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Electronic bound states of a two-ion center immersed in high-density plasmas
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In order to evaluate the simultaneous influence of a neighboring ion located at an arbitrary dis-
tance R and of free electrons on atomic bound states in high-density plasmas (N, ~ 10" cm ') we
have suggested a transient molecule model that consists of a two-ion center surrounded by bound
and free electrons. The Dirichlet boundary condition is laid down in such a way to make the total
electrostatic potential constant over the entire molecular envelope and also to obtain the limit of
two independent ion spheres or that of one united ion sphere when R ~~ or R ~0, respectively.
A closed form has been obtained for the interaction potential between bound and free electrons at
the high-temperature limit. Energy levels and wave functions have been evaluated by diagonalizing
the total Hamiltonian in the subspace of the lowest 40 molecular levels. A possible appearance of
new spectral components and, in particular, a drastic reduction of the Stark eject are clearly shown.

I. INTRODUCTION

High-density plasmas are of major interest according
to the following recent laboratory experiments: inertial
confinement fusion with intense laser or ion beams, im-
pact on metal targets using subpicosecond laser pulses,
selective laser ionization of alkali vapors, laser excitation
of cryogenic hydrogen, and various pinch techniques. In
these plasmas the Coulomb interactions between particles
can largely exceed their thermal energy. ' Therefore the
treatment of the most important problems, such as elec-
tron transport, stopping power, equation of state, and
line broadening, relies on the knowledge of atomic struc-
tures and related interaction processes. Until now, the
ion-sphere model has been commonly used: each atom
consists of a nuclear charge Ze located at the center of a
spherical cavity with radius R o

= [3(Z k) /4m N, ]'~—
where N, is the volume-averaged electron density and k
denotes the number of bound electrons. Inside the ion
sphere the density number p, of free electrons, which en-
sure the overall electrical neutrality, is assumed constant
or, more precisely, calculated by means of a self-
consistent-field method. Outside the ion sphere the plas-
ma is approximately replaced by neutralizing uniform
distributions of electrons and ions. Detailed data have
been given for hydrogenlike (k =1) and heliumlike
(k =2) systems. The most useful and timely improve-
ment to be brought into the previous atomic model con-
cerns the influence of neighboring ions. Indeed, in calcu-
lating the electronic pressure or the ionization state in
dense and hot plasmas, for example, we have to distin-
guish whether the outermost atomic bound states hybri-
dize into propagating waves or molecular bound states.
In line-broadening theory for moderate-density plasmas,
it has been shown that the nearest-neighbor ion effect
occurs principally through the dipolar and quadrupolar
term of the multipolar expansion. In particular, the qua-

drupolar term allows one to explain the strong asym-
metry ' observed in hydrogenlike lines and also to fore-
see a large change" in some heliumlike profiles. To ex-
plain effects occurring in very far line wings, such as sa-
tellite intensity and phape, ' ' the previous multipolar ex-
pansion must be replaced by an exact molecular calcula-
tion. In high-density plasmas this molecular calculation
is imperative because the mean distance between ions and
the atomic radii of interest are often of the same order of
magnitude.

In this paper we are interested in electronic bound
states of a two-ion center which consists of a few number
k of bound electrons and two ions separated by an arbi-
trary internuclear distance R and embedded in dense
plasmas. Principally, we shall consider the numbers of
charge, electron temperatures, and densities of respective
orders of magnitude of 10 and 100 eV and 10 cm
which characterize the most dense zone of plasmas
currently created by focusing high-power laser beams on
planar or spherical targets.

Section II is devoted to defining the electrostatic
boundary conditions on the above-mentioned physical
system. A detailed calculation of the potential created by
a homogeneous plasma is given there too. Principal
effects of this potential on electronic bound states of a
two-ion center and their incidence on line-broadening as-
pect are considered in Sec. III.

II. FREE-ELECTRON POTENTIAL IN PLASMA

We consider a molecular volume ~ which encloses k
bound electrons and many ions with charge number Z,
(i =1,2, . . . ), fixed in a given spatial configuration. In
addition, this physical system involves Z,s=+,.Z, —k
free electrons ensuring overall electrical neutrality. Out-
side the molecular volume, we assume that the plasma
could be replaced by neutralizing uniform distributions
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due to electrons and ions which lead to a constant elec-
trostatic potential conventionally taken to be zero.
Denoting by —e the electron elementary charge and by

p, the number density of free electrons, the electrostatic
potential V, due to the latter satisfies the Poisson equa-
tion:

6 V, =4mep, .

+~+cI(-on (-

Io~(~&e)
0

Z

2

(on(2&Q)
R/p

Here the Laplacian 5 and the number density p, ought to
be expressed in a suitable coordinate system according to
the symmetry of ionic configuration.

In spherical symmetry, valid for ionic monocenter sys-
tems, we recall that the electrostatic potential V, is
given by

Ro
V, (r) = 4rre ——f r'+ f r'p, (r')dr',

T 0
(2)

Z ge
V, (RO)+ =0 .

0
(3)

Here, Z,~e is the effective ionic central charge taking into
account the screening effect due to bound electrons.

