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Ultrahigh-pressure generation using light-ion beams
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Using a simple analytical model, we examined the process of ultrahigh-pressure generation using
ion-beam-driven flyers to impact on a stationary sample. The results suggested that pressures in ex-

cess of 5 Mbars can be attained in materials of medium densities even for a beam power density of
10" W/cm that is readily available with existing machines. This, together with the mm-size diame-
ter of the ion beam on target and the lack of a high-temperature plasma corona, renders light-ion
beams potentially a most powerful tool for laboratory high-pressure research.

Research at high pressure is not only of fundamental
interest in condensed-matter physics, but also of great
importance to the study of geophysics and planetary sci-
ence, as well as inertial confinement fusion. Static pres-
sures up to -5 Mbars can be achieved in diamond-anvil
cells. Alternatively, dynamic pressures of similar magni-
tudes can be attained in impact experiments using high
explosives or gas guns. Until recently, higher pressures
could only be produced in nuclear explosions. The ad-
vent of high-power lasers has led to the production of
shock waves with pressures in excess of 5 Mbars via
laser-driven ablation of solids, providing a unique lab-
oratory access to the ultrahigh-pressure regime. On the
other hand, the use of light-ion beams to generate shocks
has also been well recognized and explored for the im-
plusion of inertial confinement fusion targets. The clas-
sical energy deposition process of light ions in solids
avoids many of the deleterious effects associated with
laser-induced parametric instabilities, while the lack of a
high-temperature (-keV) plasma corona characteristic of
laser-heated targets greatly mitigates radiative preheat,
particularly for high-Z materials. Of particular impor-
tance to high-pressure studies, the inherent large irradia-
tion area ( -mm size) and uniformity of pressure genera-
tion render light-ion beams an attractive tool for produc-
ing planar shock waves. Unfortunately, the focusability
of the beam also constrains the irradiance to ~10"
W/cm, resulting in a shock pressure of ~1 Mbar. ' '"
However, this pressure limit stems from the use of the
thermal pressure generated by ion-energy deposition in
the absorber region of the target to drive a shock into its
payload. A much higher shock pressure can be achieved
by adopting the well-known Ayer-impact technique, '

whereby the expansion of the absorber is used to propel
the payload, which then impacts on the sample of in-
terest. In this work, through a simple analytical model,
we have explored and illustrated the use of light-ion
beams for Ayer accelerations. With proper target designs,
pressures in access of 5 Mbars can be readily attained
with existing machines thus making light-ion beams a vi-
able means for research in the ultrahigh-pressure regime.

An earlier model, which treated the expansion of a uni-
form target, ' was extended to the more general case of a
nonuniform target comprising an external tamper, an
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FICs. 1. Schematics of an ion-beam target. The coordinates
correspond to initial conditions.

internal absorber, and a payload (Fig. l). The beam ener-

gy was assumed to be uniformly and completely deposit-
ed in the tamper and internal absorber. The subsequent
expansions of these heated regions were such that the
center-of-mass surface of the target remained at rest.
This greatly simplified the model and appeared to be a
reasonable approximation as indicated by hydrodynamic
simulations. ' ' The velocity profiles in the tamper and
internal absorber were assumed to be linear, although the
slope of each profile could be different and could vary
with time (Fig. 2). For relatively long times, the slopes
would become the same in both regions, ' ' while for
short times they were functions of the absorbed energy
per unit mass. ' In the following calculation, we have
taken the same linear velocity profile in the tamper and
the internal absorber.

The dynamics of the payload is more complex. The
thermal pressure generated in the internal absorber will
drive a shock wave into the payload. The shocked ma-
terial is accelerated and compressed. Both the pressure
and the particle velocity are continuous across the
absorber-payload interface. The shock will continue to
propagate until it reaches the free surface of the payload,
where a rarefaction wave wi11 be produced. For a
suSciently thick payload, the shock transit time is of the
order of the pulse duration of the ion beam and the effect
of the rarefaction wave is not considered. This represents
the well-studied shock regime in high-pressure generation
by ion beams. For a thin payload, the rarefaction
wave plays an important role in its dynamics. When this
backward-propagating wave arrives at the interface be-
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(the center-of-mass surface) and x =xt +b, p (see Fig. 2).
Following the previous model, ' the total kinetic energy
in this region can be written as

xp+Ap mpVp
2

—,
' J pu dx=Ek +Ek,b,=(1+F), (4)

