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Cellular patterns of magnetic domains observed in uniaxial garnet films are comprised of three
elemental domain structures: stripe segments, threefold vertices that join these segments, and pen-

tagonal structures that join five segments and contain trapped magnetic bubbles. We report obser-
vations of the stability and dynamics of these structures and show how they govern the evolution of
cellular patterns in an external bias field H&. Energy localized in the stripe segments acts as tension
that drives the domain motion. A simple extension of the conventional model of stripe domains in-

corporates domain interactions in sparse patterns and gives access to the bias and configuration
dependence of the stripe tension. We apply this formulation to an array of stripe domains to
characterize the tension that arises in nonequilibriurn patterns. Comparison with experiment indi-

cates that sparse, disordered (mazelike) stripe patterns maintain equilibrium as Hz is monotonically
increased and shows the expected divergence in stripe spacing at H& =HRl, where HR& is the run-in

field for isolated stripe domains. In contrast, cellular patterns persist to H& )H&l, where the pat-
terns are far from equilibrium. Vertex propagation is observed when the tensions in the adjoining
stripe segments are unbalanced and leads to a reduction in total stripe length and cell density. The
vertices are destroyed at a critical bias field H& (=0.79X4mM =151 Oe for our garnet sample)
when the stripes are severed near the vertices. Hl is the saturation field for cellular patterns and is
significantly larger than that of any other observed domain configuration. Pentagonal bubble traps
are also mobile and are destroyed by the collapse of the trapped bubble. A divergence of the aver-

age cell area which is limited by coercive friction occurs at the collapse field H, {=0.54
X4m.M =103 Oe) of an isolated bubble trap. Nonequilibrium cellular states arise in the regime

H~, (H~ (H, when bubble traps resist collapse and obstruct the topological evolution. Coercive
drag on the domain motion also results in nonequilibrium configurations and in some cases alters
the pattern topology. We employ an ac field component to mitigate the eA'ects of coercivity, and
find that an amplitude several times larger than the coercive field H, is required to produce smooth
dynamics and ensure reproducible, metastable, stationary states.

I. INTRODUCTION

The utility of uniaxial garnet films as magnetic bubble
memories and magneto-optic devices' has spawned an
extensive study of the simpler domain structures which
they support. The stability and dynamics of magnetic
bubbles ' and domain walls are well understood, and the
equilibrium configurations of idealized lattices of stripes,
bubbles, and hexagonal cellular domains have been nu-

merically calculated. Nonetheless, garnet films of
large lateral dimensions constitute a rich and experimen-
tally accessible system that is far from exhausted. The
two-dimensional patterns of magnetic domains observed
in these films show a wide range of nonlinear behavior
and disorder. Examples include the "annealing" of
granular structures in arrays of magnetic bubbles by an
agitating ac magnetic field, and a hysteretic undulation
instability of stripe patterns in a slowly cycled bias
fi ld 10, 11

Cellular patterns are unique among garnet domain
configurations in that they tend to disorder when a spa-
tially uniform bias field Hz is monotonically increased in

magnitude. We have observed two distinct room-
temperature disordering mechanisms: a homogeneous
coarsening and topological disordering analogous to the
evolution of two-dimensional soap froths' ' and to the
annealing of polycrystalline materials ' and a dramatic
"melting" transition, shown in the photograph in Fig. 1,
wherein the advance of a well-defined front destroys an
ordered lattice of hexagonal domains and leaves behind a
disordered cellular phase characterized by a wide diversi-

ty in the cell areas, shapes, and coordination numbers.
For certain ranges of bias field, the cellular patterns are
far from energetic equilibrium, and exhibit interesting dy-
namics and long settling times as they seek stationary
states.

We have succeeded in characterizing this behavior by
examining the components of the cellular patterns indi-
vidually. A typical cellular configuration in a uniform
bias field Hz is shown in the photograph in Fig. 2. Three
elemental domain structures are seen to comprise the pat-
tern: stripe segments, consisting of reversed magnetiza-
tion (oriented opposite to Hz); threefold vertices that join
these segments, thereby dividing the garnet into polygon-
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0.6 mm

FIG. 1. Digitized photograph of a cellular "melting" transi-
tion; H& =73 Oe. White regions correspond to "up" magnetiza-
tion aligned with H&,' dark regions signify reversed magnetiza-
tion. The stressed lattice of hexagonal domains is formed by ap-
plication of the bias field to an ordered bubble "sea" so as to ex-
pand the bubbles. The lattice is destroyed by motion of the
front that separates it from the disordered cellular phase. The
advance of the front is mediated by the collapse of the pentago-
nal bubble traps that line its length.

like cellular regions; and pentagonal domain structures
which terminate five stripe segments and contain trapped
bubbles. A sufficiently great bias field reduces the re-
versed magnetization which constitutes these structures
to a small fraction of the total, and the cell boundaries re-
side on a background of "up" magnetization. The struc-
tures are mobile and robust: they propagate in response
to motive forces, and their shape is not significantly dis-
torted by local magnetic field perturbations. Many
features of cellular pattern evolution are governed by the
localized properties of these three structures. For exam-

0.4 mm

FIG. 2. Photograph of a sparse cellular domain

configuration; H& =90 Oe. A stripe segment, a pentagonal bub-
ble trap, and a threefold vertex are framed, left to right. As de-
scribed in the text, this configuration is not in equilibrium;
H& & HR& =83.5 Oe, and there is tension in the stripe segments.
This stationary pattern is characterized by a balance of the ten-
sions at the vertices and bubble traps where the stripe segments
join. Note that the trapped bubbles are comprised of magneti-
zation aligned with H&.

pie, energy in the stripe segments acts as tension that
drives the motion of the domains, the pentagonal bubble
traps obstruct the topological evolution thereby pushing
the patterns far from energetic equilibrium, and the satu-
ration field of cellular patterns is determined by the de-
struction of the vertices. In this paper we describe obser-
vations of the formation and dynamics of these domain
structures, their response to changes in bias field, and the
instabilities that destroy them. We also relate the local-
ized properties of these structures to the frothlike disor-
dering and "melting" transitions described above; the
overall properties of these transitions will be addressed in
greater detail in future papers.

In order to provide a framework in which to discuss
our observations, we will review the conventional model
of stripe domain structure, and extend the model to in-
clude domain interactions in sparse patterns. In this for-
mulation, the excess energy in nonequilibrium patterns
naturally arises as tension localized in the stripe segments
which governs the evolution and the stationary
configurations of both stripe and cellular patterns. For
example, stripe tension favors the reduction of total
stripe length, and drives the frothlike coarsening and to-
pological disordering in cellular patterns in a slowly in-
creasing bias field. Furthermore, the metastable cellular
patterns observed in certain bias regimes are character-
ized by a balance in the tensions of the stripe segments
adjoining each of the vertices and bubble traps. This pic-
ture connects the physics of cellular domain patterns to
that of soap froths, polycrystalline materials, and other
cellular systems' whose dynamics are driven by the free
energy contained in the cell boundaries.

The extension of the conventional stripe model
developed below accounts for the essential effects of
domain interactions by incorporating the "stray" fields of
reversed domains. The behavior of individual domain
structures is determined by the interplay between H~ and
the stray fields, which makes the analysis of most realistic
domain configurations extremely difficult. However, a
parallel array of stripes provides a useful vehicle with
which to extract the important properties of the stripe
tension. The energies and minimum energy
configurations of a sparse stripe array are readily deter-
mined, and aid in the comparison of observations of cel-
lular patterns and disordered (mazelike) stripe patterns.
They also provide a reference useful for characterizing
the bias and configuration dependence of the tension in
stripe segments embedded in nonequilibrium cellular pat-
terns. We note that the stripe-array energies as deter-
mined here are approximate for all but the sparsest pat-
terns, and that the exact equilibrium energies and
configurations of idealized stripe arrays have been evalu-
ated previously for the entire range of bias field.
However, the stripe tension is a useful and intuitive con-
cept that does not readily emerge from exact treatments
of stripe arrays, and the formulation described in this pa-
per gives access to properties of the tension that are
relevant to cellular patterns as well.

An additional topic discussed here is the role of coer-
civity in the evolution of domain patterns, a property of
the garnet that creates frictional drag on the motion of
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the domain walls. Coercivity impedes the ability of the
patterns to reach stationary states which correspond to
local energy minima in the space of domain
configurations. We employ an ac field in addition to the
dc bias to mitigate coercive effects and help the patterns
attain these metastable states. An ac field of appropriate
frequency and sufficient amplitude results in smooth dy-
namics of the domain structures which, in certain bias re-
gimes, are strikingly similar to those of soap froths. ' '
The required amplitude is surprisingly large, i.e., several
times larger than the coercive field itself. An inadequate
ac amplitude can result in uneven domain motion, the
anomalous severing of the stripe segments as the patterns
evolve, the formation of stationary states dominated by
friction, and loss of reproducibility.