By using Eq. (2) and introducing the volume-averaged
electron density:

3 Ro
N, = f p, (r)r dr, (4)

0

and the mean distance between electrons defined by
4mN, r, l3 =.1, the boundary condition, Eq. (3), is
equivalent to

R0=
1/33Z,~ ]/3

4~N,
~e Z efF (5)

We note that this boundary condition coincides with the
electrical neutrality one: 4~N, /3=Z, &. This is not true
for a more general ionic configuration. In the case of a
uniform electron gas, p, (r) =N„Eq. (2) can be written as

V, (r)=— (3RD r) . — (6)
7e

In the right-hand side of Eq. (6), the first term
—3eRO/2r, = —3Z,s e12r, is the ionization potential
lowering due to electron pressure, while the second term
er /2r, gives rise to spectral line shifts.

where the "ionic radius" R0 is defined by the Dirichlet
boundary condition:

FIG. 1. Relative position of a bound electron and two fixed
ions in a two-ion center.

the Poisson equation, Eq. (1), becomes

(A, —1) + (1 —p ) V, (i,,p)
dp dp

=meR (A, —p )p, (A.,p) .

In order to specify the Dirichlet boundary condition for
this equation, we suggest choosing as a molecular en-
velope, the ionic equipotential surface which satisfies the
electrical neutrality condition. This choice is probably
the most physical one because it refers directly to the ion-
ization potential lowering and also, as it will be shown
later, it allows us to retrieve the suitable limit cases,
namely, the case of two separated independent ion
spheres for R ~ ~ and that of the united doubly charged
ion sphere for R —+O.

For a homonuclear system (Z, =Zz =Z) for example,
the ionic potential is

V, =Ze + =V,
p

Z,s= fdc. p, (A, p)=N, ~. , (10)

where V, =4Ze/R is the potential value at the singular
point O.

The molecular envelope is then defined by

A, =A.(u, p)= —,'[u+(u +4@ )' ],
where the parameter u = V, /V, is smaller or larger than
unity according to whether the equipotential surface en-
closes two separated volumes or a united one, respective-
ly. The value of u is deduced from the electrical neutrali-
ty condition:

A. Molecular model for transient two-ion centers
in plasmas

In the following, we consider the more general case of
two ionic centers with charge number Z& and Z2,
separated by a given distance R (Fig. 1). In terms of the
elliptic coordinates:

T] +Tp E[l,~[,
r&

—r2p= E[—1, +1],

where we recall that Z,& and N, are the effective total ion
charge and the volume-averaged electron density, respec-
tively. In terms of the elliptic coordinates, we note that
the elementary volume is

dc =2'(R/2) (A. —p )dp, dA, ,

and that the integration domain is defined by

RE [1,l(u, p)],
pC[ —1, 1] for u )1,
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and

pE[ —1, —(1—u)' ]U[(1—u)'~, 1] for u &1.

The molecule volume is then

3
47T RQ I( )
3 2

where, for u ~1:

1 7uI(u)= 2u + —1
4u2

4 9u (1+u /4)' +1
ln

~ 2 32 ( 1+~2/4)1/2
3, +O

Su4
(12)

and for u ~1:

u + (1+&/2 —»'/8 —»'/16) ——(1+u'/4)' (1 —7u /8)+ ln
2Q 0 1+(1—u)'i —u/2

3 2

4 4 8
1+ + +O(u ) (13)

Taking into account Eqs. (10) and (11), the suitable pa-
rameter u for the molecular envelope, Eq. (9), is given by

u I(u)=q

where

2p~ Z1/3
ea

(14)

(15)

=0.858 681 .

As we are interested in spectra of given k bound elec-
trons, the effective charge number to be used in Eq. (15) is

Z,&=2Z —k or Z,&=2(Z —k) according to q &qo or
q (qo, respectively.

In the following, we often use q /u (q) instead of
u =u (q). Numerical calculations show that Eq. (14) can
be expressed in a more explicit form as

q
u (q)

1 2 q (2 q)
22/3 4

1+ +

q +0.07
for q)qo .

( +0.20)

for q (qo
(17)

Equations (8)—(17) can be generalized to systems with
Z, WZ2 without any extra difficulty. '

B. Free-electron potential inside the molecular volume

Cxoing back to the Poisson equation, Eq. (7), we note
that the number density of free electrons p, (A, ,p) is gen-

Since r, Z,'~~ and R/2 are the ion-sphere radius and half
the internuclear distance, respectively, we can see that a
large value of q corresponds to an important hybridiza-
tion of atomic wave functions into molecular ones. Also,
we note that its smallest value for having a continuous
volume which encloses the two ions is obtained with
u = 1, i.e., according to Eqs. (13) and (14):

1/3

qo= [I(1)]' = — 1 — + ln(&5+2)
2 16 32

erally given by suitable statistics involving the local tem-
perature in plasmas and the local total electrostatic po-
tential which results from ions, free and bound electrons.
Therefore Eq. (7) is a nonlinear differential equation,
closely coupled to the Schrodinger equation for bound
electrons. To solve it, we have to use self-consistent-field
methods which are expensive in computational time,
especially when we are concerned with nonsepar able
coordinates. In this paper, we propose to consider a uni-
form electron gas (UEG), i.e. , to use Eq. (7) with p, (A, , p)
replaced by N, . This study is useful for the following
three reasons.