0 2

where mp is the payload mass in units of areal density
(g/cm ), Ek =

—,'mt, u~ is the kinetic energy of the pay-
load, and Ek,b, is the kinetic energy of the internal ab-
sorber. F=Ek b /Ekp can be found from the integral in
Eq. (4) tobe'

FIG. 2, Instantaneous velocity profiles in target.
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where the coefficients a and b are determined from tabu-
lated data. Since the beam must be stopped when it
reaches the payload, pzd„=R&(E„), where p„ is the
internal absorber density an d~ is its thickness. Thus we
have

p~d~ =aEo[1 (prdr/Rr)]— (3)

The dynamics of the target will then be described by an
equation of conservation of energy, which can be ob-
tained by integrating the fluid equations between x =0

tween the internal absorber and the payload, a new shock
is launched that will recompress the expanding payload.
If the payload is sufficiently thin, this process of alternat-
ing shock and rarefaction will be repeated and in a time
of the order of few acoustic transit times, the pressure
profile in the payload will relax to one in which the pres-
sure varies continuously from that at the absorber-
payload interface to zero at the free surface of the pay-
load. The particle velocity in the payload becomes uni-
form, which can be used as an accelerated flyer to impact
on a sample. In this work, we will consider only such
flyer regimes. Since the ion-energy deposition is uniform
in both the tamper and the internal absorber, the energy
E~ of the ions arriving at the absorber is' ' ' ' ' '

E„=Eo[1 (prdr/Rr)],
where Eo is the ion-beam energy, pz is the tamper densi-
ty, dr is the tamper thickness, and Rr=Rr(Eo) is the
ion range in units of areal density (g/cm ) in the tamper.
It may be noted that uniform deposition is a better ap-
proximation for heavy ion beams than for proton beams,
since the latter exhibit a Bragg peak in the energy deposi-
tion profile when the temperature of the absorber is zero.
However, as the absorber temperature increases, the
Bragg peak is removed and the approximation of uniform
deposition improves. In any case, such an approximation
yields a pessimistic estimate of the tamping effect because
the existence of a Bragg peak allows more energy to be
deposited in the internal region of the absorber. For sim-
plicity, the range in the internal absorber will be taken as
a power law,

where

0 if z~0
1 f ~0

is the Heaviside unit function and K is a parameter depen-
dent on the density profile in the internal absorber region.
This density profile is known in the limiting cases. For
large payload mass, the density in the internal absorber
tends to be uniform' and K=3. In the limit of mp —+0,
the absorber density profile becomes Gaussian' and
K=2. The value of K is not very sensitive to the density
profile of the internal absorber and any value 2 ~K ~ 3
can be chosen without affecting the results appreciably.
For the flyer acceleration process (mt, small), we have
taken K=2.

The instantaneous position xp and velocity vp of the
payload are then given by

d vp xp dUp
2

(1+F)mt, + (6)
dt 2 y —1 dt

=a W(t),

where y is the enthalpy coefficient and W(t) is the ion-
beam power density. a is the fraction of the beam energy
deposited in the region O~x ~xp given by

(1 mr/R r)[
—xt(0) /d~] if d„~xp(0)

1 —[pr[da+dr xt, (0)]/Rr) if d~ ~xp(0),

=a W, [t +(t~ t)H(t ts)], (8)——

where mT=pzdT is the tamper mass in units of areal
density (g/cm ). The initial conditions for Eq. (6) are
xp(t =0)=xt, (0) and u~(t =0)=0.

Here, we considered a square pulse of ion beam with
constant power density 8'o in a duration t~. This sample
case was chosen for the sake of simplicity. The exact
pulse shape could be used readily if such information be-
comes available for any specific ion-beam machines.
(Considering the 2-ns rise time typical of a second-
generation, 100-TW machine, a square pulse appears to
be a reasonable approximation when the pulse duration is
~ 20 ns. ) Accordingly, Eq. (6) can be integrated to yield

mp dvp(1+F) up+3xp
2 dt
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for y= —,'. Introducing the following dimensionless vari-
ables 0.5—

g=xp/xp(0),

T=t/to, to =[(1+F)mpxp(0)/2a Wo]'~

Eq. (8) can be written as

T+(Ts —T)H( T —T~ )
—

g
2

3

(10)
04—

0.3

0.2

p(T)

The dot indicates derivatives with respect to T and
T~=t~/t~. The initial conditions become g(T=0)=1
and g(T =0)=0.