The remainder of the paper is organized as follows. In
Sec. II we discuss the relevant material properties of the
garnet, briefly review the conventional model of domain
walls, and describe the methods used to influence and ob-
serve the domains. The structure of stripe domains is re-
viewed in Sec. III to elucidate their robust nature and the
bias dependence of the stripe energy. This treatment is
extended in Sec. IV to show how the stripe properties are
modified by domain interactions. We characterize non-
equilibrium patterns by examining the configuration and
bias dependence of the stripe tension in a parallel stripe
array, and compare observations of stripe and cellular
patterns. Section V describes the propagation of the ver-
tices and their destruction via stripe pinch-off. The for-
mation of the pentagonal bubble traps, their destruction
via the collapse of the trapped bubble, and their role in
the frustration of the topological evolution are described
in Sec. VI. Finally, we discuss the influence of coercivity
on the dynamics of stripe segments in Sec. VII, and show
that a large ac-field component is necessary to mitigate
coercive effects. The relation of these properties to the
overall cellular evolution in an increasing bias field is de-
scribed throughout the paper and in a concluding discus-
sion.

II. MATERIAL CHARACTERISTICS
AND DOMAIN STRUCTURE

The sample used for our observations is a bismuth-
substituted iron garnet film with material composition
Fe3.91+1.20Bi1.09+d0.95+a0.76Tm0. 09012 ormulated at the
Airtron Division of Litton Industries' for use in
magneto-optic devices. The film was grown by liquid-
phase epitaxy to a thickness of 7.8 pm on a nonmagnetic
substrate of matching lattice constant, and has a usable
area of several cm with low defect density. The bulk
magnetization is 4~M =190 G, as determined by optical
measurement of stripe domain widths, and the Curie
point is 170'C. All parameters given are valid for room
temperature, at which our observations are made.

The strong uniaxial anisotropy of the Airtron garnet is
measured by its quality factor Q =IC„/2aM=11. 1, .
where K„ is the uniaxial anisotropy parameter, ' M is
the bulk magnetization, and the denominator is the ener-
gy density of a standard (single domain) garnet. A Q
larger than unity precludes the formation of closure

domains containing magnetization aligned with the film
plane, and the magnetization is predominantly oriented
perpendicular to the film plane. The thickness of the
domain walls is approximately 0.1 pm; over this region
the magnetization changes continuously from "up", or
aligned with the bias field, to "down", or reversed. The
domain-wall thickness is negligible compared to the typi-
cal domain size, and the patterns are essentially two di-
mensional. At low velocities, domain-wall motion
occurs by rotation of the magnetization that translates
the wall laterally while preserving its structure.

The domain walls in device garnets are conventionally
modeled as infinitesimally thin and as rigidly aligned in
the direction normal to the film plane; this geometry is il-
lustrated in Fig. 3. This approximation is excellent for
the high-Q Airtron garnet. The energy contained in the
domain walls is effectively a surface energy o, which for
the Airtron garnet has a magnitude o. =0.23 erg/cm,
as we determined by conventional methods' from mea-
surements of bubble radii and collapse fields. This "wall-
energy" picture provides a useful and accurate tool for
the characterization of domain structure and material pa-
rameters. For example, a standard method (used here)
for inferring the magnetization and domain-wall energy is
to compare observations of bubbles and stripes to predic-
tions of the wall-energy model. Conversely, descriptions
of domain structure attained from the model are useful in
the design of materials appropriate for devices. Our dis-
cussion of the stripe segments, vertices, and bubble traps
utilizes the wall-energy picture.

Characteristic domain sizes are determined by com-
petition between the energy contained in the demagneti-
zation fields (those that have the magnetization as their
source), and the domain-wall energy. ' A balance in this
competition is reflected by the characteristic length'
g=o /4m. M; the numerator is the domain-wall surface
energy, and the denominator is proportional to the
demagnetization energy density of a standard (single-
domain) configuration. The length g is intrinsic to the
material and is independent of the film dimensions, and
represents the approximate domain size (e.g. , bubble ra-
dius or stripe width) in a film of thickness comparable to

geometrical effects result in domain sizes that are

FIG. 3. Schematic of domain geometry showing idealized
bubble and stripe domains comprised of reversed magnetization.
The domain walls are modeled as infinitesimally thin and as rig-
id in the direction normal to the film plane. Also indicated is
the pressure P„,=2MH, „, produced by a nonzero total field at a
wall.
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larger than g in films of thickness t )(. Within the con-
text of the wall-energy picture, two garnet films with the
same ratio g/t of characteristic length to film thickness
possess identical metastable domain structures when spa-
tial dimensions are expressed in units of film thickness t
and fields are cast in units of 4~M. This ratio is thus use-
ful for comparison of domain structures in different gar-
net films. We have observed behavior in other garnet
films with ratios /It =0.09 and (It =0.13 which is qual-
itatively identical to that described in this paper for the
Airtron garnet, with ratio glt =0.104.

Motive pressure on a domain wall arises when the
component of the total magnetic field normal to the film

plane is nonzero at the domain-wall locations. The tota1
field is the sum of the externally applied bias field H~, the
demagnetization field HD produced by the configuration
of magnetization, and an effective "wall-energy" contri-
bution due to the surface tension term H' =cr l2Mtr,
where r is the total radius of curvature along the wall. As
illustrated in Fig. 3, the resulting pressure P„=2MH„,
dyn/cm favors domain wall motion in the direction that
increases the amount of magnetization aligned with Ht
(H„, denotes the component of the total field normal to
the film plane. ) Opposing the motive pressure is a coer-
cive frictional "pressure" P, originating in microscopic
defects or fluctuations in material parameters, which is
conventionally expressed in terms of a coercive field

H, : P, =2MH, . The static coercive field for the Airtron
garnet is in the range H, =0.2 —0.5 Oe, typical for device
garnets.

Metastable domain patterns, i.e., those that correspond
to local energy minima in the space of domain
configurations, satisfy the local condition H„,=O at a11

domain-wall positions. The stationary configurations
would satisfy this condition in the idealized case of
H, =O. However, because all garnet films have nonzero
coercivity, H„, at the domain walls may deviate from
zero by as much as H, in the stationary domain
configurations that are actually observed. Only when

H„, exceeds H, does the motive pressure overcome fric-
tion and force the wall to move. In this way, coercivity
acts as stick-slip friction on individual domain walls. We
will show in Sec. III that coercivity has little influence on
the static parameters of individual domains, such as
stripe width and bubble radius. However, it produces a
drag on the domain motion that can alter and even dom-
inate the evolution and stationary states of stripe and cel-
lular patterns.

In order to mitigate coercive effects, we apply a spatial-
ly uniform ac field in addition to the dc bias field; the to-
tal external field has the form H, „,=Hs+H„sin(2trvt)
Hz serves as the control parameter which drives the pat-
tern evolution, while the ac field agitates the domain
walls, effectively reduces friction, and permits smooth
domain motion. ' We find that the ac amplitude must be
several times larger than the coercive field H, itself if the
observed stationary states are to approach truly metasta-
ble domain configurations. For the examples in this pa-
per where ac is employed, v=40 Hz and 1(H„(5Oe.
Coercivity and the ac field are discussed further in Sec.

VII.
The domain patterns are conveniently observed with a

standard metallurgical microscope by utilizing the Fara-
day effect. Linearly polarized light is rotated as it passes
through the garnet, with a handedness that is opposite
for up and down domains. An analyzer positioned be-
tween the garnet and the microscope eyepiece yields con-
trast between the two domain polarities. The Airtron
garnet possesses a high "figure of merit" (ratio of
magneto-optic rotation to absorption, per unit thickness)
of 4 /dB (Ref. 17), and yields bright, high-contrast images
ideal for photographic and video recording and subse-
quent image processing. All images of domains shown in
the figures are high-resolution digitizations of high-
contrast Polaroid photographs.

Many of the domain structures shown in this paper are
embedded in sparse, disordered cellular patterns. To
create these patterns, a disordered "sea" of magnetic bub-
bles (the "amorphous" structure of Ref. 9) of density
7900 bubbles/mm is produced by application and remo-
val of a 2.2-kG magnetic field that saturates the garnet in
the "hard" (in-plane) direction. An increase in a bias
field aligned with the bubble magnetization eliminates
some bubbles and expands others, resulting in a stripe-
vertex network such as that in Fig. 2.

