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A source of the apparent deviation from three-dimensional (3D) Ising model behavior of the stat-
ic critical phenomenon experimentally observed in several binary mixtures of water—nonionic-
amphiphile systems has been identified. Analyses were made, in particular, on two ethylene glycol
mono-n-dodecyl ether-water systems C,Es-H,O and C,E3-H,O (where E represents ether), for
which a very extensive set of data has been published. Our analyses show that, in fact, all published
experimental data are consistent with the 3D Ising exponents if several isochores, including the
most critical one, are simultaneously analyzed using the linear model equations of state. Owing to
the flatness of the coexistence curves it is experimentally rather hard to locate very precisely the
critical concentration. With added difficulties of obtaining very pure amphiphile samples and
correcting data for multiple-scattering contribution near the critical point in a conventional light-
scattering experiment, the determination of the critical indices is always subject to large errors. All
the sources of errors tend to lower the measured indices. For the dynamic critical phenomena, a
combined use of the linear model equations of state and the full mode-coupling theory, including
the background effect, allows us to fit all the dynamic light-scattering data along the “critical” and
off-critical isochores by assuming a single value of the Debye cutoff wave number g, which is equal
to the inverse of the average hydrodynamic diameter 2R of the micelles. We point out the strong
influence of the background effect on the critical concentration fluctuation dynamics for systems
formed from unusually large objects in solution.

AUGUST 15, 1989

I. INTRODUCTION

During the last few years great interest has been
aroused by the experimental discovery of the nonuniver-
sality in the critical phenomena of supramolecular sys-
tems such as binary mixtures of water and nonionic am-
phiphile!? or multicomponent water-oil-amphiphile mix-
tures, namely microemulsions.®> Subsequently some
theoretical works have been published* ™ ® giving plausible
arguments for the observed nonuniversality. It was, how-
ever, difficult to explain theoretically why the universal
exponents ¥ and v describing, respectively, the diver-
gences of the osmotic compressibility x and of the long-
range correlation length £ could be less than the limiting
values y=1.0 and v=0.50 given by the mean-field
theory’ in some instances.

The experimental results of Corti and Degiorgio! and
of Hamano et al.? have been questioned recently and
some new measurements have been performed to check
these results. For the static critical phenomena Strey and
Pakusch,® and Dietler and Cannell’ have found normal
3D Ising exponents, namely, ¥ =1.24 and v=0.63, from
doing very careful static and dynamic light scattering ex-
periments on binary mixtures of C,E(-H,0O and
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C,E4-H,0 (where E represents ether), in sharp contrast
with the results of Refs. 1 and 2. On the other hand, for
the ternary system water-decane-AOT [AOT denotes
sodium di(2-ethylhexyl) sulfosuccinate], Huang and
Kim!® and Kotlarchyk et al.!! also obtain the three-
dimensional (3D) Ising results. More recently, we
demonstrated that for the latter system, renormalized 3D
Ising exponents were in better agreement with both static
and dynamic light-scattering experiments when the back-
ground effects were properly taken into account.'?

The aim of this paper is to provide a quantitative cal-
culation of the correlation length &, the osmotic compres-
sibility ¥, and the decay rate of the order parameter
I' in binary critical mixtures of water and nonionic
amphiphiles, ethylene glycol mono-n-dodecyl ether
(C\,E,-H,0), by combining both the linear model equa-
tion of state and the complete mode-coupling theory, in-
cluding the background effect for the transport
coefficients. Our theoretical predictions are compared to
the experimental results for critical and off-critical sam-
ples. The previously observed deviations from normal
3D Ising behavior for the so-called critical sample can be
understood if one takes into account the extreme
difficulty of locating precisely both the critical composi-
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tion and the critical temperature in systems for which the
amplitude of the coexistence curve is very small and also
the nontriviality of correcting data for multiple scattering
when close to the critical point. Our calculations provide
a very good check of the internal consistency of the re-
sults of Corti and Degiorgio for the off-critical samples.
We then show how crucial the criticality of the sample is
for the determination of the critical indices in a system
like a micellar solution where (a) the critical composition
C. of the sample is uncommonly shifted toward the
water-rich side of the coexistence domain (C, >90% of
H,0), and (b) the coexistence curve is extremely flat so
that the amplitude factor is very small. Furthermore, we
show how important the background contribution of the
order parameter decay rate is in a supramolecular sys-
tem, where the diameter of the objects, of the order or
greater than 100 A, is very large compared to the molec-
ular dimensions of the solvent.