A useful figure of merit for this flyer-acceleration pro-
cess is the hydrodynamic eSciency gH defined as

0.1

0
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0
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'gH =mp Up /2
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2

or, in dimensionless variables,

(12a) FIG. 3. Dimensionless pressure P(T) and dimensionless ve-
locity gi T).

QH= 1+F T (12b)

dVp
pp f71 p (13)

or, in dimensionless variables,

I'=up/S'o=k

where po is defined as

po=[mp/xp(0)]'~ [2aW /(o1+F)] ~

(14)

Detailed derivations of the equations have been de-
scribed elsewhere. ' To obtain the complete solution for
the dynamics of the payload, Eq. (11) is integrated nu-
merically. In Fig. 3, we present the results for the dimen-
sionless pressure P(T) and the dimensionless velocity
g(T). The pressure exerted on the payload reaches its
maximum value of -0.4po at t=2to. At later times, it
continues to decay, as the kinetic energy Aux required to
maintain the expansion of the tamper and internal ab-
sorber exceeds the absorbed ion-energy Aux. This max-
imum pressure also represents the limiting shock pressure
that can be induced in the payload. To increase this pres-
sure, we need to increase the ion-beam power as suggest-

It may be noted that as mp~0 'gH~O and Up ap-
proaches the sound speed. ' On the other hand, the pres-
sure exerted on the payload due to thermal expansion of
the internal absorber can be obtained from the boundary
condition

ed by Eq. (15) [increasing mp will increase to and decreas-
ing xp (0 ) will reduce a].

Obviously, the time of peak pressure also represents
the time of maximum acceleration of the payload. How-
ever, if the ion-beam power is maintained, the payload
velocity will continue to increase as the payload is pro-
pelled by the expanding internal absorber. This is the re-
gime of Ayer acceleration whereby the impact momentum
ppvp of the payload can be increased by increasing the
deposition of ion energy in the tamper and internal ab-
sorber. The solution of g(T) given in Fig. 3 corresponds
to an ion-beam duration of 10to. Also indicated in the
figure is the asymptotic value g( ~ ). The phenomenon of
impact is well known. For an impact (fiyer) velocity of
Uo, the pressure of the shock induced in both the Ayer
and the impacted sample is given by

Po" o Po[1+ Po/PI ]
1 —(p /p, ) p'[1 —(p /p )]

where po and po are, respectively, the densities of the
unshocked flyer and sample, and p& and p'& correspond to
that of the Ayer and sample at pressure p; . The solution
of this equation can be found when the Hugoniot equa-
tions for the Ayer and sample materials are known.

To elucidate on the design of flyer targets for light-ion
beams, we considered the specific example of generating
ultrahigh pressures in an impacted gold sample using a
3-MeV proton beam. Five different target configurations
have been examined. The parameters listed in Table I

TABLE I. Targets for ultrahigh-pressure generation in gold.

Target

B
C
D

Tamper (pm)

Au 31.1
Au 21
Al 44.4
Al 44.4
Al 44.4

Internal absorber (pm)

AU 31 ~ 1

CH2, 19
CH2 40.3
CH2 40.3
CH2 40.3

Payload (pm)

Au 8.2
AU 5.5
AU 2.5
Al 17.5
CQ 5.3

to (ns)

1.74
1.90
2.11
2.11
2.11
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(A E—) represent the optimal design in each case. The re-
sulting impact pressures in gold are presented in Fig. 4.
Here, we have arbitrarily taken impact to occur when the
payload has been propelled over a distance of 500 pm.
This distance is much less than the typical diameter of
ion beams on target (e.g. , —3 mm for the case in Ref. 11)
so that the one-dimensional mode1 is justified. For op-
timal use of the ion-beam energy, the calculations also as-
sumed that the pulse duration t~ of the ion beam is equal
to t;, the time required to propel the payload over 500
pm. That is, all the beam energy wi11 be deposited in the
target when the payload impacts on the sample. For the
five targets considered, t; =-10to. Accordingly, f~ =20
ns for 8 o

=10" W/cm and tz —-4 ns for 8'O =10'
W/cm [as indicated by Eq. (10), to and hence tz scale as
Wo ]. As a base reference, the calculation was first per-
formed for a uniform target (target A). Interestingly,
even for an ion-beam flux of 10" W/cm, which has been
demonstrated in existing machines, " a shock pressure of-5 Mbars can be achieved in the impacted sample.
There are three possibilities to increase this pressure: (i)
increase the hydrodynamic efficiency gH of the target, (ii)
increase the impact momentum of the payload, and (iii)
use the shock reflection via impedance mismatch. '

The hydrodynamic efficiency can be readily increased
using an external tamper' '' (Fig. 1). For target B, with
a gold tamper and a CH2 internal absorber, gH =0.23 (as
compared with an hydrodynamic efficiency of 0.17 for the
uniform target) leading to an almost twofold improve-
ment in the impact pressure.