III. STRIPE SEGMENTS

A typical response of an individual stripe segment to a
cycled bias field H~ is shown in the photographs in Fig.
4. The segment is initially buckled, and straightens con-
tinuously as Hz is increased. The segment buckles when
the field is subsequently reduced to its initial value. The
changes in Hz are made quasistatically, i.e., slowly
enough that the segment remains in metastable equilibri-
um at all times. The cycle is hysteretic, in that H~ must
be reduced by an interval =2 Oe from the cycle rnax-
imum before the buckling is initiated. Note that the
width of the stripe remains nearly constant along its
length. The response can be likened to that of a string or
ribbon that can be made alternately taut or limp by vary-
ing an external parameter, and whose length is not con-

(a)78.8 Oe (b) 81.5 Oe

(d) 79.6 0

FIG. 4. Photographs showing the response of a stripe seg-
ment to a slowly cycled bias field. In frames {a)—{c),the initially
buckled segment straightens continuously as H~ is increased.
The segment buckles [frame (d)] when the field is subsequently
reduced. The ends are anchored at a vertex and a pentagonal
bubble trap. An ac-field component {H„=2.5 Oe, v=40 Hz) is
present throughout.
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HD (w)=8M tan —+—ln 1+self w w

t 2t w
(2)

The stripe width w, is determined by the requirement
that the pressure P =2MH„'," on the individual stripe
walls be zero. This condition represents a balance be-
tween the bias field, which favors narrowing the stripe,
and the total demagnetization field, which prefers to
widen it. Figure 5 shows the widths w, in units of thick-
ness t versus Hz in units of 4~M which satisfy

served. The particular stripe segment shown is embedded
in a sparse cellular pattern, with the ends anchored to a
vertex and pentagonal bubble trap which remain nearly
stationary throughout the cycle. This buckling-
straightening response is also typical of individual stripes
in sparse stripe patterns and of isolated stripe segments
with ends pinned at defects.

This behavior can be understood by examining the
dependence of stripe width and energy on H~ as de-
scribed by the wall-energy model. We review the analyti-
cally tractable case of an idealized, infinite stripe with
geometry similar to that of Fig. 3, but with straight
domain walls. The z (film normal) component H„, of the
total magnetic field, evaluated at the domain walls and
averaged over the film thickness t, is the sum of the bias
field Hz and the averaged demagnetization field

( H „;"), =H~ 4~M +—( H D"( w ) ), ,

where a positive sign signifes alignment with H~. The
demagnetization contribution is the sum of the value
—4~M for a saturated (stripe absent) state and a "self'-
correction HP&' (w) due to the reversed magnetization in
the stripe. The average over the film thickness t is re-
quired by the wall-energy model approximation that
treats domain walls as vertically rigid. We assume this
average in future expressions of the demagnetization
field. The averaged self-field of the straight, infinite stripe
is6, 20

2

E, = J 2MtH,";,"( w )dw +2t o ergs!cm
0

(3a)

w ]=Hz w, — 4 tan
2~ Wq

w
w

X in(1+m, )+2m, ln(w, ) +~,

H,";,"(w, H&) =0, determined by using Eqs. (1) and (2).
We find experimentally that the width of stripe domains
closely follows Fig. 5 when the domains are well separat-
ed. The calculated width w, in Fig. 5 vanishes for Hz ) 1

(H~ )4vrM Oe). For a given value of H~, a deviation of
the stripe width from the value m, of Fig. 5 alters HD' (w)
and produces a nonzero total field at the stripe walls.
The result is a restoring pressure that opposes such devia-
tions. However, nonzero coercivity allows H„, to differ
from zero by as much as H, before the wall width must
adjust. The maximum deviation ~b, w~ in the observed
width from w, due to coercivity is thus approximately
~b, w~ =~(Bw, ldH~)H, ~. Evaluating the derivative of tU,

at intermediate values of H~ where isolated stripes are
observed and using the (conservative) value H, =0.5 Oe,
gives ~b, tU~ &0.01w, . Thus we can conclude that coer-
civity does not significantly hinder the ability of the ob-
served stripe width to obey the wall-energy model result
w, of Fig. 5 ~ Note that because w, is determined by the
condition H„,=0, Fig. 5 is also a plot of the component
of the total demagnetization field HD aligned opposite to
H~ versus stripe width w, . The relatively weak depen-
dence of w, on HD for H~ 0.3 implies that the width is
insensitive to perturbations in the demagnetization field
that occur when the stripe is buckled or when the stray
fields of other reversed domains alter the field
configuration. This robustness contributes to the ribbon-
like nature of stripes when curved or embedded in a pat-
tern.

The stripe energy per unit length can be obtained by
integrating the virtual work done by lateral domain wall
pressure P =2MH"„'," as the stripe width is increased
from zero and adding the wall-energy contribution:

4.0— (3b)

ws
3.0—

2.0—

1.0—

0.0
0 0.2 0.4 0.6

B

0.8 1.0

FIG. 5. Width w, . of an isolated stripe vs bias field in units of
film thickness t and magnetization 4~M, respectively. The
hatching signifies the range of II~ where domains densely popu-
late the garnet and stripes are difficult to observe in isolation.

where we have used Eqs. (1) and (2), evaluated the in-
tegral, and changed to dimensionless units: lengths are
expressed in units of film thickness t, fields in units of4', and the energy per unit length in units of 8aM t .
The first term in Eq. (3b) is the interaction energy of the
stripe magnetization with the bias field, the second is the
energy contained in the demagnetization fields, and glt is
the dimensionless expression of the domain-wall energy
contained in both walls of the stripe. All energies are
measured relative to the energy of the saturated (stripe
absent) state, an energy reference which varies with Hs.

The total energy per unit length E, of the idealized
stripe is plotted in Fig. 6, as given by Eq. (3b) evaluated
with the Airtron garnet parameters. The maximum value
of E, is attained at Hs = 1 (Hs =4vrM Oe), where w, =0
and the only contribution to E, is the energy glt of the
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IV. STRIPE TENSION AND NONEQUILIBRIUM
PA'I I'ERNS

0.0—

-0.1-
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B
0.8 1.0

FIG. 6. Energy per unit length E, of an isolated stripe
domain in units of 8~M't' vs bias field in units of 4~M, from
Eq. (3bj. The zero crossing corresponds to the run-in field HR, ,
at which the stripe tension is zero. (/t is the energy contained
in the two domain walls.

two domain walls. The zero crossing at Hz =0.44
X 4aM = 83.5 Oe is referred to as the "run-in" field

HR&, ' because the free ends of a finite, unconnected
stripe are observed to run in along the stripe length when
Hz is increased above this value, thereby reducing the to-
tal energy.

The behavior of a curved stripe segment with no free
ends, such as the one shown in Fig. 4, suggests that the
positive energy E, for H~ )HR, in Fig. 6 acts as a ten-
sion T, =E, in the stripe. There is an effective lateral
pressure [(force)/(length)] on a curved segment of the
stripe of magnitude P, = T, /r„where r, is the local ra-
dius of curvature. When P, )0, the stripe is induced to
straighten and thereby reduce its length and energy,
whereas P, (0 favors an increase in length via buckling.
While the motive pressure P acts on the individual
domain walls, P, and T, effectively act on the stripe as a
whole because the width is strongly constrained, as dis-
cussed above. Note that the motive force on a curved
stripe segment is controlled by the spatially uniform bias
field, and does not result from gradients in the external
field or in the demagnetization fields of interacting
domains.

We emphasize that the magnitude of T, is determined
by the total stripe energy, and not the domain-wall ener-

gy alone. Tension in stripe segments is the dominant
driving force in the evolution of both cellular and stripe
patterns in an increasing bias field. T, induces the move-
ment of stripe segments that constitute the cell walls in
cellular patterns, and plays a role analogous to the sur-
face energy of bubble membranes in soap froths and of
grain boundaries in polycrystalline materials. Because
T, ~2o. t erg/cm, the pressure T, /r, is always smaller
than the total surface tension pressure 2o. t/r, of the
two domain walls of the stripe. The pressure T, /r, is, in
fact, typically much smaller for stripe segments observed
in sparse patterns, and coercive effects can become im-
portant. Coercivity may, for example, play a role in the
hysteretic buckling in Fig. 4. We will come back to this
point in Sec. VII.

In this section we extend the treatment of the isolated
stripe to account for domain interaction in sparse pat-
terns. Reversed domains interact via their stray fields in
two ways. One is that gradients in the stray fields pro-
duce mutual domain repulsion which favors, for example,
the ordering of magnetic bubbles into lattices and the
uniform spacing observed in stripe patterns. The second
is that the stray field originating in a given reversed
domain adds to the inAuence of the bias field on other re-
versed domains. The latter effect is accounted for by in-
cluding the contribution of the stray fields to the demag-
netization field, and the width and energy of an individu-
al stripe embedded in a pattern can be determined as in
Sec. III. Analytic results are difficult to obtain for even
the simplest cellular configurations. However, the most
important effects of domain interactions on both cellular
and stripe patterns can be usefully and conveniently illus-
trated by examining a parallel array of stripe domains.
The equilibrium configuration of the array is readily
determined using the dipole expressions for the stray
fields of stripe domains. The results preserve the impor-
tant features of previous exact calculations, and agree
favorably with experimental observations of sparse, disor-
dered (mazelike) stripe patterns in a monotonically in-
creased bias field. Most importantly, the energy of the
stripes in the minimum-energy array configuration pro-
vides a benchmark for outlining the bias regimes in the
evolution of both stripe and cellular patterns, and for
characterizing the bias and spacing dependence of the
stripe tension which arises in nonequilibrium patterns.

