Here, the concentration gradient Vc replaces G,
P=(1/p)(Bp/c}c) replaces a, and DI replaces ~. Evaluat-
ing Vc at the interface [see Eq. (13)] we have

0.0 0 10
Velocity Qm/sec)

20

JVRa

UCO
1 —k

vD
(26)

FIG. 12. Convective motion of a particle in front of the inter-
face. The frequency plotted on the y axis is the inverse of the
time for the particle to make one revolution. The velocity v is

that of the interface. G=36'C/cm, co =1.56 mol% D37 dye in

SCB, d=28 pm.
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tions that the flow velocities versus front velocity fall on
curves that may represented by a power law, with
a =0.53+0.03, different from a recent model.

Concentration gradients building up at the interface
also account for the observation of only one convective
roll, on the isotropic side of the interface. Further away
from the interface, the concentration gradient drops to
zero. On the nematic side, we do not see any convection,
the impurity gradients being much smaller.

An obvious effect of convection is to enhance impurity
transport away from the interface. The roll will homo-
genize impurities over the length scale d, leading to a
much larger effective diffusion constant for the isotropic
phase:

80
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10 20
Thickness Qm)

DI
D, ir=d ufl„, d d (A'„,) =Dr(~Ra)

d
(30)

FIG. 13. Critical velocity vs thickness. Inset shows the sam-
ple thickness profile, as measured by Nomarski optics.
6 =22 C/cm, co=0.61 mol%.

where the experimental value of a is close to 0.5. Since
JVR, =O(100), we expect diffusion to be enhanced by a
velocity-dependent factor, of order 10. Theoretically the
value for a is unclear.

An enhanced value of the diffusion coefficient on the
isotropic side cannot account for the observed values of
G,„and q, . For example, G,„depends on DI only
through the quantity 1+kg, whose value changes only
from 1.4 to 1.0 as q =Dz/Di is decreased from 0.5 to 0.0.

The most likely possibility is that convection alters the
form of the dispersion relation and introduces the plate
separation as a fourth relevant length scale in the prob-
lem. When two instabilities interact, as they do here (re-
call that the convection is driven by the impurity gra-
dients generated by the interfact motion), one may be
strictly forced to follow the other. For example, Caroli
et al. have studied the coupling of solute-driven con-
vection in the case of a vertical solute gradient, where
convection begins at finite JVR, . They find that the values
of the Mullins-Serkerka instability are barely changed,
while the values of the onset of the convective instability
are radically altered. In our case, the reverse seems to
occur. Convection starts at zero velocity and therefore
may affect the finite values of velocity needed to initiate
the Mullins-Sekerka instability.

(G «G,„)that u, is independent of thickness for d & 5

pm and that it rises approximately linearly with thickness
thereafter. Figure 14 measures the onset wavelength for
varying thicknesses. In practice, the curve is generated
by fixing the gradient and varying the velocity.

At the thinnest plate spacings (2—3 pm), the values of
U, and A,, approach those expected from the simple
Mullins-Sekerka theory. Specifically, from the bare pa-
rameters, we predict (for G =17'C/cm) u, =1.2 pm/sec,
A,, =28+12 IMm, and we measure u, =5+1 pm/sec, and
A., =15+4 pm. The uncertainty in the predicted values
comes from the uncertainty in the surface tension alone.
Some of the disagreement may come from errors in m,
D&, and DI. In addition, convection, while greatly re-
duced in importance, may not be entirely negligible at
these thicknesses, where JVR, =1. When JVR, =1, the
diffusion time d will be comparable to the roll turn-
over time (d ~ )(A'R, ) so that we may regard the mass
transport due to convection as comparable to that trans-
ported via diffusion. In order that convection be truly
negligible, we would need JVR, « l.

C. Dependence upon thickness

To test some of the above ideas, we looked at the
effects of thickness on the interface. The experiments
were performed in a variable thickness cell made by plac-
ing a 25-pm spacer along a single edge. The inset to Fig.
13 shows the thickness profile. As shown, the profile is
well fit by a parabola, which was used in calculating the
thickness of the cell at a given position.