For a given gH (or payload kinetic energy), the impact
momentum of the payload can be increased by reducing
mz. However, m~ cannot be changed arbritarily without
affecting gH. To maintain a reasonable gH, the total
mass of the target has to be reduced while reducing mz.
This can be achieved using a lighter tamper (target C),
which yielded an q~ of 0.18 only but a nearly threefold
increase in the impact pressure over the uniform target
case.

To examine the use of shock reflection as a means of
enhancing the impact pressure, we first considered alumi-
num as the payload or flyer material, while keeping the

TlME ~»)
0 10 15 20 25 30

I I I I

35 40

same tamper and internal absorber at target C, that is,
keeping the same gH and mz. The mismatch in shock
impedance between aluminum and gold caused a strong
shock reflection at the impact interface. Unfortunately,
the much lower density of the payload led to a decrease
in its impact momentum which more than offset the gain
derived from impedance mismatch (target D in Fig. 4).
One might try to reduce the loss in impact momentum
using a payload of intermediate densities such as copper
(target E in Table I). However, the resulting impact pres-
sure remained below that which could be obtained using
target C (Fig. 4).

Thus, the optimal target to be used as an ion-beam-
driven flyer would incorporate an external tamper to im-
prove hydrodynamic efficiency, and a high-density but
low-mass payload to increase impact momentum. This is
basically the configuration used in target C. For this par-
ticular example, one may try to further reduce the pay-
load mass at the expense of decreasing the hydrodynamic
efficiency (due to the low-density tamper required). This
may allow one to reach the ultimate impact pressure.
However, the mass and therefore the thickness of the
payload also govern the duration for shock loading in the
impacted sample. On impact, the reflected shock will
propagate backwards through the payload. When it
reaches the lower-density internal absorber, a rarefaction
wave is launched at the payload-absorber interface,
which then propagates into the payload and the impacted
sample, leading to shock attenuation. For the sample to
be free from such an attenuation effect, the shock loading
duration can be estimated as the round-trip acoustic tran-
sit time in the payload. In practical applications, one
might trade off pressure for shock-loading duration (see,
for example, targets A, B, and C in Table I).

As noted earlier, our. calculation assumed that impact
occurred when the payload was moved a distance of 500
pm. It is also clear that at later times, the payload veloci-
ty continues to increase towards its asymptotic value
vz( oo ) (Fig. 5) as the absorber continues to expand. One
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FIG. 4. Impact pressure in gold as a function of ion-beam
power density.
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FIG. 5. V+, as a function of time, 6+ and 5T, for target C,
and an ion-beam density of 10"W/cm .
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y =0.9&kg —3k V, , (17)

where k is the perturbation wave number, g is the ac-
celeration, and V, is the ablation velocity. The max-
imum growth rate occurs when k=2. 25X10 g/V, and
it is

y,„=0.068g/V, . (18}

To estimate V, the results from free-flow ablation is
used:

V, (cm/s)=5. 5X10 [Iz (W/cm )]

might therefore achieve even higher impact pressure by
allowing a longer duration of payload acceleration. How-
ever, an increase in this duration implies a corresponding
increase in the distance over which the payload is ac-
celerated. If this distance becomes too large, two-
dimensional effects will dominate and a one-dimensional
analysis is no longer valid. For the particular example of
target C, the dependence of the payload velocity vz on
the excursion distance 5P of the accelerated payload is
presented in Fig. 5. To justify the use of a one-
dimensional model, one needs to examine also the dis-
tance 5T over which the front surface of the external
tamper has moved during the time of acceleration of the
payload. This has been calculated for the case of target C
and the results are included in Fig. 5. In experiments, 5T
should also be limited to less than the diameter of the ion
beam on target to ensure a planar expansion of the
tamper.