We proceed as in Sec. III, and focus on the fields ex-
perienced by an individual stripe segment in the pattern.
The normal component of the total field at a domain wall
of this stripe now has the form H,";,"= (Hs +HD' )
—4m.M +HD" . The contributions of other reversed
domains are included in HD', which denotes the dipole
approximation of the stray fields. HD' varies with the
domain spacing, but is approximated as spatially uniform
across the width of the specified stripe and through the
thickness of the film. The expression in parentheses thus
acts as a corrected "bias" field. To evaluate HD" we re-
tain the self-demagnetization field of a straight, infinite
stripe as given by Eq. (2). The width and energy per unit
length of the stripe can then be found as in Sec. III. This
general formulation can, in principle, describe individua1
stripe segments in patterns with various degrees of disor-
der, and in patterns that contain domain structures other
than stripes (e.g. , bubbles or vertices), so long as HD'~ is
evaluated appropriately.

Within this framework, we can readily calculate the
width and energy of a stripe in the parallel array illustrat-
ed in Fig. 7, which shows stripes (shaded) of uniform
width m and spacing d. Also sketched are the stray field
lines of the outer stripes, showing that they add to Hz at
the center stripe. The dipole field of a straight, infinite
stripe is given by 2Mtmx, where Mtm is the dipole mo-
ment per unit length, and x is the perpendicular distance
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FIG. 7. Parallel array of stripe domains. The outer two
stripes produce stray fields (sketched) that add to the influence
of Hz on the central stripe.

Ht",'t" (Hz, d, w) =(H~+ C"'Mtwd )
—4~M

+HD""(w) =0, (5)

where HD' is given by Eq. (2). The form of Eq. (5) shows
that the stray-field contribution serves to augment the
bias field, as illustrated in Fig. 7. The solid curves in Fig.
8 show the stripe widths w, (Hs, d) which satisfy Eq. (5)
for various fixed-stripe spacings d. As shown, the widths
at finite spacing are reduced relative to the isolated stripe
(d~ oo) limit because of the enhancement of the bias
field by the stray fields. For fixed HB, the inhuence of the
stray fields is reduced as the separation increases, and w,
increases accordingly. Note that, as before, the stripe
width is highly constrained due to strong restoring forces
on the domain walls, whereas the interdomain forces that
afT'ect the stripe spacing are much weaker. In what fol-
lows, Eq. (5) is assumed to be satisfied.

The energy per unit area in the stripe array can be ex-
pressed as E„"'=E "(H~, d)d ', where E "is the energy
per unit length localized in each stripe, and d ' is the
linear stripe density. By holding the spacing d fixed, the
energy E,'" can again be found by integrating the virtual
work performed by the wall pressure P as the stripe
width increases from zero. Domain interactions are ac-
counted for by including the dipole fields HD' in II„,and
by using the width w, (H~, d) determined by Eq. (5) as the
upper limit of the integral

from the stripe. This expression is accurate for distances
x much greater than both the film thickness and the typi-
cal domain size. The total stray field contribution at a
given stripe due to all other stripes is

HD't'(w, d)=2 g 2Mtw(nd) =C"'Mtw d, (4)
n{%0)

where the constant C""=(4/3)~ is specific to the array
geometry. The leading factor of 2 accounts for the re-
quirement that reversed magnetization of magnitude 2M
must be superimposed on the saturated garnet to obtain
stripes of reversed magnetization M.

As before, the stripe widths w, (H~, d) for fixed separa-
tion d are determined by the condition Ht t 0:

0.0
0

I

0.1

I

0.2 0.3
HB

I

0.4 ) 0.5
HRI

FIG. 8. %'idths ~, of stripes vs bias field in units of film
thickness and 4~M, respectively, as calculated for the parallel
array. The solid curves are for various fixed-stripe spacings d„
from Eq. (5). The dashed curve shows the stripe widths of the
equilibrium configurations. The widths at finite spacing are re-
duced relative to the isolated stripe (d, = ~) case due to the
enhancement of H~ by the stray fields.

F.;"(H~,d)= I 2MtH;„(H~, d, w)du)
0

+2t o. erg/cm, (6a)
2C~«w, (Htt, d)=E,""(Htt, w, (Htt, d) )+

2 d

d(H~, w)=
j/2C"'w

1 —[HD" (w)+Htt ]
(7a)

E„'"(Htt, ur)=[d(Htt, to)] '[E,'"'(Htt, q)

+w [1 (HD" (u))+H~ )—]],
(7b)

with HD" given by Eq. (2) and E," ' by Eq. (3). After in-
serting these expressions and rearranging, Eq. (7b) be-
comes

'}/C'"E"'(H, )

2
tan

7TW

1 1+w——ln
w

1/2
B

HB W
X + ——tan ' —— ln(1+tu )

t 2 7r W 2'
(8)

(6b)

where E," ' is the energy per unit length of an isolated
stripe as given by Eq. (3), evaluated with the stripe width
determined by Eq. (5). In Eq. (6b), lengths are in units of
t, fields in units of 4@M, and energies in units of 8~M t;
the geometrical constant C'"=~/3 in these units.

For a fixed bias field, the equilibrium ' (minimum-
energy) array configuration is determined by minimizing
E~"' with respect to w and d, simultaneously. This is sim-

ply done by solving for d(w) using Eq. (5) and inserting
the result into the expression for E~" obtained from Eq.
(6b) to give
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FIG. 9. Stripe spacing d, (pm) vs bias field (units of 4aM),
showing the divergence of d, at Hz=HR&. The solid curve is
the equilibrium spacing d; (Hz) calculated for the idealized
stripe array. The data points are the average stripe spacing ob-
served in disordered (mazelike) stripe patterns in a slowly,
monotonically increased bias field. The photographs show these
patterns at selected bias values. The uppermost data point indi-
cates the persistence of a few stripes to H& & HR& due to coer-
civity and pinning of stripe ends at the garnet boundaries. Er-
ror bars represent the standard deviation in d, as measured for
three different areas on the garnet surface. As ac field (H„=5
Oe, v=40 Hz) was applied to minimize coercive effects.

Numerically minimizing this expression with respect to w

yields the equilibrium energy E„(H~ ) and stripe width

w, (Hz ). The equilibrium width is plotted in Fig. 8 as
the dashed curve. As expected, m,'q is smaller than the
width of an isolated stripe, due to the stray field enhance-
ment of H~, and approaches the isolated stripe value as
Ha~HRi.

The equilibrium stripe separation d, (H~ ) is obtained
for the parallel array by inserting w,'q into Eq. (7a). The
separation d;q(H& ) is shown in Fig. 9 as the solid curve;
also plotted are the average stripe spacings (d, ) (de-
scribed below) experimentally observed in disordered
stripe patterns. Although the widths m,'q remain finite,
the equilibrium separation d, diverges as Hz ~HR„be-
cause for Hz & HR& each stripe in the array has positive
energy relative to the saturated configuration. The diver-
gence obeys d, ~(HR, Hz) —with the exponent P= —,',
as can be seen from the form of Eq. (7a). The results 1;q
in Fig. 9 overestimate the equilibrium spacings given by
exact treatments of the stripe array. However, the
agreement is excellent for large stripe spacings where the
dipole expressions of the stray fields are valid, and for our
purposes the present calculation is adequate.

The data points in Fig. 9 indicate the average stripe
spacings (d, ) observed in disordered (mazelike) stripe
patterns evolved under a slowly, monotonically increased
bias field. An ac field component was also applied to
minimize coercive effects. Such stripe patterns are readi-
ly produced by reducing H~ from saturation: the free
ends of a few stripes nucleated at the garnet edges run in
and fill the garnet, producing the zero-field pattern shown

T, (H~, d) =E,(H~, d) E;q(Hg ), — (9)

where E, is the energy per unit length localized in each
stripe as given by Eq. (6b), and E;q is the value of E, in
the minimum-energy array configuration determined
above. This definition is such that nonzero tension T, re-
sults whenever the array deviates from the equilibrium
configurations. We focus on the spacing and bias depen-

in the first photograph of Fig. 9. Other photographs in
the sequence show the patterns that result at selected in-
tervals of increasing Hz. We measured the length of
domain wall per unit garnet area, I„"', by computer
analysis of high-resolution digitizations of high-contrast
photographs. The average stripe spacing was then deter-
mined as (d, )—:2/1„""'. This relation is exact for an or-
dered stripe array, and is also reasonably accurate for the
patterns in Fig. 9, which show a fairly uniform stripe
spacing caused by the mutual repulsion of the stripes.
The experimental values shown as data points in Fig. 9
agree well with the equilibrium spacings d;q(H~) calcu-
lated above for the idealized array, shown as the smooth
curve. The observed stripe spacing (d, ) exhibits the ex-
pected divergence at HR, . However, the divergence is
limited by the presistence of a few strips due to coercive
effects and the pinning of the stripe ends at the garnet
edges. Over the limited range of H~ (-10 Oe) for which
the algebraic form holds experimentally, the exponent is
P=0.49+0.02.