We placed the cell in the directional solidification ap-
paratus so that the thickness gradient was parallel to the
interface. This allowed us to scan a continuous range of
thickness during each run. Since the angle between the
glass plates is small (about 2X10 rad, maximum), we
may safely take each region as having locally parallel
plates of variable d.

Figure 13 shows the critical onset velocity versus
thickness. Here we see for a small value of G

60

40- L
L

20-

0 I I

10 20
Thickness Qm)

30

FIG. 14. Onset wavelength vs thickness. G = 17 'C/cm,
t".o =0.61 mol %.
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VI. CONCLUSION

In the preceding section, we have seen that the pres-
ence of solute-driven convection in the fluid complicates
theoretical interpretation of results. On the other hand,
convection eases the experimental burden. If there really
were no convection, we believe that wavelengths would
be very small.

These experiments raise a number of questions. For
the theorist, the challenge is whether one can build a
comprehensive model to account, at least in a general
way, for the observations described here. Such a model
would supplement the usual Mullins-Sekerka formulation
with flow equations in the isotropic phase. Another com-
plication that we have not discussed in this paper but
that must also be considered is the effect of elastic forces
in the nematic phase. As mentioned in our previous
work, ' there is a singularity in the director field in the
nernatic phase. At present, elastic effects have not been
considered much.

On the experimental side, we can try to find a system
where convection is reduced but where the Mullins-
Sekerka instability is observable over the entire parame-
ter range, i.e., where we can reach U,„and G,„.One
can reduce convection by density-matching the impurity
with the host molecule. The density difference between
8CB and C2C16 is close to 100%. Since psca= 1, it should
be possible to find an impurity that matches the one of
8CB to 1% or so. We can also reduce the sample thick-
ness. Using evaporated metal as spacers, samples of 1—2
pm thickness become possible.

A remaining problem is that the generic impurity, den-
sity matched or not, will have a partition coem. cient k of
0.8+0.1, which implies a large U,„andG,„and small

To bring these values down to something reasonable,
we should have k closer to 1. A way to do this is to pick
an impurity that is chemically very close to SCB, for ex-
ample another member of the nCB series. The densities
of molecules in this family are matched to within 5%, for
n=5—9. Neighboring series members are matched as
close as 0.5%. Presumably, by varying the hydrocarbon
chain length, we can vary k as well.
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APPENDIX: THE CAPILLARY LENGTH
IN THE LANDAU-de GENNES THEORY,

OR WHY do IS SO SMALL

In this appendix, we show how the small values of the
thermal capi11ary'length d&, of order 10 to 10 ' A,
may be understood in terms of the Landau —de Gennes
theory of the nematic-isotropic transition. ' If we
consider a liat interface, the order parameter Q; will vary

only along the direction normal to the interface, which is
defined to be the y axis. The nematic ordering will fur-
ther be assumed to be along the z axis, as it is in the case
of homeotropic samples. We will neglect the distortions
in the director field of the nematic that arise because of
the finite tilt angle 0, at the interface. In this simplified
geometry, where Q„=Q, Q„„=Q = —Q /2, Q„=Q,
=Q„,=O, the order parameter Q is a scalar and hence,
the van der Waals approximation is identical to that of a
liquid-vapor transition.

Within such a square-gradient approximation, the sur-
face tension is given by the excess free-energy density F,

)=f F Q(y» dy, (A 1)

F & QQ2 i +Q3+ i CQ4+ ) iig2Z. e QA
2 3 By

(A2)

where A, 8, C, and ga are phenomenological coefficients
whose values must be determined empirically. Also, we
assume as usual that the only temperature dependence of
the coeScients is that of 3, which is of the form
A =a (T —T*), where T* is the temperature at which a
second-order phase transition would occur if B=0 exact-
ly. The quantity ga, the bare correlation length, is intro-
duced in Eq. (A2) in anticipation of future results. It is
typically a molecular dimension, roughly several
angstroms.

