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Kinematic compression and expansion of the velocity distributions of particles in gas flows
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Velocity distribution functions showing kinematic compression and expansion are derived in the
context of gravitational forces. Whereas kinematic compression is well known in laser ion-beam
spectroscopy, kinematic expansion is a new concept. In our analysis, collisionless and weak-
collision cases are considered. A brief discussion shows that the weak-collision case may be ap-
propriate in certain regions of the interstellar medium and that kinematic compression and expan-
sion could have interesting observational consequences. In particular, as we show elsewhere, kine-
matic expansion may be important in the formation of broad and asymmetric quasistellar object
emission lines.

I. INTRODUCTION

When ion beams are accelerated their resonance-
absorption linewidths measured in the direction of the
beam have been found to be greatly narrowed. This kine-
matic phenomenon has come to be termed "kinematic
compression" of the Doppler width. Experimental ab-
sorption lines are typically found to be ten or more times
narrower than would be estimated from the kinetic tem-
perature of the ion source. Since the first observations of
kinematic compression' the phenomenon has proved
very valuable in laser-ion spectroscopy in improving the
resolution of optical spectra to exhibit lifetime broaden-
ing and hyperfine structure (see Ref. 6 for a recent exam-
ple). Kinematic compression was first predicted on
theoretical grounds by Kaufman with a view to its appli-
cation in charge-transfer neutralized Cs-beam spectrosco-
py. The essential prediction of Kaufman of velocity
bunching in accelerated ion beams has been both verified
(in the same year) and exploited as indicated above.

In his article Kaufman presents a simple expression for
the factor of reduction of velocity difference for two ions
of mass m, one initially at rest in the direction of the
beam and the other with an average velocity (2kTlm)'
on acceleration of the ions through a potential difference.
Kaufrnan also goes on to describe the effects of angular
divergence of the beam, charge-transfer neutralization
and photon recoil, considerations which need to detain us
further in the present work for reasons which will be-
come apparent be1ow. Kinematic compression and an as-
sociated phenomenon proposed here of "kinematic ex-
pansion" are processes of a basic kinematic nature and
deserve closer attention than has been devoted to them in
this one article by Kaufman. Here we develop analyses
for velocity distribution functions in accelerated and de-
celerated flows concentrating on the kinematics rather
than the consequences for absorption or emission line
shapes. In Sec. IIB we derive a velocity distribution
function for kinematic compression and expansion by
solving the Boltzmann equation in the absence of col-
lisions (Hamilton s equations). In Sec. IIC we consider

the effects of collisions on the velocity distribution func-
tion in the weak-collision limit.

The motivation for this work came through our in-
terest in astrophysical problems of radiation transport
and we set out here to consider kinematic phenomena in
an astrophysical context. It was first pointed out in Ref.
9 that in the astrophysical medium a gravitational field in
accelerating a flowing gas could play the role played by
an electric field in accelerating an ion beam, the gravita-
tional potential taking the place of an electrical potential.
In Ref. 9 a simple expression for the degree of kinematic
compression was given which was essentially the same as
that presented earlier by Kaufman for the electrical ana-
log. Collisions were not considered and there the matter
has rested. In the astrophysical medium neither photon
recoil nor specific charge-transfer processes need be treat-
ed for the purpose of this work. Angular divergence
arises through two distinct phenomena. In the first place
there is the natural divergence due to transverse velocity
components of the atoms and molecules in the flow. This
divergence is in principle automatically included in any
analysis which involves the calculation of distribution
functions since we use the Liouville theorem. Secondly,
flow divergence may occur due to irregularities in the
force field. These are ignored in our work.

II. A SIMPLE KINEMATIC THEORY

A. Model flows

Since in the present paper we wish to highlight the
phenomena of kinematic compression and expansion, we
choose a model system which we feel is sufficiently
reasonable to be convincing but which avoids the com-
plexity of a realistic astrophysical model. Our physical
model for kinematic compression is one in which gas is
attracted from an interstellar cloud by the gravitational
field of a body which has itself no more than a very local
atmosphere. For example, one may picture a stream of
gas accelerated towards a white dwarf whose lack of ex-
tensive atmosphere avoids the development of shock
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waves save very close indeed to the white dwarf. In our
model, acceleration takes place in a plane-parallel poten-
tial, a good approximation for distances from the white
dwarf very much greater than its diameter and for a
stream of gas of cross-sectional dimension comparable
with the dimensions of the white dwarf. For kinematic
expansion we imagine material thrown violently out-
wards from, for example, a planetary nebula, a highly
evolved but still active giant star. The ejected material
then undergoes deceleration in a plane-parallel gravita-
tional field. We assume that shock waves do not inter-
vene.