Firstly, the UEG model is valid for very-high-
temperature plasmas ' where the kinetic energy of free
electrons is larger than their potential energy. It is also
valid for current temperatures in laser plasmas when we
are interested in describing highly excited atomic
states. ' For T„=500eV for example, curve (a) in Fig. 1

of Ref. 3 shows that only atomic states with n =1,2 are
located in the internal region with a large density gra-
dient and really require an accurate self-consistent-field
calculation.

Secondly, with the assumption p, (A, ,p) =N„, the elec-
trostatic potential V, can be obtained in a closed form
which shows tendencies of atomic parameters varying
with N, and R. In particular, as it can be seen in Eq.
(19), this closed form allows us to retrieve the appropriate
ion-sphere models for R ~0 and R -~ ~.

Thirdly, as already pointed out in Ref. 3, the interac-
tion potential and atomic data deduced from the UEG
model can serve as suitable initial conditions in iterative
processes occurring in a more complete self-consistent-
field calculation.

By replacing p, (X,p, ) by N„Eq. (7) becomes

(A, —1) + (1 —
p, ) V, =~eR N, (X —p )

Bp p

3eR z zp
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The invariance of this equation with respect to changing
p into —p shows that the potential depends on lpl and
not p. In addition, we can easily verify that
(eR /8r, )(A, +p ) is a particular solution of Eq. (18).
Therefore the general solution can be written as

g2 $2+ 2

v, (k, lp ) = I.(A,—, I@I), (19)
4r,

where L(A, , I@I) is solution of the Laplace equation, i.e.,
Eq. (18) with the right-hand-side member replaced by
zero. Now, to complete the definition of V, we have to
introduce the Dirichlet boundary condition. As already
pointed out at the beginning of Sec. II, the latter turns
into canceling the total electrostatic potential:

2cZ~g
VT(l, , lp ) =

Eqs. (22) and (19), we have L(k, Ip, l) = —,'q + —,
' and

V, = — [3[(2Z —k)'i r, ] —
—,'R (A, +p —1)I, (24)

respectively. Here, we recognize again the potential in
the ion-sphere model, Eq. (6), where, however, we have to
take

R o
= r, (2Z —k)'~

corresponding to a shielded double charge Z,f[=2Z —k
and

r =
—,'R (A, +p —1) .

Between the limiting behaviors defined by Eqs. (23) and
(24), we can achieve the electrostatic potential due to free
electrons by writing the Laplace solution in Eq. (19) as

q E4
L(A, ,p)=q —+ + g a„P„(A,)P„(Ip ), (25)

2q n( ~0)
k +1 A, +p

q

(20)

where coefficients a„are determined by means of the Dir-
ichlet boundary condition, namely, according to Eq. (21):

a„P„[iL(u,p, ) ]P„(lpl )

n( ~0j
over the entire molecular envelope. We recall that
the latter and the parameter q are defined by Eqs. (9)
and (15), respectively. We verify easily that
Vr(A. (u, p), lpl ) =0 is equivalent to

0
1(k(u, p), Ipl )=q —+

2q

+p 1+ (21)u+(u'+4@')'

Since the Laplace solution L(A, , lp ) can be expanded as a
linear combination of Legendre polynomial products
P„(k)P„(lp,l), it is useful to write the limiting behaviors
of the second member in Eq. (21) as

I.(t(u), I@I )

3 2'"
A(u, p)I@I+ q +o(q )

4

3 2 1 2—
q + —+,P, (A(u, p))P2(p)+0 1

2 2 3q q

=p 1+ (26)
u+(u +4@~)'i2

» Eqs. (25) and (26) we recall that u depends on the hy-
bridization parameter q according to the electrical neu-
trality condition, Eq. (14) or (17). Besides, we note that
the number of terms retained in the sum g„I oI must be
large enough to ensure the Dirichlet condition accurately
over the entire molecular envelope [i.e. , for all Ipl in Eq.
(26)] and also to include the most significant multipolar
interactions. The coefficients a„with n ~N have been
calculated by writing Eq. (26) for N+1 suitably chosen
values of Ipl and by solving the subsequent linear equa-
tion system. It is found that N =4 is a convenient choice.
Indeed, as shown in Fig. 2, only a„with n ~ 3 are numeri-
cally appreciable. We note that a0= —,

' for q))q0 and
a

&

= 1 for q ((q0 in good agreement with limiting expan-
sions in Eq. (22).

1.0

(22)

(23)

For q =2 ~ (Z —Ic)'~ r, /R &&qo, by approximating
L(A, , pl) to El@I+3.2' q /4, Eq. (19) becomes

2

V = — e 3[r (Z —k)' ]
R(~ —lpl

e
2 3 e 2

Q 5—

This agrees with Eq. (6) if Ro and r are taken to be
r, (Z —k)' and R(A, —Ipl/2)= mi (rn&, rz) respectively.
Here, mi (r, n, rz) denotes the smallest of the distances be-
tween a given bound-electron position and the two ionic
centers. So, our model leads to independent ion-sphere
potentials centered at one of the ionic centers when the
internuclear distance is large enough.