II. THEORETICAL BACKGROUND

A. Mode-coupling theory

The complete treatment of the mode-coupling theory
has been reported by many authors.>”!®* We want to
emphasize here especially the most important point, the
effects of the background on the transport coefficients as
far as the analysis of light-scattering data is concerned.
Since the solution is a binary system, the hydrodynamic
slow variables are the local concentration C of the amphi-
phile, the velocity field transverse to the wave vector q,
and the local entropy. The corresponding transport
coefficients are the concentration conductivity a and the
shear viscosity 7. The mass diffusion coefficient D can be
expressed in terms of a, the number density of the mi-
celles p, and the nonlocal g-dependent osmotic compressi-
bility Y as D =a/px . When close to the critical point,
the transport coefficients can be written as a sum of a reg-
ular (or background) part, ay and 7, and a nonlocal
frequency-dependent critical part, a, and 7., respective-
J
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ly. One can set up the mode-coupling equations taking
into account both parts.!* In order to solve them self-
consistently one uses the following simplifying assump-
tions: (i) neglect the frequency dependence of the trans-
port coefficients; (i) neglect the higher-order contribu-
tions to the transport coefficients; (iii) use the Ornstein-
Zernike form for the nonlocal susceptibility x (g, T), tak-
ing Fisher exponent 7 to be zero. One has

2

XT(q,T)=-*¥12—2=X—S—L2 -, (1)

1+g7°6° & 1+¢°¢
where Y, is a constant. Since in a light-scattering experi-
ment the frequency change is negligible, the magnitude of
the wave vector is ¢ =(4mn /A)sin(6/2), where n, A, and
0 are the refractive index of the sample, the wavelength
of light in vacuum, and the scattering angle, respectively.

The decay rate of the order parameter fluctuations
I'(g, T), the quantity directly measured by photon corre-
lation spectroscopy, is proportional to D and can be writ-
ten like the transport coefficients as the sum of two terms
I'(q, T)=T_(q,T)+TIg(q,T). The background part
I'p(g,T) and the critical part ' (g, T), respectively, are
given by

B\Yq, q PX(q)T)
ay(T)E
=Dy (T)(1+¢2%?), DB(T)=B—2§° 2)
PXo
and
a (T) K(g£) kgT
T (qT)=q*————=¢2p, 2495, p = )
LT g, T) (g&)? 6mné

The K (x) apparent in Eq. (3) is a universal scaling func-
tion for the decay rate depending on a scaling variable
x=gq§&. In an analogous way one can introduce a g-
dependent shear viscosity n(q, T)=n(T)[1+F(q&,T)],
where F(x) is a scaling function and 7(T) its macroscop-
ic value 9(T)=lim, ,yn(q, T)=n.(T)+nz(T), with

which clearly shows the dependence of the viscosity on
the background of the decay rate. In the same long
wavelength limit " gives

L TUeT) kT

quO q* 6mn(T)E ’
2 © 1

R=2 ("4 . (s)
i Ay —F, T)]

R is the correction factor to the Stokes-Einstein law ap-
plied to correlated regions of size & in the critical system.
A set of coupled integral equations can be written for the
two scaling functions K (x) and F(x) and can be solved
numerically if the background is included. Otherwise a
self-consistent perturbation scheme can be used when

d
57 Jo y(1+y2)2K(y,T)+[DB(T)/DC(T)lyz(1+y2)

, 4)

f
Dy /D, is neglected. This type of calculation is valid only
very close to the critical point, when the scaling functions
K (x) and F(x) become universal, and in this case one
gets a value R =1.027. Since the viscosity anomaly is ex-
perimentally known to be weak, a simple iterative pro-
cedure can be used to evaluate both transport coefficients.
To the lowest order one neglects the ¢ dependence of the
viscosity, so that F(x)=0 and K(x) have a universal ex-
pression

