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Velocity distribution functions showing kinematic compression and expansion are derived in the
context of gravitational forces. Whereas kinematic compression is well known in laser ion-beam
spectroscopy, kinematic expansion is a new concept. In our analysis, collisionless and weak-
collision cases are considered. A brief discussion shows that the weak-collision case may be ap-
propriate in certain regions of the interstellar medium and that kinematic compression and expan-
sion could have interesting observational consequences. In particular, as we show elsewhere, kine-
matic expansion may be important in the formation of broad and asymmetric quasistellar object

emission lines.

I. INTRODUCTION

When ion beams are accelerated their resonance-
absorption linewidths measured in the direction of the
beam have been found to be greatly narrowed. This kine-
matic phenomenon has come to be termed ‘“kinematic
compression” of the Doppler width. Experimental ab-
sorption lines are typically found to be ten or more times
narrower than would be estimated from the kinetic tem-
perature of the ion source. Since the first observations of
kinematic compression' > the phenomenon has proved
very valuable in laser-ion spectroscopy in improving the
resolution of optical spectra to exhibit lifetime broaden-
ing and hyperfine structure (see Ref. 6 for a recent exam-
ple). Kinematic compression was first predicted on
theoretical grounds by Kaufman’ with a view to its appli-
cation in charge-transfer neutralized Cs-beam spectrosco-
py. The essential prediction of Kaufman of velocity
bunching in accelerated ion beams has been both verified
(in the same year) and exploited as indicated above.

In his article Kaufman presents a simple expression for
the factor of reduction of velocity difference for two ions
of mass m, one initially at rest in the direction of the
beam and the other with an average velocity (2kT /m)'/?,
on acceleration of the ions through a potential difference.
Kaufman also goes on to describe the effects of angular
divergence of the beam, charge-transfer neutralization
and photon recoil, considerations which need to detain us
further in the present work for reasons which will be-
come apparent below. Kinematic compression and an as-
sociated phenomenon proposed here of “kinematic ex-
pansion” are processes of a basic kinematic nature and
deserve closer attention than has been devoted to them in
this one article by Kaufman. Here we develop analyses
for velocity distribution functions in accelerated and de-
celerated flows concentrating on the kinematics rather
than the consequences for absorption or emission line
shapes. In Sec. IIB we derive a velocity distribution
function for kinematic compression and expansion by
solving the Boltzmann equation in the absence of col-
lisions (Hamilton’s equations). In Sec. II C we consider
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the effects of collisions on the velocity distribution func-
tion in the weak-collision limit.

The motivation for this work came through our in-
terest in astrophysical problems of radiation transport®
and we set out here to consider kinematic phenomena in
an astrophysical context. It was first pointed out in Ref.
9 that in the astrophysical medium a gravitational field in
accelerating a flowing gas could play the role played by
an electric field in accelerating an ion beam, the gravita-
tional potential taking the place of an electrical potential.
In Ref. 9 a simple expression for the degree of kinematic
compression was given which was essentially the same as
that presented earlier by Kaufman’ for the electrical ana-
log. Collisions were not considered and there the matter
has rested. In the astrophysical medium neither photon
recoil nor specific charge-transfer processes need be treat-
ed for the purpose of this work. Angular divergence
arises through two distinct phenomena. In the first place
there is the natural divergence due to transverse velocity
components of the atoms and molecules in the flow. This
divergence is in principle automatically included in any
analysis which involves the calculation of distribution
functions since we use the Liouville theorem. Secondly,
flow divergence may occur due to irregularities in the
force field. These are ignored in our work.

II. A SIMPLE KINEMATIC THEORY

A. Model flows

Since in the present paper we wish to highlight the
phenomena of kinematic compression and expansion, we
choose a model system which we feel is sufficiently
reasonable to be convincing but which avoids the com-
plexity of a realistic astrophysical model. Our physical
model for kinematic compression is one in which gas is
attracted from an interstellar cloud by the gravitational
field of a body which has itself no more than a very local
atmosphere. For example, one may picture a stream of
gas accelerated towards a white dwarf whose lack of ex-
tensive atmosphere avoids the development of shock
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waves save very close indeed to the white dwarf. In our
model, acceleration takes place in a plane-parallel poten-
tial, a good approximation for distances from the white
dwarf very much greater than its diameter and for a
stream of gas of cross-sectional dimension comparable
with the dimensions of the white dwarf. For kinematic
expansion we imagine material thrown violently out-
wards from, for example, a planetary nebula, a highly
evolved but still active giant star. The ejected material
then undergoes deceleration in a plane-parallel gravita-
tional field. We assume that shock waves do not inter-
vene.