We also note that for kinematic compression. in the
gravitational context there is a problem which is not en-
countered in the electrical analog. In the electrical case it
is easy to imagine ions or electrons entering a region of
acceleration after passing through a shielded field-free re-
gion or being formed by photoionization in a region in
which there exists an electric field. Equivalent gravita-
tional systems cannot generally be postulated since gravi-
tational fields cannot be shielded in the simple manner of
electrical fields nor do we wish to postulate the sudden
creation of matter within a gravitational field. There is
also a further problem which is common to both electri-
cal and gravitational systems. One normally thinks of a
flow as a phenomenon in which the total flux of material
is conserved. If matter is not to be lost in a flow from its
inception, particles with Maxwell-Boltzmann velocities
with components opposed to the direction of acceleration
must (in the absence of collisions) be free to move in
directions opposite to that of the flow, remaining in a re-
tarding field which eventually reverses their direction of
motion. For flux conservation for a flow notionally start-
ing at rest the field must therefore extend arbitrarily far
in all directions and must not be influenced by the pres-
ence of other massive bodies. In order to overcome these
problems we introduce the additional feature that the
cloud of interstellar gas has already achieved a velocity in
the direction of the attracting body considerably in excess
of (2kT/m)' by some means before we begin to consid-
er phenomena of kinematic compression.

B. A distribution function
for kinematic compression and expansion

We treat flow in only one dimension. Thus, in the ini-
tial velocity distribution function

p, (u, u, u„x,y, z) =p„(v,x)p~(v~, y)p, (u„z)

and p„(v„x) and p (u, y) remain unchanged during ac-
celeration or deceleration. We consider, for the present,
the coHisionless limit in which particles follow uninter-
rupted ballistic trajectories. We assume nevertheless that
particles in the flow before acceleration or deceleration
have a Gaussian velocity distribution and that the gas
flow is initially at a well-defined and unperturbed thermo-
dynamic temperature. We emphasize that we wish to
consider distribution function for particles which have
undergone acceleration or deceleration over the same dis-
tance z. Qualitatively a particle which is faster than aver-
age in the direction of acceleration or deceleration spends

less time in the gravitational field and is therefore ac-
celerated or decelerated less than a slower than average
particle. It is this effect which leads to velocity bunching
as was noted by Kaufman.

It follows from Liouville's theorem that the phase-
space density of particles is constant as the flow velocity
changes (see, for example, Ref. 1D). We may therefore
write

d
p(v (uo, z), z) =0,

dz

where uo is the initial flow velocity (see Sec. II A). Thus,
writing p

—=p(u (uo, z),z),

c)p Bp BU

Bz Bv Bz
(2)

Writing the force per unit mass as (Bv/r}t), =F, positive
for kinematic compression and negative for expansion,
and (Bz/t}t), = v we therefore find the collisionless Boltz-
man equation

(3)

in the steady state (Bp/Bt=O). Equation (3) may be
solved by standard techniques outlined, for example, in
Ref. 11. Briefly we solve (3) subject to the condition that
the initial distribution function is a Gaussian centered on
the initial flow velocity vo,

p(u, O)=(m/2vrkT)' exp[ —(m/2kT)(v —uo) ] . (4)

our desired distribution function ~here the additional
normalization constant

JV= 2 exp( —m u o /2k T) /[ 1 —erf( mu o /k T) ' ~ ] .