K(x)Z% 1+x2+ tan” 'x (6)

1
x3—=
x

Substitution of this expression into the equation for 7,(T)
allows the evaluation of the critical part of the shear
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viscosity in terms of the background linewidth I'y. It
must be noted that neglect of the background term would
prevent the integral for the critical part of the viscosity
from converging. An approximate evaluation of 7.(T)
has been given by Oxtoby and Gelbart!* in the form

CkyT, 4
B PXO | (THgpEY, ()

W T)=ng(T
g 6mnpagés

where ¢ is a universal exponent equal to 8/1572=0.054,
and C=0.9. The parameter gq;, is the Debye upper cutoff
wave number for the integral giving the nonlocal shear
viscosity. To the same order of approximation the back-
ground decay rate I'z(g, T) is given by!®
Tp(q.T=¢?D,> - (1+x)-L . 8
(g, T)=q C4qu( )173 (8)
In order to compare more easily the theoretical predic-
tions with the experimental results, it is customary to ex-
press Egs. (2) and (3) in a reduced form involving only
universal quantities. We therefore define a reduced relax-
ation rate which is the sum of the two following contribu-
tions:

re=r,—5m__K&) pe_p, bm_
kgTq R x kgTg R

The comparison between the mode-coupling theory and
the dynamic light-scattering experiment can be easily
done along the line of critical concentration C =C, where
the long-range correlation length £ has the usual
definition

E=be™", (10

and can be deduced from combined total scattered inten-
sity and turbidity measurements.'6

B. Linear model equations of state

For off-critical mixtures, £ is no longer given by Eq.
(10). In order to derive this quantity we adopt the model
used in Ref. 17. In this method one first expresses the
correlation length £ as a function of the compressibility
X7 and then calculates ), in terms of a scaling equation
of state valid close to the critical point.!® In order to do
that, we first relate it to the spatial integrals G
(i,j =1,2) of the partial pair-correlation function of the
two species g;;(r),

cu-o [, ca-o
= +
Xr="N ot | v

NA(G“ +G22—2GIZ)

’

(11)

where C is the mass fraction of the amphiphile, V is the
molar volume of the mixture, N, is the Avogadro num-
ber, and kp is the Boltzmann constant. Using the
Ornstein-Zernike form for the pair-correlation functions
8ij(r)’=a;; exp(—r /&) /r, which is a good approximation,
one obtains'®

G,<j=a,-jfdr—p—iex (:r/ ) =41ra,-j§2 , (12)
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where the coefficients a;; are constant. Since the
compressibility is directly linked to the order-parameter
fluctuations, by putting a =a,; +a,, —2a,,, one gets

kpTN 4Xr

Vv
2
§ c(i—-0)

~ 4maN ,C(1—C)

(13)

The linear model equation of states can be used to obtain
an explicit temperature and mass fraction dependence of
Xt and then of £. In this model,'® the critical part of the
appropriate thermodynamic potential II, the field conju-
gate to the order parameter A, and the reduced tempera-
ture € are expressed in terms of two parametric variables
r and O, expressing the reduced distance from the critical
point. In the case of a two-component system,!® the
linear model equations can be written in the following
way:

h(r,0)=ar0(1—6?) ,

e(r,0)=r(1—b26%) , (14)
=900 _ B
C—C, ah gor”

where the critical indices 8 and 6 have their usual mean-
ing, the parameter g is the nonuniversal amplitude of the
coexistence curve, and b2=(8—3)/(8—2B6+28—1).
The compressibility is then

1 g r7

_ g _ 2B8—3
N, kgT a 1+d,6*’

2 (a-2p
Substituting Eq. (15) into Eq. (13) we get, knowing that
for 6=0, § is given by Eq. (10),

vy 1"*c.a1—c,)
V.| CU=0 (1+d,60)'"°

c

Xt (15)

rwy/2

§=& (16)

where V, is the critical molar volume of the system. Two
special cases are of particular interest: Along the critical
isochore =0, r=¢e/(1—b?), the correlation length
reduces to the correct expression of Eq. (10); along the
coexistence curve 6==11 the correlation length £ is
given by

2¢ (1—C,) T

Cc(1—-0C)

c-c,
g

14
V.(1+d,)

§cc=%o

(17)

Equation (17) clearly shows that - does not diverge
along the coexistence curve (CC), except at the critical
point C,.. This latter result is very important from a
practical point of view. It is the source of a number of
misinterpretations of experimental data on off-critical iso-
chores.