We also note that for kinematic compression .in the
gravitational context there is a problem which is not en-
countered in the electrical analog. In the electrical case it
is easy to imagine ions or electrons entering a region of
acceleration after passing through a shielded field-free re-
gion or being formed by photoionization in a region in
which there exists an electric field. Equivalent gravita-
tional systems cannot generally be postulated since gravi-
tational fields cannot be shielded in the simple manner of
electrical fields nor do we wish to postulate the sudden
creation of matter within a gravitational field. There is
also a further problem which is common to both electri-
cal and gravitational systems. One normally thinks of a
flow as a phenomenon in which the total flux of material
is conserved. If matter is not to be lost in a flow from its
inception, particles with Maxwell-Boltzmann velocities
with components opposed to the direction of acceleration
must (in the absence of collisions) be free to move in
directions opposite to that of the flow, remaining in a re-
tarding field which eventually reverses their direction of
motion. For flux conservation for a flow notionally start-
ing at rest the field must therefore extend arbitrarily far
in all directions and must not be influenced by the pres-
ence of other massive bodies. In order to overcome these
problems we introduce the additional feature that the
cloud of interstellar gas has already achieved a velocity in
the direction of the attracting body considerably in excess
of 2kT /m)'’? by some means before we begin to consid-
er phenomena of kinematic compression.

B. A distribution function
for kinematic compression and expansion

We treat flow in only one dimension. Thus, in the ini-
tial velocity distribution function

Puyz(Uy50,,0,,%,9,2)=p, (v, x)p,, (v,,y)p,(v,,2)

and p,(v,,x) and p,(v,,y) remain unchanged during ac-
celeration or deceleration. We consider, for the present,
the collisionless limit in which particles follow uninter-
rupted ballistic trajectories. We assume nevertheless that
particles in the flow before acceleration or deceleration
have a Gaussian velocity distribution and that the gas
flow is initially at a well-defined and unperturbed thermo-
dynamic temperature. We emphasize that we wish to
consider distribution function for particles which have
undergone acceleration or deceleration over the same dis-
tance z. Qualitatively a particle which is faster than aver-
age in the direction of acceleration or deceleration spends
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less time in the gravitational field and is therefore ac-
celerated or decelerated less than a slower than average
particle. It is this effect whlch leads to velocity bunching
as was noted by Kaufman.’

It follows from Liouville’s theorem that the phase-
space density of particles is constant as the flow velocity
changes (see, for example, Ref. 10). We may therefore
write

gz—p(v(vo,z),z)-——o , (1

where v, is the initial flow velocity (see Sec. II A). Thus,
writing p =p(v (vy,2),2),

9 9p |0 | _
vl 0. )

Yo

Writing the force per unit mass as (v /at)vo=F, positive
for kinematic compression and negative for expansion,
and (9z /0t), =v we therefore find the collisionless Boltz-

man equation

9P +F—£ =0 3)
az

in the steady state (dp/dt=0). Equation (3) may be
solved by standard techniques outlined, for example, in
Ref. 11. Briefly we solve (3) subject to the condition that

the initial distribution function is a Gaussian centered on
the initial flow velocity vy,
p(0,0)=(m 27k T)2exp[ —(m /2kT)(v —vy)*] . (4)

The characteristic equation of Eq. (3) is v 2—Fz= —vo, a
constant, from which it follows that the solution after
some manipulation is of the form p((v?—2Fz)'"?). Re-
placing v with (v>*—2Fz)'"? in Eq. (4) and expanding the
square yields

=N(m /2mwkT)'"?
—(m /2kT)[v*—2Fz
—2v,(v?—2F2)'2+ 021},

p(v,z)
Xexp{

(5)

our desired distribution function where the additional
normalization constant

N=2exp(—mvd/2kT)/[1—erf(mv? /kT)'/?] .