The agreement of the observed stripe spacing ( d, )
with the minimum-energy values d, q of the idealized ar-
ray indicates that there are few barriers to the evolution
of the disordered stripe patterns which prevent them
from maintaining equilibrium as H~ is increased. As can
be seen from the photographs in Fig. 9, the stripes in
these patterns increase their averaging spacing by uncoil-
ing and reducing their curvature and total length as H&
increases, while keeping the spacing fairly uniform along
the lengths of the stripes. Furthermore, if a suScient ac
field component is present to mitigate coercive friction,
the stripe pattern evolution is almost completely reversi-
ble: the patterns "coil up" and decrease the average
stripe spacing in response to a decrement in Hz, with lit-
tle hysteresis. The coiling-uncoiling mechanism of spac-
ing adjustment allows the stripe patterns to maintain
equilibrium as Hz is increased. In contrast, nonequilibri-
um cellular patterns are formed when pentagonal bubble
traps inhibit the topological evolution, as described in
Sec. VI.

The equilibrium (minimum-energy) configuration
determined above for the parallel stripe array provides a
useful reference for characterizing deviations from equi-
librium in both stripe and cellular patterns. Much of the
excess energy in nonequilibrium patterns (those that are
not of minimum energy) is localized as tension in the
stripes that attempts to drive the patterns toward equilib-
rium. Evaluating the bias field and stripe spacing depen-
dence of the tension for a nonequilibrium, parallel stripe
array illuminates the mechanisms that result in nonequili-
brium cellular patterns. A simple and useful generaliza-
tion of the stripe tension in the parallel array is
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FIG. 10. Stripe tension T, vs spacing d, (units of 8~M t and
film thickness, respectively) for various fixed-bias fields, as
determined for the parallel array using Eq. (9). The zero cross-
ings correspond to the equilibrium spacings d; (H&), which
di~e~ge at HB =HRI 0.44. When H~ )HRi, any existing
stripes are under positive tension, regardless of spacing. The
response of a pattern to an increment in H~ is sho~n by the ar-
rows. The first indicates a bias increase from H~ =0.40 to 0.42
that produces tension in the pattern. In this example, equilibri-
um is reestablished by an increase in stripe spacing, as shown by
the second arrow.

dence of T„and assume that the stripe width obeys
~(Hs, d) given by Eq. (5). Equation (9) can be evaluated
by inserting w(H&, d) into Eq. (6b); the tension T, versus
spacing d for various fixed Hz is shown in Fig. 10. The
zero crossings for each field value correspond to the equi-
librium stripe separations d;q(H&). Because the diver-
gence of d;q(Hs ) at Ha& leaves the saturated state as the
energy reference for Hz )HR&, T, & 0 for stripes in this
bias regime, independent of the spacing.

Figure 10 also illustrates the response of a stripe array
that maintains the equilibrium (minimum energy) as H~
is increased. Assume that the array is initially in equilib-
rium at H~ =0.40. An increment in Hz of magnitude 0.2
is indicated by the first arrow, which leads to the curve
valid for the new bias value. The tension becomes posi-
tive in the stripe segments, and the pattern adjusts by in-
creasing the stripe spacing until equilibrium is re-
established, as indicated by the second arrow. Note that
positive tension would remain if d, were unable to in-
crease suSciently. Inhibited spacing adjustment is the
most common mechanism by which nonequilibrium
states arise in both stripe and cellular domain patterns
under increasing bias. In the case of disordered stripe
patterns, tension created when Hz is incremented drives
the observed uncoiling and the corresponding spacing in-
crease. Only for H~=HR, do stripe patterns deviate
from equilibrium when coercivity (Sec. VII) prevents the
stripes from uncoiling suSciently.

The tension T, in the stripe array from Eq. (9) is shown
in Fig. 11 versus Hz for various Axed-stripe spacings d, .
The values of Hz at the zero crossings play a role analo-
gous to that of the run-in field HR& for an isolated stripe,
in that T, switches between positive and negative at these
values in arrays of corresponding spacing. Note that the
zero-tension fields in Fig. 11 increase with the stripe spac-
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FIG. 11. Stripe tension vs bias field (units of 8~M t' and
4~M, respectively) calculated for the parallel array using Eq.
(9), for various fixed spacings d, . Note that the zero crossing
bias increases with d, . Positive tension in the stripe segments is
prevalent in nonequilibrium patterns which cannot maintain a
sufficiently large spacing as H& is increased. The discontinuity
in the slope of T, at Hp =HRI is due to the change in the energy
reference used to define T, .

ing d„due to the corresponding reduction in the strength
of the stray fields. These properties of the tension are
consistent with our observations of stripe segments em-
bedded in cellular patterns. As shown in the example of
Fig. 4, individual segments respond to a cycled bias field
by alternatively buckling and straightening while other
reversed domains remain fixed. The values of the bias at
which the tension appears to pass through zero are small-
er than HR&, and increase as the pattern becomes more
sparse.

The conclusion that stripe domains have positive ten-
sion for H~ &HR, applies to stripe segments in cellular
patterns as well as to stripe arrays, as can be seen by con-
sidering the limit of low cell density. The stripe segments
that constitute the cell walls become arbitrarily long in
this limit, and their tension approaches that of an isolated
stripe. Energetics thus dictate that the saturated (single-
domain) state is the equilibrium (minimum-energy)
configuration of cellular patterns in the regime Hz & HR&,
and the equilibrium average cell area should therefore
diverge as H~~HR&. As shown in Fig. 10, for fixed Hz
the tension grows as the domain spacing decreases, and
the tension in cellular patterns of finite density is larger
than the tension in an isolated stripe. We conclude that
stripe segments in cellular patterns observed at bias fields
Hz )HR& are under positive tension, and that such pat-
terns are not in equilibrium.

We do, in fact, observe cellular patterns to persist into
the nonequilibrium regime H~ & HR, . As in the stripe ar-
ray example of Fig. 10, a bias increment induces tension
in the stripe segments that constitute the cell walls. In
cellular patterns, a reduction in cell density is the mecha-
nism by which the average domain spacing is increased
and the tension thereby reduced. However, as we show
in Sec. VI, the topological evolution is often obstructed
by pentagonal bubble traps which resist elimination. In
contrast to disordered stripe patterns, a reduction of cell
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density sufficient to eliminate the tension cannot be
achieved, and nonequilibrium cell patterns result. Our
observation that the stripe segments do not buckle in
response to bias field cycles of small amplitude for
Hz & HR& supports the conclusion that all stripes are un-
der positive tension in this regime.

A model of cellular domain patterns which parallels
that of the stripe array could be pursued by appropriate
alterations of the stray field expressions given above. The
finite length of the stripe segments may be accounted for
in this way, and further additions could include the stray
fields originating in vertices and bubble traps, and
perhaps incorporate disorder. The stripe energy would in
general vary with position along its length, as it certainly
does in real patterns, and the tension could be defined by
examining the dependence of this energy on changes in
the local pattern configuration. However, useful results
are difficult to obtain, and we instead turn to the proper-
ties of the other elementa1 domain structures.

V. VERTICES

Threefold vertices play two key roles in the evolution
of cellular patterns. First, vertex propagation favored by
stripe tension reduces the total stripe segment length and
leads to the elimination of cells. Second, the saturation
bias field, i.e., the value of H~ at which all reversed mag-
netization disappears, occurs when the stripes are severed
near the vertices, thereby destroying the connectivity of
the patterns.

Vertices propagate when the tug of war between the
tension in the adjoining stripe segments is unbalanced.
For example, each of the two vertices in the photographs
of Fig. 12 experiences a net effective force in the direction
of the angles between the stripes which are less than 120'.
The total stripe length and energy are reduced as the ver-

tices "reel in" the stripes in the direction of advance and
"reel out" a single stripe behind, with velocities indicated
in the figure. Vertex velocity increases with net force,
which increases with tension and with asymmetry in the
local angles. As shown in Fig. 12, vertices observed in
cellular patterns eventually attain stationary states with
120' vertex angles. We have observed individual vertices
in very sparse patterns to propagate distances up to 1 cm
before stopping.

Motion of the adjoining stripes necessarily accom-
panies vertex propagation. In Fig. 12, the portions of the
"leading" stripes which are immediately adjacent to the
vertices must move laterally to keep pace with the vertex.
Vertex motion is opposed by coercive drag that acts
predominantly on these laterally moving portions, and
the velocities are apparently determined by a balance be-
tween this drag and the net force on the vertex due to
tension and asymmetry. For fixed Hz, an increase in the
amplitude H„of an ac field component increases the
effective vertex mobility. For various combinations of
the bias fields and tensions, vertex angles, and ac ampli-
tudes, we have observed vertex velocities in the range —1

to —100 IMm/s. In some cases, the direction of motion
can be reversed by reducing Hz to produce negative
stripe tension which favors an increase in stripe length.
However, we have observed only small "negative" veloci-
ties ((5 pm/s), because the dominant response to large
negative tension is stripe buckling rather than vertex
motion.