By inverting the linear model equations (14), we can
deduce the parametric variables r and 6 in terms of the
experimentally accessible variables, the temperature and
concentration. It is important to observe from Eq. (14)
that for a given reduced distance from the critical point,
defined by the coordinates (r,0), the amplitude factor g
controls the variation of the concentration scale, corre-
sponding to this distance. Small g means that for a given
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reduced distance, the actual concentration deviation from
its critical value is amplified by a factor 1/g > 1.

Knowing the correlation length & as a function of tem-
perature and concentration, and using the mode-coupling
equations and the viscosity data, we are able to describe
completely both the static and the dynamic properties of
the surfactant-water mixture over the whole critical re-
gime.

III. THEORETICAL ANALYSIS
OF THE EXPERIMENTAL RESULTS

We shall now apply the above described theoretical re-
sults to the study of the critical behavior of some
water —nonionic-amphiphile binary solutions along criti-
cal and off-critical isochores. We shall mainly focus our
attention to C,Es-H,0 and C,E3-H,O since all the
system-dependent parameters can be derived from the
data independently measured by many different authors.

A. Coexistence curve

Extensive studies of phase separations in several
nonionic surfactant-water mixtures near the lower conso-
lute point, have been made by Lang and Morgan.?’ In
particular, in a system C,,E,-H,O they determined the
coexistence curve carefully near the critical temperature
of 20.55°C, and from this they concluded that the critical
exponent $=0.361+0.02. The asymptotic region where
the power law is valid is within about 0.1°C above the
critical temperature. However, more recently, a study of
Hamano et al.? on the system C,,E5-H,0 concluded that
[ is approximately equal to 0.25 by fitting the coexistence
curve to the power law within about 0.18°C. The coex-
istence curve near the lower consolute point is, in this
case, extremely flat and is not inconsistent with the
universal 3D Ising value 8=0.325 if the temperature
range is limited to 0.02 °C above the critical temperature.

The coexistence curve for the mixture C,,Eg-H,0 is
given in Ref. 21 and exhibits a lower critical point. In the
absence of a firm evidence otherwise, we can safely as-
sume that the exponents B and y are equal to their
theoretical values $=0.325 and y=1.24 (leading to
b2=1.3594). The coexistence curve can be quite accu-
rately fitted to a power law with the choice of the critical
parameters 71,=71.02+0.01°C, C,=(3.27£0.20)%
leading to the important critical amplitude factor
g =0.134+0.008 (Fig. 1). The same analysis performed
on the data obtained by Hamano et al.? for the mixture
C,,Es-H,0 leads to g =0.19+0.01. These two values for
g are fairly smaller than that g=0.69 reported for a
molecular critical binary mixture of nitrobenzene and n-
hexane.!’

B. Correlation length and compressibility

Using the above values of g, T,, and C,, it is easy to in-
vert numerically the linear model equations in order to
obtain, for the actual values of the concentration and of
the temperature, the two linear model coordinates r and
0, which enter in the expression of £. The constraints
corresponding to the single-phase domain are —1=86
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FIG. 1. Coexistence curve for the system C,,E3-H,0. The
dots refer to data of Corti and Degiorgio (Refs. 21 and 22); the
solid line corresponds to the theoretical calculation with
T.,=71.02+0.01°C, C,=(3.271+0.20)%, and g =0.134+0.008.