We may institute a partial check in the validity of Eq.
(5) by considering the standard mass, momentum, and en-
ergy balance equations for a monatomic gas

d
v,p=O,

dZ

d
dz

v, p=Fp,

d
u, (v„+v +v, )p=2Fv, p,dz

(6b)

(6c)

where p is the density, which we note is a function of z.
The velocity v, is the sum of two parts, the flow velocity

The characteristic equation of Eq. (3) is ,'v Fz =
—,'u—o, a-

constant, from which it follows that the solution after
some manipulation is of the form p((v —2Fz)' ). Re-
placing v with (u —2Fz)' in Eq. (4) and expanding the
square yields

p (v, z) =A'(m /2~kT)'i

XexpI —(m /2kT)[u~ —2Fz

—2uo(u 2Fz)' +uo]]—,
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ll
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(7a)

1 —
1 —2 d —2 —FU + T~~ ~(T~i/U ) U (7b)

(7c)
dz
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servations of Hessler' and the calculations of Wol-
niewicz' and Dalgarno and Stephens' we may estimate
an Einstein B value of —3X10' m J 's ' for the R(1)
absorption line. The number density in J=1 of Hz is 0.62
of NH (=10' m ) at 100 K. ' The line-shape function"2
P = [&~X (Doppler width)] ' is 6.2 X 10 " s giving an
absorption coeKcient of 0.62(h v/4~)B $NH = 1.83

2

X 10 m '. We therefore expect unit optical depth over
a distance of 5.46X 10 m. In order to shift the resonant
frequency a Dopper width (=9100 MHz) we require an
acceleration yielding a velocity change of 310 ms ' over
this distance. It may readily be shown that acceleration
of this magnitude can be achieved only if r falls to
6.2X10 m whereas we note that kinematic compression
onsets at a distance of -200 times greater. Thus, in this
important case, Doppler shifting would not cause
compression to be unobservable. We recognize that the
resolution requirements for the observation of the effects
of compression may be severe, lying in excess of 500000
in the above example. However, we also note that much
of what has been said of compression applies equally to
kinematic expansion which by its nature places less
stringent demands on resolution.

It is worthwhile to check that our calculations showing
kinematic compression for 6 = 5 are consistent with very
few collisions taking place in the time required for
significant acceleration in the system described above.
The calculations shown in Fig. 4(b) correspond to an ini-
tial g (q, ) of 5, that is a velocity of 4.55 km s ' (for H2 at
100 K) and a final g [=(rl, +P)', /=300] of —18 cor-
responding to a velocity of 16.4 km s '. The time re-
quired to undergo this velocity change at a constant ac-
celeration of 0.9 ms is ca. 1.3X10 s. Noting that
much the greater part of the kinematic compression takes
place for /=150 it is clear that for an average r of
-5 X 10 s there is time for only one or two collisions to
take place as the flow undergoes significant acceleration.
Thus our calculations for 0=5 are consistent with our
physical intuition.

Our brief order-of-magnitude estimates raise the ques-
tion of whether any observations presently in the litera-
ture appear to exhibit the kinematic effects which we de-
scribe. We have not conducted a wide search but we note
that white dwarf atmospheres involving H and H& ab-
sorption exhibit anomalous line shapes which have been
attributed to non-local-thermodynamic-equilibrium

effects. Values of 0 span the appropriate range in the
outer boundary of white dwarf atmospheres and kinemat-
ic compression and expansion may play a role in a full in-
terpretation of the line shapes found in these observa-
tions. Whatever the observational status of these kine-
matic phenomena, our results present an intriguing pic-
ture of masses of gas subject to gravitational forces of
sufficient strength to cause appreciable acceleration or
deceleration on a time scale sufficiently short that col-
lisions cannot keep up and cannot maintain a Maxwell-
Boltzmann distribution of molecular velocities.

In conclusion we should mention three further aspects
of this work presently under development. First, the ki-
nematic phenomena which we have discussed here have
potentially observable consequences through emission
and absorption line shapes of astrophysical atoms and
molecules. Using the Doppler formula our results may
readily be transformed into frequency rather than veloci-
ty distributions. A full line shape would be formed by the
superposition of increasingly compressed or expanded
and Doppler shifted profiles. Second, we plan to solve
the Boltzmann equation through Monte Carlo simula-
tions using a many-particle model. Third, we are
presently considering the influence of kinematic expan-
sion in the formation of emission lines in quasars. We
should like to draw attention to the fact that the particles
whose velocity distributions we have been discussing are
of an unspecified physical nature and need not be atoms
or molecules. We are therefore at liberty to apply the
theory of kinematic expansion to ensembles of gas clouds
which form part of the standard model of quasar atmo-
spheres. ' We find that the very broad asymmetric
emission lines of C + and the broad Lyman-cx lines which
are the signature of quasars can be very accurately
modeled using the distribution function of Eq. (5). " We
have also developed a (special) relativistic theory of kine-
matic expansion for this purpose which will be presented
elsewhere.
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