The motion of vertices leads to the collapse and elim-
ination of cells, the dominant mechanism by which cellu-
lar patterns increase the average domain spacing and
reduce tension in the stripe segments. Because the interi-
or angles of cells with fewer than six sides are on average
smaller than 120', the shrinkage of these cells reduces the
total stripe length and energy. Cell elimination therefore
obeys the well-known topological selection rule' that
favors the collapse of cells with fewer than six sides; the
photographs in Fig. 13 show the collapse of a four-sided

325 p.rn

FIG. 12. Photographs showing vertex propagation at
H~ =0.48X4mM=92 Oe, with relative velocities indicated by
the arrows. In frame (a), the velocity of the faster vertex is ap-
proximately 20 pm/s. Time intervals between successive frames
increase through the sequence. The final, stationary state in

frame (d) is characterized by zero net force on the vertices. An
ac field (H„=3Oe, v=40 Hz) is present throughout.

FIG. 13. Photographs showing the collapse of a four-sided
cell. Bias is fixed at H& =0.51 X4~M =97 Oe. The initial state
in frame (a) is unstable due to tension in the stripe segments,
and the vertices and segments accelerate as the cell collapses.
The two remaining vertices in frame (d) seek positions of zero
net force. An ac field (H„.=4 Oe, v=40 Hz) is present
throughout.
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cell. The initial state is destabilized by an increment in
Hz that creates tension in the stripe segments. The ver-
tices and segments move cooperatively to reduce the
stripe length, and domain motion ceases only after the
cell has collapsed and the remaining two vertices have
reached positions of zero net force. As the stripe seg-
ments that form the cell boundaries shorten, the interior
vertex angles decrease, and the collapse accelerates.
With a suSciently large ac component, the motion is
smooth and visually identical to the contraction of soap
bubbles. ' ' Although the collapse of Fig. 13 momen-
tarily'brings the cell walls nearer to one another, the net
result is an increase in the average domain spacing, and
the tension in the stripe segments is reduced. The topo-
logical result of Fig. 13 is the elimination of the cell, two
vertices, three stripe segments, and of one side from each
of two neighboring cells. Such topological changes are ir-
reversible: we have never observed a subsequent reduc-
tion in H~ to reconstruct a cell. We have also never ob-
served Tl processes (see Ref. 13) which rearrange a local
cell neighborhood but conserve the total numbers of
sides, cells, and vertices. Three-sided cells collapse in a
manner similar to Fig. 13. However, we show in Sec. VI
that the collapse of five-sided cells is often hindered by
the formation of a stable bubble trap.

For Hz (HR&, stable three- and four-sided cells are
common in the stationary states, indicating that tension
is zero in at least some of the stripe segments in this bias
regime. In contrast, all segments are under tension if
H~ )HR„and three- or four-sided cells formed in the
course of the evolution are energetically unstable. If
coercivity is mitigated by an ac field, these cells immedi-
ately collapse, and pentagonal bubble traps and irregular
five-sided cells are the only cells with fewer than six sides
that survive. Three- or four-sided cells are extremely rare
for H~ )HR&, except in very sparse patterns where coer-
civity dominates (Sec. VII).

The photographs in Fig. 14 show that the stripes are
pinched near the vertices. The pinching occurs because
the vertex center experiences the demagnetization field of
three semiinfinite stripes, which is significantly greater
than the self-field HD" of an isolated stripe. The bias field
in the second frame is larger than in the first, and the
stripe widths are greatly reduced. The width of the
pinched region approaches zero as Hz nears a critical
value H~; one or more stripes are severed, and the vertex

is destroyed. The adjoining stripe segments are under
tension, and a severed stripe runs back along its length
very rapidly, like a broken rubber band. We have ob-
served this pinch-oF only in extremely sparse cellular pat-
terns, at a bias value H~=0. 79X4mM =150+1 Oe, as
determined experimentally by averaging the results of
several sweeps of H~ from initial (H~ =0) bubble seas.
All vertices and stripe segments are simultaneously elim-
inated, and H~ thereby determines the saturation bias
field for cellular patterns. Cellular patterns persist to
significantly larger bias fields than any other domain pat-
terns observed in low-defect garnets. The next largest
saturation field is that of nonequilibrium bubble lattices,
which persist to the magnetic bubble collapse field' '

H„~ =0.53 X4aM = 101 Oe.

VI. PENTAGONAL BUBBLETRAPS

The final domain structure that we consider is the pen-
tagonal bubble trap shown in the lower photographs of
Fig. 15. Five stripe segments separated by nearly equal
angles are connected at the central body. Contained in-
side is a circular domain of magnetization aligned with
Hz, opposite to the reversed magnetization that
comprises conventional magnetic bubbles. Bubble traps
begin to form at bias fields a few oersteds less than the
run-in field, and comprise a significant fraction of all cells
throughout their range of stability.

As shown in Fig. 15, bubble traps are formed via the
contraction of five-sided cells. In this example,
H~ )HR, , and tension in the stripe segments initiates a
collapse similar to that of the four-sided cell in Fig. 13.
The inner domain of up magnetization is squeezed down
to the circular bubble as the cell shrinks, and the bubble
trap is formed. The bubble acts as a barrier to further
collapse, and the bubble trap is not destroyed. Its struc-
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FICr. 14. Photographs of stationary vertices at two bias
values. Both the minimum widths of the pinched regions (ar-
rows) and the stripe widths far from the vertices decrease as Hz
increases. The stripes are severed and the vertices destroyed at
HI =0.79X4mM=150 Oe.

FIG. 15. Photographs showing the formation of a pentagonal
bubble trap. The stable five-sided cell in frame (a) is destabi-
lized by an increase in H~. The collapse halts when the stable
bubble trap in frame (c) is formed. The bubble trap shrinks
slightly but resists total collapse when Hz is increased further
[frame (d)]. An ac field (H„=3 Oe, v=40 Hz) is present
throughout.
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ture is robust in that a further, significant increase in the
bias field only slightly shrinks the bubble trap [frame (d)
of Fig. 15].

The formation of bubble traps is irreversible in sparse
patterns for H~ & HR&. Subsequent reduction of Hz does
not reverse the sequence of Fig. 15, but instead results in
stripe buckling if Hz is reduced much below Hit, (see, for
example, Fig. 4). In denser patterns the shorter stripe
segments buckle less easily, and pentagonal traps can
sometimes be "reinflated" by producing negative tension
in the segments.

The bubble traps are mobile, but propagation is less
common than that of threefold vertices. A trap moves as
a coherent structure, driven again by tension in the five
attached stripes. The velocities are typically smaller ( ( 5

pm/s) than that of vertices, which may be due to smaller
net forces on the bubble traps, or to lower mobility of the
complex structure of the trap and of the greater number
of attached stripes.

Sufticient increase of H& results in the sudden destruc-
tion of a given bubble trap, as shown in the photographs
in Fig. 16. The fivefold vertex which remains after the
collapse is highly unstable, and immediately disassembles
into threefold vertices. If H„=0, the collapse
of an isolated bubble trap occurs at a bias field

H5 =0.54X4m.M=103+1 Oe, as determined experimen-
tally by averaging the results of several increasing sweeps
of Hz. We have observed individual bubble traps to sur-
vive over the entire range of applied field H~, & Hz & H5,
an interval of 0. 10X4mM=19 Oe. The topological re-
sults of the collapse are also shown in Fig. 16: one of the
neighboring cells gains one side, two cells each lose one
side, and the remaining two are unchanged. The Euler
requirement that the average number of cell sides be 6
(Ref. 13) is preserved. We have not found any criteria
that can realiably predict the orientation of the collapse,
i.e., which neighbor gains a side.

The destruction of bubble traps appears to be triggered
by a collapse of the enclosed bubble analogous to that ob-
served for conventional magnetic bubbles. ' ' Both H~

FIG. 16. Photographs showing the destruction of a pentago-
nal bubble trap via collapse of the bubble; H& =0.51X4~M
=97 Oe. The fivefold vertex which remains is unstable and im-
mediately disassembles into stable threefold vertices [frame (b)]
that seek positions of zero net force. The neighboring cells gain
or lose sides as indicated. An ac field (H„=2 Oe, v=40 Hz) is
present throughout. The bubble trap collapses at H& & H5 = 103
Oe in this example because the stray fields of other reversed
domains (beyond the visible region) and the ac field both add to
the inhuence of Hz.

and the demagnetization field component originating in
the reversed magnetization favor the expansion of the
bubble, while the domain-wall energy and the demagneti-
zation field of the up magnetization outside the trap favor
its collapse. (The roles of the bias field and demagnetiza-
tion field are reversed relative to the conventional bubble
case. ) An increase in Hz reduces the amount of reversed
magnetization, as can be seen in the lower frames of Fig.
15. At a critical bias value and bubble radius, the
influences of the wall energy and the up demagnetization
field dominate, and the trap collapses. As with conven-
tional bubbles, ' ' it is likely that the stable bubble radius
at bias fields below the collapse point is determined by a
local minimum in the bubble energy versus radius, and
that the collapse corresponds to the elimination of this lo-
cal minimum. This conjecture is supported by numerical
estimates of the bubble energy in a simplified model
geometry. Furthermore, we observe fluctuations in the
bubble radius of up to -25% just prior to collapse in
response to an ac field ( —1 Oe amplitude, 10—20 Hz).
The fluctuations suggest a weak dependence of bubble en-
ergy on radius, consistent with the disappearance of a lo-
cal energy minimum at collapse.