Likewise, for q =2(2Z —k)'~ r, /R ))qo, according to

-Q-5
0

FIG. 2. Expansion coefficients of the Laplace potential as
functions of the hybridization parameter q=2r, Z,'fr /R [see
Eqs. (15), (19), and (26) in the text].
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FIG. 3. (a) Meridian lines of equipotential surfaces relative to
the total potential Vr with q

=2'~' [see Eq. (20) in the text].
The assigned letters a, b, c, d, e, f, g, h, and i correspond, re-
spectively, to the values 3.9, 1.7, 0.96, 0.58, 0.35, 0.2, 0.09, 0.0,
and —0.07 for the total potential in units of 2eZ,~/R. We note
that the envelope line (dashed curve) coincides accurately with
the zero potential meridian line (curve h). (b) Binding potential
due to ions only V; ( ———) and to ions and free electrons
V; + V, ( ) measured in units of 2eZ, &/R (Z = 10,
Z,&=2Z —1=19, q=2', N, =2X10 cm ). We point out
that midway between the nuclei the barrier potential is positive
wherever the total potential is negative [region limited by curve
h and enclosing curve i in Fig. 3(a)).

To give a general idea about plasma effects on electron-
ic bound states, in Figs. 3(a) and 4(a) we show meridian
lines of equipotential surfaces relative to the total electro-
static potential, Eq. (20). We can see that the latter is
zero over the boundary line, as it should be.

With q =2'~, i.e., R =2r, Z', Fig. 3(a) corresponds
approximately to a configuration where two ion spheres
with radius r, Z' are in contact. We note that equipo-
tential surfaces with positive potential are nearly spheri-
cal and enclose only one of the two ionic sites. In addi-
tion, midway between the latter there is a wide region
where negative values of the total potential show that the
ions are indeed completely screened by free electrons.
Therefore the two ions with their surrounding electrons
are actually separated from each other and can be treated
in the framework of previous monocenter theories. '

This idea is reinforced by examining Fig. 3(b), which
clearly shows a positive potential barrier in the middle of
the internuclear axis. For the purpose of comparison, the
binding potential due to the ions only is given in the same
figure. We note that one of the free-electron effects con-
sists of an important continuum lowering and points to a
drastic reduction of bound-state number.

With q =2, i.e., R = 1.26r, Z', Figs. 4(a) and 4(b) cor-
respond to configurations where the two ion spheres start
to penetrate each other. In Fig. 4(a) we note that most of

C
~ -1.0
C

-1.5
0.0 05

Z/R

the equipotential surfaces have no spherical symmetry
and enclose the two ions together. Furthermore, the
latter are not completely screened from each other by
free electrons owing to the disappearance of the negative
potential region. In addition to presenting the same con-
tinuum lowering as in Fig. 3(b), Fig. 4(b) shows a poten-
tial barrier for negative potential values. This fact and
the two-ion center behavior of equipotential surfaces in
Fig. 4(a) point to a hybridization of atomic wave func-
tions towards molecular ones.

III. ELECTRONIC BOUND STATES
OF A TWO-ION CENTER IMMERSED IN PLASMAS
This section is devoted to the study of electronic bound

states, as quantum-mechanical solutions of the wave
equation:

(H —e V, )
~ lt &

= IV
~ q &, (27)

where V, is the electrostatic potential due to free elec-
trons, Eq. (19), and W denotes the electronic energy, i.e.,
the difference between the total molecular energy and the
nuclear Coulomb term Z, Z2e /R. In Eq. (27) Hc is the
Hamiltonian of the diatomic molecule free from plasma
effects. For one-bound-electron systems we have

Zl Z2H=~ —e' + (28)0
2&2 7] P2

or, in terms of elliptic coordinates:

FIG. 4. (a) Meridian lines of equipotential surfaces relative to
the total potential Vr with q =2 [see Eq. (20) in the text]. The
assigned letters a, b, c, d, e, f, g, and h correspond, respectively,
to the values 2.4, 1.1, 0.6, 0.37, 0.22, 0.13, 0.06, and 0.0 for the
total potential in units of 2eZ, &/R. (b) Binding potential due to
ions only V; ( ———) and to ions and free electrons V; + V,
( ) measured in units of 2eZ, ~/R (Z = 10,
Z,&=2Z —1=19,q=2, N, =2X10 cm ). We point out that
midway between the nuclei the barrier potential is clearly below
the ionization limit.
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2ape 2

Hp=-
R 2(g& p2)

(3 1+ (1—p, )
—+

~p ~p 1 —p

R
(Z, —Z2)p

Qp
(29)

According to the discussion given about Figs. 3(a) and
3(b) we know that our present model leads to new aspects
only for q ~2', i.e., when the two ionic sites are en-
closed in a continuous molecular volume. Therefore it is
reasonable to consider the bound electron in its molecular
states instead of the atomic ones, more or less perturbed
by the nearest-neighbor ion. Owing to the interaction po-
tential —e V„Eq. (27) is not separable, even in the elliptic
coordinate system (k,p, 4). In this paper, we suggest us-
ing the truncated diagonalization method where the wave
functions 5(A.,p, 4) are expanded in terms of the eigen-
functions of Ho, Eq. (28) or (29):

(0 & R & 2R0 ), respectively. The relations' between
these quantum numbers are deduced from the conserva-
tion of the number of nodal surfaces of the eigenfunction
of a state as A is varied. Besides, it will be shown that the
ion field is completely screened by free electrons for
R ~ 2RO', then the spherical quantum number set (n, l, m)
will be used to characterize this asymptotic behavior.