To find the conditions describing a first-order transi-
tion, we recall that the free energy must be minimized, so
that BF/BQ=O. To have coexistence between the nemat-
ic and isotropic phases, we need F(Q& i)=F(0)=0,
where Q~ i is the value of the order parameter in the
nematic phase at the transition temperature T~ r and
Q=O in the isotropic phase. Note that the temperature
Tz r is different from the phantom second-order transi-
tion temperature T*. Indeed, imposing BF/BQ =F=0,
we obtain

2 BT —Tx-r (A3)

2 B
QX I 3 c (A4)

The nematic-isotropic transition can thus be seen as an
interrupted second-order phase transition. If B were
zero, we would have T& r =T' and the transition would
be second order. Instead, the divergence of thermo-
dynarnic quantities halts at T = T& r, where the order pa-
rameter jumps discontinuously from Q=O (the isotropic
phase) to Q =Q~ ~ (the nematic phase).

At T~ r, the nematic and isotropic phases can coexist,
separated by a stationary interface. In our order-
parameter model, this corresponds to Q(y) =0 at y = ~
and Q(y)=Q~ i at y = —~. In between, Q(y) varies
smoothly from 0 to Qz z, so that the interface has finite

where the integral is to be evaluated over the Q (y) which
minimizes F and we write the free-energy functional in
the form

2
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width. In order to calculate the profile Q(y), one solves
the Euler-Lagrange equation associated with Eq. (Al},
subject to the boundary conditions at y =+Do. The re-
sulting Euler-Lagrange equation from the minimization
5y/5Q=O gives

$2A
Ag 2

= AQ —BQ +CQ (A5)
By

with solution

where the correlation length is evaluated at T& I. One
should note the above results imply that
y = ( TN I —T ) whereas the latent heat vanishes
linearly. Thus as Eq. (A10} shows, the ratio y/L also
vanishes as T~ I goes to T', as the correlation length
g( T)=go[( T —T' ) /T' ] ' diverges. In terms of physi-
cal dimensions, we may understand the scaling in Eq.
(A10) by noting that in this mean-field theory 2 cc I/g
and the order parameter QN I cc 1/g, so that

Q(y)=-'QN I 1+tanh
2 2g

(A6) 1 1

g2

where the actual (as opposed to bare) correlation length,
1s

1/2

2 (A 1 1)

1 2

QNI
(A7)

which gives a surface tension of

1' ——, ~CQN I (AS)

I"p
M TN-I

BF a
t}T 2 N IQN I--

TN -I
(A9)

The capillary length do =yM„/LpN is thus given by

1 ko

3
(A10)

The latent heat of fusion per unit volume in this model is

Putting everything together we have do o: I/g.
For 8CB, the physical correlation length is measured

to be $=70+4O A, and TN I —T* is measured to be
2.0+0. 1 C. Thus dp is predicted to be from 0.06 to 0.30
0
A. From the measured values of y and 1., we have
dp=0. 047+0.022 A. Given that we have neglected the
effects of the tilt angle 8„the agreement is satisfactory.

To summarize, the very small values of dp result from
the weakness of the first-order transition. For a strongly
first-order transition, /~go so that Eq. (AIO) predicts
that do=go. In fact, typical solid-liquid transitions do
have capillary lengths of a few angstroms.

'Present address: Laboratoire de Physique des Solides, Univer-
site de Paris —Sud, Batiment 510, 91405 Orsay CEDEX,
France.

Patrick Oswald, John Bechhoefer, and Albert Libchaber, Phys.
Rev. Lett. 58, 2318 (1987).

John Bechhoefer, Adam Simon, Albert Libchaber, and Patrick
Oswald, in Random Fluctuations and Pattern Growth: Experi-
ments and Models, edited by H. E. Stanley and N. Ostrowsky
(Kluwer Academic, Dordrecht, 1988), pp. 93—100.

3J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
4D. Armitage and F. P. Price, Mol. Cryst. Liq. Cryst. 44, 33

(1978).
5Adam J. Simon, John Bechhoefer, and Albert Libchaber, Phys.

Rev. Lett. 61, 2574 (1988).
John Bechhoefer, Ph.D. thesis, University of Chicago, 1988.