In experimental applications, the stability of the ac-
celerating payload has to be considered as well. The ac-
celeration of a planar foil by ion beams as described by
the present model does not take into account the increase
in payload mass due to shortening of the ion range
and the ablation driven by thermal radiation. These
two processes compensate each other and can be neglect-
ed in the description of the payload motion. ' ' ' ' How-
ever, the ablation process must be considered in the
analysis of Rayleigh-Taylor instability. '

For an ablating plasma, the Rayleigh-Taylor growth
rate y was found to be

—1/12Z —1/12[ g /( 1 +Z )]11/24 (20)

For similar parameters, P, =55 kbars, which is much
smaller than pz. Thus, the ablation effect on the payload
motions is indeed negligible.

One other factor that can affect the performance of the
proposed ion-beam accelerated-flyer scheme is the lateral
spatial nonuniformity of the focused ion beam. Such
beam nonuniformities will give rise to spatially nonuni-
form acceleration of the flyer. Lacking detailed informa-
tion on the uniformity of actual ion beams and a two-
dimensional model, proper analysis of the problem and
the uniformity requirements could not be made. On the
other hand, it is expected that sufficient radiation
smoothing may occur in the absorber to maintain unifor-
mity in the beam-target interaction. "

To further illustrate the utility of ion-beam-driven flyer
for ultrahigh-pressure generation, we have extended our
calculation to include sample materials of various densi-
ties. For comparison purposes, we adopted the optimal
flyer-impact scheme corresponding to the case of target
C, namely, a symmetric impact with 44.4 pm aluminum
as the tamper and 40.3 pm CH2 as the internal absorber.
We again considered a 20-ns pulse of 3-MeV proton beam
with power density of 10" W/cm . The payload
thicknesses in each case are (i) Be, 33.7 114m; (ii) Ti, 10.4
1um; (iii) Cr, 6.6 pm; (iv) Cu, 5.3 pm; and (v} Ta, 2.8 pm.
Since the configuration of the tamper and internal ab-
sorber and the mass of the payload are the same as in tar-
get C, the dependence of the velocity of the accelerated
payload on time, 5p and 5T, will be identical to that
presented in Fig. 5. On the other hand, the impact
momentum will depend on the payload density. Figure 6
shows the pressures achieved in the different samples.
We have also taken impact to occur when the payload

ns. Therefore the ablation driven by thermal radiation
will be an efficient stabilization mechanism for Rayleigh-
Taylor instability.

On the other hand, the ablation pressure is

P, (Mbar)=9. 5X10 "[Iz (W/cm )]

X [ 1/12(ns)]Z1/12[( 1 +Z )/g ]11/24 (19)

where Z and 3 are the ionization state and atomic mass
number of the plasma, ~ is the pulse duration, and

Itt =o TI1 (cr=5.67X10 erg/cm sK and Ttt is the ra-
diation temperature of the internal absorber) is the
thermal radiation flux. For the targets considered here,
Ttt ~4 eV and r =20 ns. Thus V, ~6X10 cm/s. It
should be noted that this velocity estimate may be pes-
simistic since the ion-beam-driven foil acceleration
scheme described here involves tamped-flow ablation,
which is expected to yield a more efficient ablation pro-
cess than free-flow ablation.

The acceleration of the payload is given by
g =dut, /dt =pp/mt, [Eq. (13)]. For p~ =I Mbar and

mz ~5 mg, g ~2X10' cm/s. Accordingly, from Eq.
(18), y,„(2.2X10 s ' and the shortest e-folding time
~RT= y,'„&44 ns, which exceeds the pulse duration of 20

ALI ~

~ Ta

~ TfAl ~

8 t2 16 20
DENSIT Y ( g /cm )

FIG. 6. Impact pressure as a function of sample material
density for an ion-beam power density of 10" W/cm .
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has been accelerated over a distance of 500 pm but after
the end of the ion-beam pulse. As is well known in im-
pact phenomena, the impact pressure increases with the
density of the impacted sample.

In conclusion, through a simple analytical model, we
have examined and demonstrated the feasibility of
ultrahigh-pressure generation using light-ion beams for
Ayer acceleration and impact. With proper target
designs, pressures in excess of 5 Mbars can be produced
in materials with densities greater than —7 g/cm, even
at a power density of 10'' W/cm, which is attainable
with existing machines, and even when the acceleration

of the flyer (payload) is restricted to a distance of 500 pm.
This, coupled with the mm-size diameter of the ion beam
on target, and the lack of a high-temperature plasma
corona, renders light-ion beams potentially one of the
most important tools for laboratory high-pressure
research.
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