A. General consideration on an isolated one-electron
diatomic molecule

By setting'
4(~ v +)= X»fk(~ v +) . (30)

g (A, ,p, @)=L(A. )M(p)e' (31)

Henceforth, we shall use the spherical quantum number
set (X,L, m) or the parabolic one (n&, n2, m ) (with
n, +n2+ ~m~ + 1=n ) to characterize an electronic state
of united atom (R 0) or moderately separated atom

where m is the magnetic quantum number, the
Schrodinger equation Ho ~ 1( ) = W

~ g ) separates out
into the following "inner" and "outer" coupled equa-
tions:

(1 —p') +
Bp c)p

—2kpp —p (1 —p )+C„
p2

M(p)=0, (32a)

(k' —1) +
2

k —1
+2p(a+m+1)A. —p (A. —1)—C L(A, )=0, (32b)

where C is the separation constant and

R W (R) 4Z&Z2

(Z, +Z~)-

R (ZI —Z2 )

r =R(Z, Z),1& 2

R (Zi+Z~)o+ ~m~+1=, k =(1—z)(o. +~m~+1) .
2p

C„(p,k) =Cq(o, k ), (33)

We note that M(p) and L(A. ) are square-integrable solu-
tions only if the separation constant C coincides with an
eigenvalue C (p, k ) of Eq. (32a) and an eigenvalue
Cz(o, k ) of Eq. (32b), respectively. We have then

which allows us to express electronic bound energies 8'
in terms of R, Z, , Zz, and ~m .

Vr'riting

(34a)

where PI is the associated Legendre polynomial of the
first kind and writing

L(k)=(A. —1) +(A, +1) e ~ g fI a+1 (34b)

Fqs. (32a) and (32b) turn into three-term recurrence rela-
tions for gI and f~, respectively. By using the perturba-
tion treatment at small internuclear distance we obtain
for the ground state, i.e., with the principal quantum
number of united atom N = 1:

W, oo(in a. u. ) =—(Z, +Z~)
2

1 ——zr 1 —r+ — 1 — z r—1 p' 3 16
3 5 27

1 199+30p
15 12

(35)
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TABLE I. Expansion coefficients el, (N, L, m) of the energy levels W&L (N =2; L; ~mi=0 or 1) for
short internuclear distances R [see Eq. (36) in the text].

(N, L, m) (2,0,0) (2, 1,0) (2, 1,+1)

&o

—z/6
+z/6

216—83z
243'S

(496+60p )z —177
z2'3'S

+z/30
0

—1350+ 1769z
z 2357

15+4(p ——)z

30 120

—z /60

z —2700+ 284z
60 25200

z 15—z(p ——')
60 360

where

r =R(Z, +Z2),
4ZiZ2

Z, +Z2)

p=2 exp(2r)E, (2r)

1=2 —y+ ln
21"

(y =0.577),

and for the first excited states with N =2:

0
Wxl.

(Z, +Z~)
ek(NLm )r "+O(r ), (36)

8

where N =2, L,

hami

=0 or I, and coefficients ek are given

in Table I. Equation (35) is in agreement with Brown and
Steiner's results, ' while Eq. (36) is a new one.

For large internuclear distance we can conveniently
use the asymptotic expansion in I/R already given in the
literature. ' ' ' For intermediate values of R we have
solved the above-mentioned three-term recurrence equa-
tions by means of continued-fraction calculations. The
latter are proved accurate apart from the neighborhood
of poles where we have solved Eqs. (32a) and (32b) direct-
ly by using Cooley's numerical method. ' The transition
energy between the fundamental level (lsog or 2pou)
and the lowest 18 levels is given in Tables II and III
(where the unperturbed transition energy of Ne X
Lyman-a and Ne X Lyman-P emissions, respectively, are
used as reference energy). Each transition is identified by
the upper-state Stark quantum numbers (n „n2, m ) of the
corresponding separated atom. For Z, =Zz, the letter g

TABLE II. Transition energy 8'„„~„—oooo „~ measured in a.u. from the unperturbed Lyman transition energy

Z (1—1/n')/2 with Z =10. For each internuclear distance R and each transition specified by the upper-state quantum number set
(n &, n2, m ) g or u, the value in the top line refers to an isolated two-ion center, while that in the lower line corresponds to a two-ion
center immersed in a uniform electron gas with density N, =2 X 10 ' cm . The transitions considered in this table are related to the
Stark pattern of Ne X Lyman-a line (n =2). In terms of united-atom quantum number sets (N, L, m) the lower states (000) u and g
correspond to (2po ) u and (1so.)g, respectively, while the upper states listed from the top to the bottom in Table II correspond to
(2pn ) u, (3dm ) g, (3do ) g, (4fo)u, (2so) g, (3po .

) u, respectively.