7M. J. Aziz, J. Appl. Phys. 53, 1158 (1982).
8K. A. Jackson, G. H. Gilmer, and H. J. Leamy, in Laser and

Electron Beam Processing of Materials, edited by C. W. White
and P. S. Peercy (Academic, New York, 1980), p. 104.

W. J. Boettinger, S. R. Coriell, and R. F. Sekerka, Mater. Sci.
Eng. 65, 27 (1984).

' B. Caroli, C. Caroli, and B. Roulet, Acta Metall. 34, 1867
(1986).

' S. de Cheveigne, C. Guthmann, and M. M. Lebrun, J. Phys.
(Paris) 47, 2095 (1986).
B. Caroli, C. Caroli, and B. Roulet, J. Cryst. Growth 76, 31

(1986).
L. D. Landau and E. M. Lifschitz, Statistical Physics, 3rd ed.
(Pergamon, Oxford, 1980).

~4D. J. Wollkind and L. A. Segel used the standard scaling in
their amplitude-equation calculations but presented their re-
sults using a scaling very similar to the one adopted in this
paper. See Philos. Mag. 268A, 351 (1970).
W. A. Tiller, K. A. Jackson, J. W. Rutter, B. Chalmers, Acta.
Metall. 1, 428 (1953).
W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444
(1964)~

A good summary of the principles of linear stability analysis
may be found in S. Chandrasekhar, Hydrodynamic and Hy-
dromagnetic Stability (Oxford University Press, Oxford,
1961),pp. 1—8.

'8S. de Cheveigne et al. , J. Cryst. Growth (to be published).
W. J. Boettinger, D. Shechtman, R. J. Schaefer, and F. S. Bi-
ancaniello, Metall ~ Trans. 15A, 55 (1984).

2PR. J. Schaefer, W. J. Boettinger, F. S. Biancaniello, and S. R.
Coriell, in Laseres in Metallurgy, edited by K. Mukherjee and
J. Mazumder (Metallurgical Society of AIME, New York,
1981),p. 43.

A. Munitz, Metall. Trans. 16B, 149 (1985).
22For example, B. Caroli, C. Caroli, and B. Roulet, J. Phys.

(Paris) 43, 1767 (1982)~

S. R. Coriell, G. B.McFadden, and R. F. Sekerka, Annu. Rev.



2056 BECHHOEFER, SIMON, LIBCHABER, AND OSWALD

Mater. Sci. 15, 119 (1985).
J. D. Hunt, K. A. Jackson, and H. Brown, Rev. Sci. Instrum.
37, 805 (1966).
Hisao Esaki, Ph. D. thesis, Ecole Polytechnique Federale de
Lausanne, Lausanne, Switzerland, 1986.

H. Esaki and W. Kurz, J. Cryst. Growth 72, 578 (1985).
Mona A. Chopra, Ph. D. thesis, Rensselaer Polytechnic Insti-
tute, Troy, NY, 1983.
William F. Kaukler, Ph. D. thesis, University of Toronto,
Toronto, Canada, 1981.
William F. Kaukler, Rev. Sci. Instrum. 55, 1643 (1984).
Mettler Instrument Corp. , Highstown, NJ 08520 (Mettler In-
strumente AG, CH-8606, Greifensee, Switzerland).

'BDH, Ltd. , Broom Rd. , Poole, BH124NN, England.
International Products Corp. , Trenton, NJ 08601.
Fisher Scientific, Pittsburgh, PA 15219.
Birendra Bahadur, Mol. Cryst. Liq. Cryst. 109, 3 (1984).
Frederic J. Kahn, Phys. Today 35, 66 (1982).
EM Industries, Inc. , Hawthorne, NY 10532.
Anotop 10 filter, Anotec Separations, Ltd. Banbury, Oxon,
OX167RT England, distributed by Alltech Associates, Inc. ,
Deerfield, IL 60015.
Standard Safety Equipment Corp. , Palatine, IL 60067. In the
laminar-airflow hood, we use a glove box built in our labora-
tory.
Glass Tek Industries, Morgan Hill, CA 95037.