We may institute a partial check in the validity of Eq.
(5) by considering the standard mass, momentum, and en-
ergy balance equations for a monatomic gas

d _

EUZP:O R (6a)
d

Ez—szszp ) (6b)
%uz(ujﬂjwtu})p 2Fv,p , (6¢)

where p is the density, which we note is a function of z.
The velocity v, is the sum of two parts, the flow velocity
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U, and thermal motions in the z direction, Av,. Using
Av!’=0 for n=1,3 and the constancy of the flux
J(=1,p), Eq. (6a), and writing T =12—6§, we have for
the momentum equation (6b),

vz—‘i—[(v§+T” W /v, 1=FJ (7a)
z
from which it follows that
d_, d 2 d o
vt T Ty /i v i=F . (7b)

For the energy equation (6c) considering motion in only
one dimension we have

dsayad o

L ;+3 o T,=2F . (7c)
Eliminating F from (7b) and (7c) we obtain

W Lr=—amhdai=g/p e (®)

and hence T p~*=T,p, >. In Figs. 1(a) and 1(b) we show
the variation of T /T, for kinematic compression and

1.0 4‘\ (a)
0.75{ = T
TIT, T
0.5 e
0.25-
o 4 o
100 200 300 400 E/KT,
2.0 —1 (b)/
T/ITo yd
1.5 4 ///
T
10 e 7 -
400 300 200 E/kT,

FIG. 1. (a) The variation of T /T, on acceleration of the gas
flow for the thermodynamic case of adiabatic change (upper
solid line), for collisionless kinematic compression (lower
dashed line), and the weak collision case (intermediate dashed
line, #=35). In each case an initial velocity corresponding to an
energy E of 100kT, was used and we consider an acceleration
yielding a velocity change of a factor of 2, that is, an energy
change of a factor of 4. Note that T /T, falls correspondingly
by a factor of 4 in the collisionless case. (b) The variation of
T /T, on deceleration of the gas flow for the thermodynamic
case (lower dashed line), for collisionless kinematic expansion
(upper solid line) and the weak collision case (intermediate
dashed line, 6=5). In each case an initial velocity correspond-
ing to an energy of 400k T, was used and we consider a decelera-
tion yielding an energy change by a factor of 2. Note that T/T,
rises correspondingly by a factor of 2 in the collisionless case.
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expansion calculated using (5) where we have found T,
using

T,=@ —7)%.
In each case the variation of T,/T, follows
T,p~*=Tp; * noting that p is proportional to & ~'.

In the full collisional (thermodynamic) limit, accelera-
tion (say) of the gas is equivalent to Joule-Thompson adi-
abatic expansion. Including terms involving T,
(=vZ=0)) Egs. (6) lead to Tp~ 2/*=T,py 2", the stan-
dard expression for reversible adiabatic change. This
limit is shown in Figs. 1(a) and 1(b) for comparison with
the ballistic case.

In Figs. 2 and 3 we show examples of kinematically
compressed and expanded velocity distribution functions.
For kinematic compression (Fig. 2) we have chosen an ex-
ample which shows the asymmetry which can develop in
the distribution function using an initial velocity corre-
sponding to 2.5kT,, where T is the initial temperature,
and a velocity increase by a factor of V'5. For kinematic
expansion (Fig. 3) we have chosen an initial energy of
10°kT, dropping to 10°kT, on deceleration, a velocity
decrease through a factor of V'10. For H, at 100 K (say)
this corresponds to a velocity of ~900 kms~! dropping
to ~285 kms™!. A further reduction of velocity to 45
kms~! produces a very asymmetric distribution function
(see inset to Fig. 3), a significant factor in quasistellar ob-
ject (QSO) line-shape modeling.