(0,0, 1)Q

(0,0, 1)g

(1,0,0)g

(1,O, 0)u

(o, 1,o)g

(0, 1,0)Q

(units of ao) 7.0
1.53

0.001 44
—0.01607

0.001 44
—0.01607
—0.063 42
—0.027 67

—0.063 42
—0.027 05

0.059 23
—0.012 90

0.059 23
—0.012 36

6.0
1.78

0.002 20
—0.014 89

0.002 20
—0.014 89

—0.086 98
—0.045 70

—0.086 98
—0.045 70

0.080 11
0.002-94

0.080 11
0.002 94

5.0
2.14

0.003 60
—0.012 74

0.003 60
—0.012 74

—0.126 70
—0.084 09
—0.126 70
—0.084 10

0.11433
0.036 44

0.11433
0.036 44

4.2
2.55

0.005 69
—0.009 77

0.005 69
—0.009 77

—0.182 33
—0.141 79

—0.182 16
—0.141 66

0.160 32
0.085 33

0.160 32
0.085 33

3 ' 8
2.82

0.007 33
—0.007 57

0.007 36
—0.007 55

—0.225 51
—0.187 04

—0.224 63
—0.186 26

0.19446
0.122 17

0.19446
0.122 17

3.4
3.15

0.009 59
—0.004 66

0.009 77
—0.004 50

—0.287 62
—0.251 82

—0.283 12
—0.247 58

0.240 73
0.172 03

0.240 74
0.172 04

3.0
3.57

0.012 48
—0.000 94

0.013 55
0.00005

—0.385 48
—0.352 69

—0.363 66
—0.331 71

0.305 65
0.241 42

0.305 69
0.241 46
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TABLE III. Same as Table II except that the considered transitions are related to the Stark pattern of Ne X Lyman-P line {n =3)
and that the Stark quantum number sets (n „n2,m ) g or u listed from the top to the bottom in Table III are respectively related to the
following united-atom quantum number sets: (3d5) g, (4f6) u, (4fsr) u, (5gn) g, (5gcr ) g, (6h cr ) u, (3pvr) u, (4dvr) g, (4dcT ) g, (5fcT )

u, (3so. ) g, (4po. ) u.

(0,0, 2) g

(0,0, 2) u

(1,0, 1) u

(1,0, 1) g

{2,0,0) g

(2,0,0) u

(0, 1, 1) u

(0, 1, 1) g

(1,1,0) g

(1,1,0) u

(0,2, 0) g

(0,2, 0) u

(units of ao) 7.0
1 ~ 53

0.007 66
—0.075 80

0.007 66
—0.075 80
—0.092 29
—0.112 51
—0.092 23
—0.112 50
—0.214 05
—0.141 17
—0.213 315
—0.140 67

0.090 80
—0.075 04

0.090 80
—0.075 03

0.006 86
—0.106 57

0.006 87
—0.106 51

0.162 66
—0.074 41

0.162 66
—0.074 38

6.0
1.78

0.011 42
—0.069 16

0.01145
—0.069 16
—0.127 36
—0.129 09
—0.126 50
—0.128 54
—0.307 13
—0.212 19
—0.297 04
—0.204 16

0.122 67
—0.055 74

0.122 67
—0.055 72

0.009 92
—0.090 77

0.009 98
—0.090 65

0.216 88
—0.047 29

0.216 88
—0.047 28

5.0
2.14

0.017 76
—0.057 58

0.018 30
—0.057 21
—0.192 44
—0.183 96
—0.181 65
—0.175 10
—0.507 74
—0.401 55
—0.419 29
—0.323 67

0.174 47
—0.003 66

0.174 51
—0.003 60

0.014 39
—0.076 84

0.015 39
—0.076 02

0.303 50
0.033 12
0.303 50
0.033 12

4.2
2.55

0.024 77
—0.044 26

0.029 46
—0.040 35
—0.309 55
—0.294 79
—0.241 08
—0.233 93
—0.872 79
—0.765 96
—0.504 73
—0.421 47

0.243 11
0.073 19
0.243 55
0.073 55
0.016 32

—0.066 43
0.024 8S

—0.059 26
0.416 4S
0.154 08
0.416 47
0.154 10

3.8
2.82

0.027 06
—0.037 80

0.040 34
—0.026 25
—0.422 14
—0.404 45
—0.265 62
—0.260 83
—1.159 32
—1.058 89
—0.494 47
—0.422 62

0.293 09
0.129 94
0.294 52
0.131 13
0.011 86

—0.065 40
0.035 57

—0.044 74
0.498 18
0.244 07
0.498 25
0.244 13

3.4
3.15

0.024 18
—0.035 50

0.060 21
—0.003 07
—0.595 28
—0.576 25
—0.267 32
—0.266 96
—1.510 11
—1.421 34
—0.385 04
—0.327 87

0.359 12
0.204 65
0.363 66
0.208 54

—0.004 92
—0.075 37

0.057 85
—0.018 82

0.606 56
0.363 63
0.606 81
0.363 83

3.0
3.57

0.007 83
—0.045 61

0.10003
0.039 92

—0.838 56
—0.821 43
—0.210 81
—0.216 96
—1.891 39
—1.818 53
—0.077 80
—0.038 53

0.447 58
0.303 90
0.461 63
0.316 35

—0.047 76
—0.11025

0.107 04
0.033 68
0.754 54
0.525 79
0.755 43
0.526 55

(gerade) or u (ungerade) allows us to distinguish whether
the wave function is symmetric or antisymmetric, respec-
tively. For each internuclear distance R and each radia-
tive transition denoted by (n, , n2, m ) and g or u, Tables
II and III show two values. The upper one refers to a di-
atomic molecule with Z, =Z2=10, free from plasma
effect. We have verified that it agrees with the one given
by Bates et al. ' and Madsen and Peek, the discrepancy
being within +3 in the last of the five figures quoted.