=< +1and r=0. The two limits 6==11 correspond to the
coexistence curve, whereas r =0 is the coordinate of the
critical point. Putting the numerical values of r and 6 in
Eq. (16) allows the calculation of £ once the short-range
correlation length &, is known. Since at present time no
satisfactory molecular model exists for the explicit calcu-
lation of §,, we shall assume this quantity to be equal to
£,=7.5£0.2 A, the value recently deduced experimental-
ly by Dietler and Car}nell.9 Note that Corti et al.? re-
ported £,=17.5£1.5 A by using a different exponent v in
Eq. (10) in order to fit the values of the correlation length.
However, the measured values of £ along the so-called
critical isochore are similar in the two experiments. Be-
sides, since the percentage of surfactant is low (in every
case it is not greater than 5% in weight), we will assume
that the molar volume V of the off-critical samples is
equal to V_, the critical molar volume, at least as a first
approximation. The numerical values of &, inferred from
the above procedure, have been plotted versus 7, —T'in a
log-log scale in Fig. 2 for different compositions, whereas
the variations of £ versus |C—C,| are plotted in a log-
log scale in Fig. 3. In this latter case, it can be seen that
the divergence of £ predicted by the linear model
shows the correct critical exponent v/S=1.91.

The calculated values of the static compressibility
X1~ & are plotted in Fig. 4 as a function of T,—Tina
log-log scale in the same temperature domain as in Ref.
22. It is apparent that, apart from the critical composi-
tion, the plots of the compressibility versus T, — T are not
straight lines in double logarithmic units, since § is finite
along the coexistence curve (except at the critical point).
However, in a restricted range of temperature, spanning
one or two decades, these curves can be well assimilated
to straight lines. On the same figure [Fig. 4(a)] experi-
mental data obtained by Corti and Degiorgio? for off-
critical compositions are also reported. Owing to the fact
that the linear model equations of state is, in principle,
valid only very close to the critical point r =0, whereas it
has been effectively applied quite far from it both in tem-
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FIG. 2. Correlation length of C;,E3-H,0 as a function of the
distance in temperature from the coexistence curve 7, —T. The
dash-dotted line corresponds to a theoretical calculation at
C=C,, and to Dietler and Cannell data (Ref. 9). The dashed
line refers to the data of Corti er al. (Refs. 21 and 22). The solid
lines with circles, solid dots, squares, and triangles are theoreti-
cal calculations corresponding, respectively, to concentrations
of 0.5%, 1.0%, 2.0%, and 2.5%. The values of the parameters
are given in Fig. 1 and §,=7.5 A.
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FIG. 3. Calculated values of the correlation length £ along
the coexistence curve for the same system and the same parame-
ters as in Fig. 2. The dashed curve is for C < C,, whereas the
solid line is for C > C..
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FIG. 4. Compressibility xr of C;E3-H,0 as a function of
the distance in temperature from the coexistence curve T, —T.
The solid lines correspond to the theoretical calculations with
the values of the parameters given in Fig. 1. In (a) the dots refer
to the data of Corti and Degiorgio (Refs. 21 and 22) and the tri-
angles to the data of Dietler and Cannel. In (b) the solid lines
with circles and solid dots correspond, respectively, to theoreti-
cal calculations at C=3.7% and C =4.1%, whereas the dashed
line is the theoretical result at C=C,.
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perature and composition, the overall agreement between
the experiments and the theory is good. The value of the
apparent critical exponent y*=0.92 given by Corti
et al.*"*2 is close to the one that is obtained by fitting &
versus T, —T to a power law in a restricted temperature
domain, i.e., y*=0.9. One has to remember, however,
that this pseudoexponent y* has no physical meaning in
the frame of the linear model equation of state, since the
compressibility diverges only along paths passing
through the critical point, which is not the case for off-
critical isochores.

The same calculation has been performed on Dietler
and Cannell’ data using the same value of g. Indeed
these authors gave an estimate of the absolute error
which can be expected on the determination of the criti-
cal composition. In the case of the mixture C,E3-H,O
they obtain C, =(3.9%0.2) wt. %; therefore, we have cal-
culated § and yx; for three compositions, 3.9, 4.1, and
3.7%. The corresponding numerical results for y ; versus
T, —T are plotted in log-log units in Fig. 4(b). In a large
temperature domain, the behavior of y; versus T, —T
can be well approximated by a power law with an ap-
parent exponent y*=1.2 for the two off-critical samples.
This value is close to 1.24, but definitely lower and out-
side the experimental error of ¥, which is usually of the
order of 1 or 2%. These results show that the value of
the index y is extremely sensitive to the criticality of the
sample.