The pattern evolution and stationary states are particu-
larly interesting in the "high-tension" bias regime
H~, &H~ &H5. Because all stripe segments are under
tension in this regime, three- and four-sided cells are un-
stable, and are rarely observed in the stationary patterns
if an appropriate ac field is applied. The patterns ener-
getically factor saturation by the successive elimination
of all cells and a corresponding divergence in cell area at
Hz =Hz, . However, the robust bubble traps obstruct the
topological evolution, and cellular patterns observed in
the high-tension regime are far from energetic equilibri-
um. The bubble traps visibly support the stationary pat-
terns, as can be seen in Fig. 2. As the only stable cells
with fewer than six sides, they also provide the topologi-
cal balance necessary to keep the averge number of sides
equal to 6. We observe that the average cell area diverges
only as Hz~H~ and all bubble traps are destroyed. (As
will be discussed in Sec. VII, a few cells persist beyond
H& due to coercive drag on the very long stripe seg-
ments. ) Furthermore, although the cell density continu-
ously decreases as H~ increases, we find that the fraction
f& of total cells which are bubble traps in the stationary
states satisfies f, =0.20 throughout the bias range
HR, &H~ &H„and drops abruptly to zero at H~ =H, .
Within this range, the condition for collapse of an indivi-
dual bubble trap depends upon H~ and the domain
configuration, i.e., the extent to which the stray fields
enhance Hz at the bubble trap location. Finally, we ob-
serve very long settling times of up to several minutes
after the collapse of a bubble trap destabilizes a station-
ary configuration. The collapse triggers a chain reaction
in which subsequent domain motion results in the col-
lapse of a series of bubble traps and other cells.

VII. COERCIVE EFFECTS AND THE ac FIELD

Coercivity strongly affects the evolution of cellular and
stripe patterns, and can significantly alter the geometry,
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topology, and energy of the stationary states. In charac-
terizing the pattern evolution it is essential to distinguish
between behavior dictated by energetics, which we have
focused on thus far, and that determined by coercive
drag. In this section we describe the coercive effects and
the extent to which an ac field component can mitigate
them while leaving the one-parameter (H~ ) nature of the
evolution intact.

The stationary cellular pattern shown in the photo-
graph in Fig. 17 was produced by slowly increasing H~
from zero with no ac field component present. It is ap-
parent that this configuration has not attained a local en-

ergy minimum. Some stripe segments have large and
even serpentine curvatures, even though they are under
tension, and domain motion is prevented by coercive fric-
tion in many of the smaller cells that energetically favor
collapse. The vertices themselves are nonetheless in equi-
librium: the local angles are all nearly 120. Large bias
increments () 10 Oe) and correspondingly large stripe
tensions are typically required to break free domains
stuck by coercivity. The subsequent domain velocities
are momentarily very large ())100 pm/s), and the set-
tling times required to reach a new stationary state are
small ((1 s). The evolution under slowly increasing bias
proceeds by a series of sudden ruptures in which several
cells in close proximity are simultaneously destroyed.
Stripe segments that constitute the cell walls are fre-
quently severed in the process, and the elimination of
cells by continuous shrinkage (as in Fig. 13) is often
bypassed. The wall severing in the absence of an ac field
is anomalous in that it does not appear to be caused by a
continuous pinch-off such as occurs with the vertices as
discussed above, and it usually occurs during points in
the evolution at which the domain velocities are large.
Topologically, the severing of a wall merges two cells and
often results in cells with many sides; the largest (par-
tially obscurred) cell in Fig. 17 has more than 20 neigh-
bors.

0.9 mm

FIG. 17. Photograph of a cellular pattern evolved from a
homogeneous bubble sea to H& =0.52 X 4m M =99 Oe with no
ac-field component. Many eA'ects of coercivity are apparent, in-
cluding large stripe curvature in spite of tension, and large cells
with many neighbors formed by cells merging when stripe seg-
ments are anomalously served. Cells with fewer than six sides
energetically favor collapse, but domain motion is prevented by
coercive friction.

A coercivity-dominated configuration such as in Fig.
17 responds to the application of an ac field by the
straightening of stripe segments and the collapse of
several cells. The configuration energy is reduced, and
the stationary state eventually reached is characterized
by stripe tensions which are balanced at the vertices and
bubble traps; see, for example, Fig. 2. The ac component
thereby aids the domains in attaining metastable
configurations which are not dominated by coercive pin-
ning. Furthermore, the domain motion with ac present is
typically smooth, and we find that the anomalous stripe
severing described above can be avoided in the Airtron
garnet if the amplitude and frequency are chosen ap-
propriate. The topological evolution proceeds by the
orderly elimination of cells by collapse, and cells with
more than 12 sides are extremely rare. In the bias regime
HR, &H~ (H~, the observed stationary configurations
are not in equilibrium, whether or not an ac component is
present. However, with coercive effects mitigated by an
ac field, the patterns correspond to local energy minima,
and energy barriers in the form of bubble traps obstruct
the topological evolution and prevent the patterns from
reaching equilibrium. In contrast, in the absence of an ac
field, the evolution is inhibited primarily by coercive fric-
tion. For these reasons, we have found the ac field essen-
tial in our attempt to characterize cellular evolution.

We have found that the ac amplitude H„required to
overcome coercive effects is much larger than the coer-
cive field H, which acts on the individual domain walls.
A large ac amplitude is necessary because stripe tension
produces only a small motive force, as described below.
Consider a stripe segment with local radius of curvature
r, much greater than the stripe width w, . As described in

Sec. III, stripe tension T )0 results in a pressure
P, =T, /r, acting normal to the stripe which favors a
reduction in curvature, with a corresponding reduction in
length and increase in r, . Opposing P, is the effective
coercive pressure P, =4MtH„which is the sum of the
coercive pressures on both domain walls. The condition
P, )P, must be met before the stripe responds by increas-
ing r, . The view that these pressures act on the stripe
domain as a whole, as opposed to the domain walls indi-
vidually, is justified by the strong constraints on the
stripe width u, described in Sec. III.

An estimate of an appropriate ac amplitude H„can be
obtained by considering the response of a curved stripe
segment to changes in the bias field. If H~ is set so that
T, =0, then superimposing an ac field will modulate T,
and the pressure P,. around zero, as illustrated in Fig.
18(a). The ac field tugs on the stripe repeatedly as the
tension passes through its maximum T,. '". The condition
which we impose is that H„be sufficiently large that the
maximum lateral pressure P, overcomes the coercive
pressure P, . The stripe will then break loose at the cycle
maximum and decrease the curvature. {Only for exces-
sively large H„have observed stripe segments to buckle
at the cycle minimum). For a local radius of curvature
r„ this criterion for H„ is equivalent to T, '"/r, =P, .
We can evaluate K„ for the particular case of an isolated
stripe and H~ =H~, ; the condition then becomes
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E,(Hat+H„)lr, =4MtH, F. igure 18(b) shows this rela-
tion expressed as the minimum radius r, '" not aft'ected by
H„plotted versus H„where we have set H, =0.25 Oe
and used the values T, =E, determined for the isolated
stripe in Sec. III. The radius r, '" corresponds to the
maximum curvature expected in the stripe segment
versus H„. Note that an amplitude of several oersteds is
required to increase the minimum radius to the
r, ) 50 pm range typical of medium- to low-density pat-
terns. Figure 18(b) thus agrees with our observations that
H„must be several times larger than H, in order to
overcome coercive friction on the motion of stripe seg-
ments. Figure 18(b) also applies approximately to stripes
of zero tension embedded in patterns, because the slope
of T, versus Hz near the zero crossings of Fig. 11 does
not depend strongly on spacing.

Furthermore, Fig. 18(b) can be used to estimate the ex-
pected minimum radius of stripe curvature in cases where
Hz is such that the stripe tension is positive without an
ac field. The minimum curvatures r, '" are in general
determined by T, (Hz+H„)Ir, =4MtH, . For given H„,
r, '" can be evaluated for an isolated stripe by a horizon-
tal shift of the curve in Fig. 18(b) of magnitude H~ =Ha, ,

with the result that r, '" increases with Hz. We observe
this dependence in sparse stripe patterns and in cellular
patterns. For any fixed H„, the maximum observed cur-
vature slowly decreases with H~. Note that in the high-
bias regime Hz )H5, cellular patterns energetically favor
the reduction of total stripe length toward zero and the
successive elimination of all cells, and there are no bubble
traps to obstruct the evolution. However, because r, '" is
finite for any Hz and H„, coercive drag prevents the col-
lapse of large cells, and the pattern survives to H~ =H~.