B. Perturbation due to free electrons in plasmas

To include the effects due to free electrons, we expand
wave functions according to Eq. (30), in the subspace of
the lowest 40 electronic states which, indeed, correlate at
large R to atomic states having principal quantum num-
ber n =1,2, 3,4. This restriction is a suitable one because
atomic states with n ~ 5 are ionized for electron density
N, ~10 cm, as shown in Table I of Ref. 3. Then, en-

ergy levels and wave functions of a two-ion center im-
mersed in a plasma can be obtained by diagonalizing the
matrices deduced from Eq. (27) for different values of R.
It is worth recalling that V, (X, ~p~ ), Eq. (19), is invariant
with respect to the nuclear exchange and consequently
connects only states with the same parity. Then the di-
mension of the matrices to be diagonalized is reduced
from 40 to 20. The Hamiltonian matrix elements have
been calculated by using the boundary conditions de-

duced from those of the Dirichlet problem. Indeed, by
canceling the total electrostatic potential in Eq. (20), Eqs.
(8) and (19) show that the atomic potential acting upon
the bound electron over the entire molecular envelope is
V,„,= —e (Ilr, + Ilr2)/2, i.e., the potential resulting
from the two ion. centers screened by 2Z —1 internal free
electrons. In accordance with the charge equilibrium
condition and the potential continuity one we assume
that V,„, is also valid outside the molecular envelope.
Owing to the exponential decrease of the wave functions
in Eq. (30), the relative contribution of this potential tail
is indeed very small. Transition energies with free-
electron effects are given in Tables II and III, at the lower
place for each radiative transition (n &, n, , m ) g or u. We
note that the difference between values at the upper and
lower place resulting from the inAuence of free electrons
is really notable. For the purpose of comparison we con-
sider the transition energy shifts in the ion-sphere model
by calculating the diagonal matrix elements of —eV,
where V, is defined by Eq. (6):

3eR o(nlm
~

eV~ntm ) =-
2l'q

a
n [5n +1—31(l+I)] .

41"e Z

(37)
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where, for completeness, we have given in parentheses
the corresponding values resulting from an exact nurneri-
cal resolution of Schrodinger equations. Examination of
Table II shows clearly that at large R the transition ener-
gies of (1,0,0) g and of (0,0, 1) g, (0, 1,0) g tend towards
tidal((2, 0,0)~(1,0,0)) and fibre((2, 1,0)~(1,0,0)), re-
spectively. This tendency from Stark symmetry towards
spherical symmetry is also very clear if we compare the
transition energies of (2,0,0) g, of (1,0, 1) g, (1, 1,0) g and
of (0,2, 0} g, (0,0,2) g in Table III with
fibre((3, 0,0)~(1,0,0) ), fihco((3, 1,0)~(1,0,0) ) and
irihco((3, 2, 0)~(1,0,0)), respectively. Likewise, we have
verified that Eq. (37) with Z, n, and I replaced by 2Z, N,
and L is a good approximation for our calculation when
R & ao /2. This case is not plotted in Tables II and III in
consideration of its very small probability related to nu-
clear repulsion.

The incidence of the above-mentioned effects on
linewidths and shifts can be seen more easily in Figs. 5
and 6, where essentially numerical values of Tables II and

O.4

U 02

0
C

U

~ -0.2

0$ I I I I 1

4 5 6 7 8 9
i(-}&er nuclear distance (.u. ug

FIG. 5. Frequency shift of Ne X Lyman-a line components
as a function of internuclear distance R. Here, we have con-
sidered the electron density N, =2 X 10 cm and assigned a,
b, and c to the radiative transitions with upper states: (0, 1,0),
(0,0, 1), and (1,0,0), respectively. The subscript 0 in ap bp and
cp (dashed curves) refers to results where free-electron effects
are not taken into account. Likewise the subscript g or u

denotes the symmetry of upper states. Indeed, as shown on
curves c and cp, the symmetry splitting occurs only at R ~ 3ap.

In particular, for Z =10 and N, =2X10 cm we have

iris', ai((2, 0,0)~(1,0,0) }= —0.024 20( —0.024 26),
fibco((2, l, m) ~(1,0,0})= —0.016 76( —0.016 80),

(38)
iiihco( ( 3,0,0 }~ ( 1,0,0) ) = —0. 126 62( —0. 129 28 ),
fib, co(( 3, 1,m )~ ( 1,0,0) ) = —0. 109 86( —0. 112 19),
irides((3, 2, m)~(1, 0,0))= —0.076 35( —0.077 89),

U
O g

0.2

O-0

Q

-0.4
U -0.6—

Q g,

I

k36 7

inl. er nuclear cIistclnce(a. u.)