The question that arises now is why the correct result,
i.e., ¥ =1.24 has always been obtained in regular critical
binary mixtures where the critical composition is close to
that of the symmetrical model, i.e., 50%. One can as-
sume as a good approximation that the experimental ab-
solute accuracy on the critical composition cannot be
significantly better than 0.2%; in this case, if we take the
amplitude g =0.134, corresponding to a flat coexistence
curve, we obtain, in a large temperature domain, an ap-
parent exponent y*=1.23. On the other hand, if we use
the value of the amplitude g =0.60, which corresponds to
the usual shape of the coexistence curve for this type of
mixture,’ the apparent value y*=1.23 is obtained even
for an absolute error on the critical composition of 1%, a
value significantly larger than the usual experimental er-
ror of 0.2%. This gives a plausible reason why correct
values of the indices ¥ and v have always been obtained
in regular critical binary mixtures. This fact is illustrated
in Fig. 5 for the correlation length and the compressibili-
ty.

C. Order-parameter relaxation rate

Once the long-range correlation length is known, it is
possible to calculate the order-parameter relaxation rate
I'=Tz+TI,. from Egs. (2) and (3). These equations in-
volve both the shear viscosity of the mixture and Debye
cutoff wave number q,. The kinematic viscosity relative
to that of water of C,,Ez-H,O solutions is given in Ref.
21. Using the viscosity data for pure water as a function
of temperature,?’ and assuming as a first approximation
that the density of the mixture is that of water at the
same temperature, and since the concentration of the am-
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phiphile in the solution is always small, we can deduce
the shear viscosity for the critical and off-critical mix-
tures as a function of temperature and composition. We
can then easily calculate the critical part ", of the relaxa-
tion rate I" from Eq. (3).

On the other hand, the background part I'y of the re-
laxation rate depends not only on the viscosity but also
on the Debye cutoff g;,. As in the case of the short-range
correlation length £, no satisfactory theoretical expres-
sion in terms of molecular quantities is known at the
present time for q,. Therefore, we shall use the same
physical argument as in our previous work on critical ter-
nary microemulsions.!> We assume as a crude estimate
that the amphiphile micelles behave like hard spheres,
the Debye cutoff wave number g, being equal to the in-
verse of the minimal distance between the centers of mass
of the particles. Assuming that the micelles behave as
quasimonodispersed spherical droplets, interacting via a
hard-sphere intermolecular potential, we may put
qp=1/2Ry, Ry being the hydrodynamic radius of the
particles. The numerical value of Ry has been deduced
by many authors from various techniques. Nilsson
et al.?* reported that R;; =31 A, Brown et al.?’ gave 29
A, whereas Corti and Degiorgio?"? obtain 34 A. We
shall use this last value since it seems to be slightly
dependent of the physical nature of the sample which has

Compressibility (arb. units)
S

10

2
10

10

Correlation length (arb. units)

I 1o

FIG. 5. Calculated correlation length &, (a) and the compres-
sibility yr, (b) as a function of the distance from the coexistence
curve T,—T for an hypothetical symmetrical mixture
(C.=0.50) at a concentration of 0.51. The solid lines refer to
g =0.134, the dashed one to g =0.6.
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been studied. Then, using Eq. (2), the calculation of the
background part I'p of the relaxation rate is straightfor-
ward. The total relaxation rate I'=I"g+ T, is plotted as
a function of T,—T on a log-log scale and for different
compositions in Fig. 6. The most interesting feature of
this simulation performed at a ¢ value of 2X10° cm™!
corresponding to a 90° light-beating spectroscopy experi-
ment or to a small-angle neutron-scattering (SANS) ex-
periment, is that in the critical regime x > 1, the calculat-
ed value of the ratio I' /T, is approximately a constant,
independent of the temperature and of the concentration
of the sample, and is equal to 1.10+0.02. This result
very well explains why Corti and Degiorgio?"'?? have
been compelled to introduce a multiplicative ad hoc
coefficient h=1.1 in the definition of the diffusion
coefficient D. Indeed, this phenomenological constant A
accounts effectively for the background effects of the
transport coefficients which have been neglected in the
solution of the mode-coupling equations used in Refs. 21
and 22.