~Devcon, Danvers, MA 01923.
The Baker Company, Inc. , Sanford, ME 04073.
Omega Engineering, Inc. , Stamford, CT 06907.
Neslab Instruments, Inc. , Newington, NH 03801.

44Newport Corp. , Fountain Valley, CA 92708.
45Berger Lahr, D7630 Lahr, West Germany.

Keithley Instruments, Inc. , Cleveland, OH 44139.
470lympus Corp. , distributed by Scientific Supply Co., Schiller

Park, IL 60176.
Ealing Electro-Optics, Inc. , South Natick, MA 01760.
We wish to thank Peter Palffy-Muhoray at Kent State Univer-
sity for bringing this to our attention.
Samir Ghodbane and Daniel E. Martire, J. Phys. Chem. 91,
6410 (1987).

5 H. Marynissen, J. Thoen, and W. Van Kael, Mol. Cryst. Liq.
Cryst. 97, 149 (1983).

52J. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford,
1946), pp. 200—208.

s3CRC Handbook of Chemistry and Physics, edited by Robert C.

Weast, 64th ed. (CRC, Boca Raton, 1983), p. C-377. Com-
pound No. 9196.

5"H. Takezoe, M. Hara, S. Ichikawa, and A. Fukuda, Mol.
Cryst. Liq. Cryst. 122, 169 (1985).

55Michael E. Moseley and Aharon Loewenstein, Mol. Cryst.
Liq. Cryst. 90, 117 (1982).

~6S. K. Ghosh and E. Tettamanti, Lett. Nuovo Cimento 40, 197
(1984).
S. Faetti and V. Palleschi, J. Chem. Phys. 81, 6254 (1984).
H. Yokoyama, S. Kobayashi, and H. Kamei, Mol. Cryst. Liq.
Cryst. 129, 109 (1985).
D. Langevin and M. A. Bouchiat, Mol. Cryst. Liq. Cryst. 22,
317 (1973).

Richard Williams, Mol. Cryst. Liq. Cryst. 35, 349 (1976).
'A. Beguin et al. , Mol. Cryst. Liq. Cryst. 115, 119 (1984).
B. R. Ratna and S. Chandrasekhar, Mol. Cryst. Liq. Cryst.
162B, 157 (1988).
D. Armitage and F. P. Price, Chem. Phys. Lett. 44, 305 (1976).

~Landolt-Bornstein Zahlenmerte und Funktionen aus Physik,
Chemic, Astronomic, Geophysik, und Technik, Band 2, Teil 8,
edited by K. H. Hellwege (Springer, Berlin, 1962), pp. 5—565.

65Hai Perng Kuo and Seppo A. Korpela, Phys. Fluids 31, 33
(1988).

Boris I. Shraiman, Phys. Rev. A 36, 261 (1987).
J. P. Gollub and T. H. Solomon, in Chaos and Related Non-

linear Phenomena: Where Do We Go From Here?, Proceed-
ings of the Fritz Haber International Symposium, 1986, edit-

ed by I. Procaccia (Plenum, New York, 1988).
B. Caroli, C. Caroli, C. Misbah, and B. Roulei, J. Phys. (Paris)
46, 401 (1985).
P. G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971),
R. Lipowsky and G. Gompper, Phys. Rev. B 29, 5213 (1984).

'Raymond E. Goldstein, Ph. D. thesis, Cornell University, 1988
(unpublished) ~

H. J. Coles and C. Stratielle, Mol. Cryst. Liq. Cryst. 55, 273
(1979).
D. A. Dunmur and W. H. Miller, J. Phys. (Paris) C3, 141
(1979).

74N. V. Madhusudana and R. Pratibha, Mol. Cryst. Liq. Cryst.
89, 249 (1982).
A. G. Chmielewski, Mol. Cryst. Liq. Cryst. 132, 339 (1986).
Sandro Faetti and Vincenzo Palleschi, Phys. Rev. A 30, 3241
(1984).

Eastman Kodak Co., Rochester, NY 14650. Catalog No. 102
3266.