FIG. 6. Frequency shift of Ne X Lyman-P line components as
a function of internuclear distance R. Here, the electron density
N, =2X 10 cm is considered and the letters a, b, c, d, e, and

f refer to the radiative transitions with upper states: (0,0, 2),
( 1,0, 1), (2,0,0), (0, 1, 1), ( 1, 1,0), and (0,2,0), respectively. The
meaning of the subscripts O, g, and u in ap„~. . . is the same as in

Fig. 5. As shown by the difference between curves c„and c~ and
between b„and bg, we note that the symmetry splitting is appre-
ciable, even at large internuclear distance.

III are respectively reported. The asymptotic behaviors
defined by the ion-sphere model, Eq. (38), are shown on
the right side border of each figure. In Fig. 5 (dashed)
curves ao, bo, and co, which represent the transition ener-

gy shifts relative to a two-ion center without free-electron
effects, remind us of the well-known Stark pattern of the
Lyman-a line: one central component and two nearly
symmetrical shifted components.

As a first effect of free electrons we point out that at
large internuclear distance (R ~ 7ao) there are only two
really separated transition energies which, in fact, agree
with A'bc@((2, 0,0)~(1,0,0) ) and A'bc@((2, 1, m )

~(1,0,0)}. For R (7ao, while states l2, 1,+1) keep
nearly unchanged and constitute the central component a
slightly shifted towards a negative value ( = —0.017 a.u. ),
states 2, 1,0) and l2, 0,0) start to be coupled by the ion
field and give rise to the shifted components b and c. By
comparing the relative positions of the curves in Fig. 5

we can note a second effect of free electrons which con-
sists in reducing the distance between the opposite shifted
components. This reduction is about 40% at R =4ao
and increases rapidly when R increases.

The first effect is to be related to the plasma polariza-
tion shift already discussed in many recent papers. ' '3, 6, 21

The incidence of the second effect lies in the reduction of
the Lyman-e linewidth, the importance of which depends
on the ion distribution function. Molecular-dynamics
calculations performed for laser plasma conditions
show that the latter takes appreciable values for the re-
duced microfield P=(R&/R ) P [0.25, 2], i.e., for R /
Ro H [0.71,2]. Here we have Ro =4. 17ao for the con-
sidered electron density (N, = 2 X 10 cm ) and charge
state (Z = 10).

As concerning the components of Lyman-/3 line plotted
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in Fig. 6, we can make the same assertions as previously,
namely, the convergence of Stark states towards spheri-
cally polarized atomic states for R ~7ao and the reduc-
tion of distance between opposite shifted components. In
addition, we must, however, point out that there is an im-
portant general shift towards negative energy and that
curves b and c„[relative to transitions (1,0, 1) g and
(2, 0,0) u, respectively] present a minimum in the neigh-
borhood of R =3.5ao and 4ao, respectively. For the
transition (1,0, 1) g~(0, 0,0) u, which is an allowed one
as well in the extreme regimes (united and separated
atoms) as in the intermediate regime (Stark effect), such a
minimum means that a large R interval enclosing
R =3.5ao contributes to the intensity at the same fre-
quency A'b, co= —0. 15 a.u. on the Lyman-P red wing. The
corresponding satellite line shape, which is reduced to a
Dirac peak in the quasistatic theory, can be obtained
from an ion dynamics description where position fluctua-
tions are properly taken into account.

IV. CONCLUSION

With the purpose of evaluating the simultaneous
influence of a neighboring ion at arbitrary distance and of
free electrons on atomic bound states in dense plasmas,
we have suggested a transient molecule model which con-
sists of a two-ion center surrounded by bound and free
electrons. The Dirichlet boundary condition is laid down
in such a way (a) to make the total potential constant
over the entire molecular envelope and the overall num-
ber of charge vanishing inside it and (b) to obtain the lim-
it of two independent ion spheres at R )&R 0
(Ro-r, Z' where r, is the average distance between
electrons) and the limit of a united ion sphere with added
charges at R «Ro. The interaction potential between
bound and free electrons has been given in a closed form

by assuming a uniform distribution for free electrons.
The energy levels related to the atomic principal quan-
tum number n =1, 2, and 3 have been calculated with
precision by diagonalizing the total Hamiltonian in the
subspace of the lowest 40 molecular levels. The results
clearly show the following.

(a) For R ~ 2Ro, the Stark patterns completely disap-
pear and give way to energy diagrams characteristic of
spherically polarized atoms.

(b) For R & 2Ro, the free-electron screening effect turns
into a drastic reduction of Stark effect. Besides, a new
molecular feature becomes apparent by showing several
extrema in transition energies.

We can conclude that a molecular treatment including
free-electron effects is imperative for electronic bound
states in dense plasmas (N, ~ 10 cm for laser plas-
mas). At the separated atom limit this treatment allows
us to retrieve the polarization line shift discussed previ-
ously. ' ' For small internuclear distances (R &2Ro),
the reduction of Stark effect and the possible excitation of
satellite components are new interesting molecular data
which should be included in line profile calculations used
for diagnosing ultradense plasmas. We intend to extend
the present study to nonuniform electron gases and ex-
pect to improve it principally for low-lying energy levels
in low-temperature plasmas.
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