In order to show even more vividly the very strong
influence of the dynamical background in supramolecular
systems, let us consider now the experimental results of
Hamano et al.? on the critical binary mixtures of C,E;
and water. These authors have compared the experimen-
tal value of the reduced relaxation rate T'* and the
theoretical prediction of the mode-coupling theory I'}.
The difference between these two quantities is large, rang-
ing from 30% in the critical regime x > 1, up to 50% in
the near hydrodynamic regime x <1. We can account
quantitatively for this difference by introducing back-
ground effects. Since the relaxation rate is T=I;+T,
when passing to reduced quantities it is easy to obtain
Ir*/r}=1+T3/T?. From the numerical values of the
ratio I'* /T"Y deduced from Ref. 2, we get an experimen-
tal determination of the ratio I'y /I'}, which in turn can
be evaluated theoretically by combining Egs. (3) and (8),

0.01 0.1 I T,-T(CO 10

FIG. 6. Calculated total relaxation rate I" as a function of
T,—T for C=C, and various off-critical concentrations. The
dash-dotted line corresponds to C=C,, the dashed line to
C=1.0%, the solid dots to C=2.0%, the triangles to 2.5%,
and the circles to 5.0%.
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leading to

*

r 2
5 —0.675- 4 XU¥xD)
c qdp K (x)

(18)

where the multiplicative term (g, &)y has been neglected
since it is always of the order of unity in the practical
domain of interest. For a given value of the momentum
transfer g, and provided that ¢, is a smooth function of
the temperature, Eq. (18) shows that 'y /I"} is a constant
in the critical regime since here K (x) varies as x3, in
agreement with the experimental data. Furthermore, a
double-log plot of I'} /T* versus x(1+x2)/K(x) should
be straight line of slope 1.0 both in the critical and in the
hydrodynamic regime. This is indeed the case for
x>0.2, as it can be seen in Fig. 7. Then assuming
g=2X10° cm™!, we calculate g,=4.10° cm™!. This
value is very low compared to those of the order of 10’
cm ™!, which have been obtained in molecular critical
binary mixtures.!® If we calculate the corresponding hy-
drodynamic radius of the micelles using 1/q, =2Ry, we
get 2R, =250 A. This theoretical determination of the
diameter of the C,,E s-water micelles leads to a numerical
result which is fairly larger than the one 2Ry =68 A ob-
tained for the system C,,E3-H,0. However, this numeri-
cal value of the diameter of C,E s-water micelles is in ex-
cellent quantitative agreement with an experimental
determination by Nilsson et al. 24 using NMR spectrosco-
py, namely 2R,;=200 A at low amphiphile concentra-
tion.

Let us now discuss the results that can be obtained
from the linear model equations of state in an extreme
case. We have indeed calculated the reduced diffusion
coefficient D*=D%/T for C,E4-H,0 off-critical solu-
tions corresponding to Brown et al.?* experiments re-
ported recently. Although the definition of the shear
viscosity entering in D* is the one of the solvent in the
usual Stokes-Einstein formula for the diffusion coefficient,
whereas it is that of the solution divided by R =1.027 in

Ll | | I
1 2 3 4 5 6
x(1+x2) / K(x)

FIG. 7. The ratio I'}/I'} as a function of the variable
x(1+x%)/K(x) in the range starting from 8 /3, for the system
C,Es-H,0. The solid lines are the theoretical result, whereas
the dots refer to the data of Hamano et al. (Ref. 2).
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the mode-coupling theory, an estimate of D* is
D*=kg/(6mf), depending only on the correlation
length. The simulations that have been performed corre-
spond to points in the phase diagram which are extreme-
ly far from the critical one in the sense of the coordinate r
of the linear model equation of state. To give an idea,
r=3X10"° for a solution at the critical composition
C.=3%, 10 mK far from T,, whereas it is equal to 0.1
for a sample of concentration 5% and at room tempera-
ture T, —T=50 K. Our numerical results are plotted in
Fig. 8 where they are compared to the experimental ones.
We obtain a good quantitative agreement for the sample
at a concentration of 2%, whereas the agreement is quali-
tative in the case of a concentration of 5%. Therefore,
we can assert that the linear model equations of state pro-
vide approximate but still meaningful values for the
diffusion coefficient even very far from the critical point.