Even with an adequate ac amplitude, coercive effects
on the evolution are significantly reduced for only a limit-
ed range of ac frequency v. The response of the domains
to the ac field (as measured, for example, for the observed
r, '" for fixed Hz and H„) falls off monotonically with
frequency v from dc, and the above determinations of
H„underestimate the required amplitude. We find that

the ac field has no significant inhuence on the domain
motion for frequencies v 200 Hz. This cutoff is surpris-
ingly small in light of the "fast" times associated with the
effective domain wall "mass. " For example, resonant
frequencies of domain-wall oscillations in parallel stripe
patterns have been measured in the range 10—100 MEiz.
The cutoff at 200 Hz may originate in the interplay of the
coercive pressure on the domain walls and the demagneti-
zation feedback that constrains the relative wall positions
within small limits. However, we do not fully understand
this effect.

In addition to affecting the dynamics of the stripe seg-
ments, the ac field also alters the bubble trap collapse
fields. The traps collapse when the ac field swings high,
and the corresponding measured values of the bias fields
decrease as H„ increases. For example, the amplitude
and frequency dependence of the collapse field H& of an
isolated bubble trap have the approximate form
H5 =Hz —C(v)H„, where C(v~0) =1 and C(200
Hz)=0, with monotonic decrease between. ac fields of
useful amplitude can alter the bubble trap collapse field
H~ by several Oe. Surprisingly, we find that the ac field
shifts the vertex instability and corresponding saturation
at Hz by less than 1 Oe.

These observations indicate that, in spite of its
beneficial inAuence on the pattern evolution, the ac field
can only partially eliminate the effects of coercivity. In-
creasing H„overcomes coercive effects on stripes of in-
creasingly smaller curvature, but alters the bubble col-
lapse bias field H~ and thereby interferes with the pattern
evolution. A useful compromise is nonetheless possible
so that the ac amplitude and frequency can be fixed, and
the evolution then studied as a function of Hz alone. We
have found that the configuration with v=40 Hz and
H„7.5 Oe has several desirable features which hold over
the entire bias range 0&H~ (H~: dynamic response of
the patterns to small bias increments ( ((1 Oe), uniform-
ly smooth domain motion, and severing of stripe seg-
ments, that occurs only very infrequently and only at
large bias values near H~.

100
VIII. DISCUSSION AND CONCLUSIONS
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FIG. 18. (a) Modulation of stripe tension by an applied ac
field (arbitrary units). In this example, H~ is set so that the ten-
sion is zero at midcycle. (b) Critical radius of stripe curvature
vs ac-field amplitude as calculated for an isolated stripe and
Hz =HR&. The tension at the ac cycle maximum is sufhcient to
preclude local curvature radii r, & r, '".

A synthesis of the properties of the stripe segments,
vertices, and bubble traps described above gives an
overall picture of the evolution of cellular domain pat-
terns in garnet films from an initial (Hz =0) disordered
bubble sea. A pattern is stationary when H~ is fixed, but
is destabilized by an increment in Hz, and motion of the
domains ensues as the pattern seeks a new stationary
state. The bias field thus serves as a control parameter
which generates a sequence of stationary states when it is
monotonically increased in small intervals. Tension in
the stripe segments drives the domain motion and ac-
counts for most of the excess energy in nonequilibrium
patterns, i.e., the energy in excess of that in minimum-
energy configurations. For fixed Hz, tension is reduced



2036 K. L. BABCOCK AND R. M. WESTERVELT

by increasing the average domain spacing, thereby reduc-
ing the influence of the stray fields on a given stripe seg-
ment. Toward this end, the domain dynamics reduce the
total stripe segment (cell wall) length and attempt to
eliminate cells with fewer than six sides, The stripe run-
in field HR, , the vertex pinch-off field Hz, and the bubble
trap collapse field H5 delineate the various bias regimes
that characterize the overall evolution. If an appropriate
ac field is applied, coercive effects are minimized and the
stationary states are (approximately) metastable. The
bias regimes are then characterized as follows.

(i) Hz &HRt. The patterns are able to eliminate cells
as needed to maintain nearly zero stripe tension, and the
stationary states remain close to energetic equilibrium.
Settling times in the seeking of stationary states are gen-
erally very small.

(ii) Ha& & H~ & H5: the "high-tension" regime. The
rate of cell elimination (versus bias increase) is high; the
cell density drops more than two decades in this regime.
The saturated state is the equilibrium configuration, and
all stripe segments are under tension. However, stable
bubble traps obstruct the topological evolution and sup-
port nonequilibrium configurations. An increment in Hz
destabilizes and collapses certain bubble traps, and
triggers "chain reactions" in which subsequent domain
motion results in the collapse of a series of bubble traps
before a stationary state is reached. Long settling times
(up to several minutes) are typical, even when the bias in-
crements are small (& 1 Oe). The dynamics of these ad-
justments are visually similar to those of soap films.
Metastable patterns are characterized by segment ten-
sions balanced at the vertices and bubble traps. Except
for a few cells which remain due to coercive drag on the
long cell walls, the average cell size diverges at H~ =H~
when the last bubble traps collapse.

(iii) H& & Hs & Hv. The patterns are extremely sparse,
and coercive drag on the stripe segments prevents the
successive elimination of the remaining cells that is
favored energetically. A11 reversed domains are eliminat-
ed and the garnet saturated at Hz =H~ when the vertices
are destroyed.

Although coercive effects can be partially suppressed
with an ac field, this is achieved at the expense of altering
the boundaries of the above regimes. The strongest
influence is on the value of H5. increasing H„effectively
reduces H~ and "squeezes" the high-tension regime, al-

though the behavior within it does not change
significantly.

Cellular domain patterns share many features with oth-
er two-dimensional cellular systems that are driven by
surface tension to disorder topologically. Of these, the
two-dimensional soap froth is the simplest, and has been
studied' ' ' as a prototype for coarsening in polycrys-
talline materials' ' and other systems. In spite of simple
local dynamics of individual cells in the idealized system,
the overall behavior of the soap froth is very subtle. Re-
cent experimental ' ' and theoretical efforts and
computer simulations ' have made progress on the is-
sues of scaling states and of correlations between proba-
bility distributions of cell characteristics, but leave them

incompletely resolved. Furthermore, results of recent ex-
periments' ' concerning the rate of coarsening disagree
with older results' and with theoretical predictions,
and indicate that small deviations in the experimental
system from the idealized model can strongly affect the
overall evolution.

The analogy between the cellular domain patterns and
soap froths is grounded in the stripe tension that drives
the evolution. If the ac field is chosen appropriately, the
increase in disorder has the same topological character as
the soap froths, in that cells with fewer than six sides are
preferentially eliminated. The energetics that govern the
domain evolution are, however, more complex than those
of soap froths. The nature of the evolution depends on
the bias regime, in contrast to the time-invariant dynami-
cal rules that govern the idealized soap froth. in addi-
tion, the stripe tension is not uniform, but varies with lo-
cal domain configuration, and soap froths have no analog
of the bubble traps to obstruct the topological evolution.
Coercivity and the application of an ac field to mitigate
its effects further complicate matters.

In spite of its complexity, many features of the cellular
domain system are experimentally desirable. If the ac
field is fixed, the evolution is easily controlled by the sin-
gle parameter H~. The stationary states can be studied at
leisure, and the motion of the domains as the patterns
seek these states can in some cases be temporarily
stopped by removing the ac field. Furthermore, it is a
large system: the initial (Hz=0) state contains several
million bubbles, and the boundary effects that typically
affect soap froth experiments and simulations may be
avoided over a wide bias range.

Another useful feature of the cellular domain system is
that the degree of order in the initial (Hz =0) can be
varied by "annealing" a disordered bubble sea. If the in-
itial state is highly ordered in the form a "granular" tri-
angular bubble lattice, the evolution under increasing
bias proceeds by a "melting" transition, as shown in Fig.
1. A sufficient increase in Hz creates a stressed hexago-
nal cellular lattice with tension in the stripe segments in a
manner analogous to the frothlike evolution described
above. However, the syrnrnetry of the ordered lattice
precludes evolution via vertex motion and cell collapse,
except at topological defects and grain boundaries where
cells with other than six sides are located. The evolution
is thus not homogeneous as in the case of the frothlike
evolution described above. Instead, a front which is nu-
cleated at the defects separates the hexagonal lattice from
a disordered frothlike region. As shown in Fig. 1, the
motion of the front is mediated by the collapse of the
bubble traps which line its length, and it irreversibly ad-
vances and destroys the lattice.

In conclusion, cellular domain patterns in garnet films
constitute a rich and accessible cellular system. In the
high-tension bias regime, the evolution produces a com-
plex sequence of metastable states with unusual topologi-
cal constraints imposed by the instability of three- and
four-sided cells, and interesting dynamics and long set-
tling times arise as the patterns seek these states. The
divergence of average cell area at Hz=H& is unique
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among cellular systems; arbitrarily large cell area corre-
sponds to infinite time in the soap froth, and, to our
knowledge, no other cellular systems show analogous be-
havior at finite control parameter. Finally, an ordered in-
itial state results in an irreversible, stress-induced "melt-
ing" transition, with an interesting dependence on bias
field and cell density. We plan to pursue these topics in
greater detail in forthcoming papers.
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