IV. CONCLUSION

The main conclusions of our analysis based on the data
published in the literature are the following.

(a) As far as static critical phenomena are concerned,
the determination of the critical indices are subject to
large errors coming from the following sources. Owing
to the flatness of the coexistence curve and consequently
the smallness of the critical amplitude g, the tolerance for
determining the critical concentration C, is much smaller
than for the ordinary critical mixtures of molecular
liquids. Take, for example, the case of C,,E¢-H,0. Be-
cause of the skewness of the coexistence curve the critical
concentration is at a very low value of the amphiphile
concentration (around 3.2%) and the accuracy of C, has
to be better than 0.2% from the actual critical concentra-
tion in order that Eq. (10) be valid. Any deviation from
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FIG. 8. Reduced diffusion coefficient D* as a function of
temperature for the mixture C,E3-H,0. (a) refers to C =0.02
and (b) to C=0.05. The solid lines are theoretical results,
whereas the solid dots and the circles are experimental data
from Brown et al. (Ref. 25), respectively, deduced from a dy-
namic light-scattering experiment and self-diffusion measure-
ments.
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the critical isochore leads to the correlation length &,
which is given by Eq. (16), which when incorrectly ana-
lyzed in terms of a power-law behavior, such as Eq. (10),
would lead to an apparently lower critical exponent. The
added difficulty is that the turbidity of critical nonionic
micellar solutions is quite high and the multiple-
scattering corrections in the intensity measurements are
significant. The analysis of the data without multiple-
scattering corrections tends to lead to apparently lower
indices ¥ and v. The combined effect of the two sources
of error tends to reinforce each other. In the case of an
AOT-water-decane microemulsion, the problem is less
severe because the critical volume fraction of the droplet
is higher, around 10%, and then the margin of error can
be larger. In this case also, fortunately, the index of re-
fraction matching of the droplets to the oil is good and
multiple scattering is very small.'?

(b) For the dynamic critical phenomena, the discrepan-
cy between the observed order-parameter relaxation rate
I' and the dynamic scaling result of the mode-coupling
theory can be traced to the neglect of the background
effect in the analysis of the dynamic light-scattering data.
The central conclusion of our analysis is that the crucial
parameter g, can be put equal to the inverse of the aver-
age hydrodynamic diameter of the micelles. Since in cer-
tain cases like C|,E5-H,O the micelles are quite large, the
numerical value of g, turns out to be small. Equation (8)
then predicts that the background term is very large (as
much as 30% of the decay rate in the critical regime) and
that cannot be neglected. When the background effect is
properly taken into account, the mode-coupling theory
fits quite well the experimental results.

The unusual feature of the critical phenomena in
supramolecular systems, such as micellar solutions or mi-
croemulsions, is the fact that the constituent particles in
the systems, the fluctuations of which we are studying,
are much larger compared to the solvent molecules. This
leads to two observable phenomena which are absent in
the critical phenomena of simple atomic or molecular
liquids. First, since the correlation length has a lower
bound which is the diameter of the aggregates, the criti-
cal phenomena we are describing in terms of power-law
behavior would break down once the correlation length
falls below the size of the aggregate. Thus there is a rath-
er abrupt crossover phenomenon from critical to noncrit-
ical behavior at a certain distance from the critical point.
In the microemulsion case, we have found such a cross-
over phenomenon at a temperature which is roughly
20°C away from the critical point.!> The second point
concerns the polydispersity of the aggregates, which is a
natural consequence of the fact that the surfactant mole-
cules in the micelles are in chemical equilibrium with the
free surfactant monomers in the solution.?® It has been
shown by Blankschtein et al.?’ that the polydispersity of
the aggregates and the asymmetry between molecular
sizes of the solute and the solvent are the source of ob-
served skewness of the coexistence curve. This fact has
the consequence that the critical concentration is low for
the nonionic micellar solution which directly leads to the
difficulty we pointed out in (a). Thus it is fair to conclude
that with the proper understanding of these unusual
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features, the study of critical phenomena of supramolecu-
lar solutions appears to have added novelty and interest
of its own.
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