C. Distribution functions in the presence of collisions

We now address the question: how can we treat physi-
cal conditions between the two limits of thermodynamic
and collisionless? To answer this question the most so-
phisticated method would be to find accurate solutions of
the Boltzmann equation. We do not attempt this in the

p(Av)

2 (m/2kT,)v2Av

FIG. 2. A kinematically compressed velocity distribution
function p(Av) (solid line) in the collisionless limit calculated
using Eq. (5). Initial velocity corresponding to 2.5kT,; accelera-
tion through a factor of V'5. The dashed curve is the original
Gaussian distribution. Av is defined as the particle velocity v
minus the flow velocity, 7,.
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FIG. 3. A kinematically expanded velocity distribution func-
tion (solid line) in the collisionless limit calculated using Eq. (5).
Initial velocity corresponding to 10°kT,; deceleration through a
factor of V'10. The dashed curve is the original Gaussian. In
the inset we show the highly asymmetrical distribution function
obtained with an overall deceleration through a factor of 20.

present work. The most simple approach—which we

essentially adopt here—is to note that a few collisions are

generally considered to be sufficient to establish a Gauss-

ian velocity distribution (see, for example, Ref. 12). We

can put this on a slightly more quantitative basis by mak-

ing the very crude approximation that the collision term

replacing the zero on the right-hand side (rhs) of Eq. (3)

be represented by [py(z) —p]/7 (Refs. 13 and 14),where 7

is a relaxation time and py(z) is a local Gaussian distribu-

tion and p is the desired distribution function. To apply

the concept of a relaxation time to a distribution of popu-

lations (rather than individual populations) implies a high
degree of averaging. Nevertheless, any distribution will
relax monotonically towards a local equilibrium on a
time scale characterized by momentum transferring col-
lisions. Thus 7 may be crudely regarded as the inverse of
a second-order rate coefficient for momentum transfer
multiplied by a gas pressure. Two points arise: (i) the
value of 7 will increase (decrease) on acceleration (de-
celeration) of the gas flow because of the density changes
outlined in Sec. II B, and (ii) we choose to formulate the
local thermodynamic state as T, =T so that py(z) is
given by a Gaussian with a temperature defined by the
adiabatic expression.

The Boltzmann equation is not amenable to an analytic
solution even in this very simple form. We therefore
solve the equation numerically using 'the method of
characteristics. The equation is hyperbolic and quasilin-
ear since the rhs contains the unknown function p. We
first transform into dimensionless variables
n=(m/2kT)""*, ¢=mF,z/kT, and use O=F,7/
(2kT/m)'”* and m;=(m /2kT)""*v;, where T is the ini-
tial temperature of the gas. The equation may then be
written

9 , 6p _ r—m 2] —
2n8¢+877 (1/6)exp —(m—mn,)*]1—p/6 . 9)
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Our initial condition is a Gaussian at $=0 so that we
know a set of initial values of 7,7,., along which we can
calculate characteristics. From (9) the equation of the
characteristic is ¢=m*—n2. The equation for solution
along a characteristic is governed by d¢/2n=dp/R
[where R is the rhs of Eq. (9)] from which it follows that
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FIG. 4. The variation of the velocity distribution function
p(v,z) with z, for an initial velocity corresponding to an energy
of 10kT, with acceleration through a factor of 2, (a) the thermo-
dynamic case, (b) kinematic compression for 8=35, (c) kinematic
compression in the collisionless limit. Figures have been drawn
so that the maximum of p(v,z) is the same height in each case.
The initial distribution on the rhs of each figure is the same
(Gaussian) in each example.



—E=—p/20(¢p+n)'"?

+exp[(—n—n,)21/260(¢+n})""* . (10)

Equation (10) was solved by the Runge-Kutta method for
a set of 50 suitably chosen characteristics. From the
value of p so obtained we could then find, for a given z,
values of

=7,

equivalent to T, and thus the ratios of T,/T, could be
calculated. Results are shown in Figs. 1(a) and 1(b) for an
initial 6=35 for kinematic compression and expansion, re-
spectively. It is evident that 6=35 represents an inter-
mediate case between thermodynamic and collisionless.
Calculations show that for 6<0.25 the temperature
change is indistinguishable from thermodynamic whereas
for 82 100 the temperature change is indistinguishable
from collisionless.

For illustrative purposes it is useful to show the evolu-
tion of p with z. We represent p in terms of a deviation
from a peak mean value that is, as a function of
An=mn—mn,. To perform this frame transformation we
substitute 7=An+1, into the characteristic d=n*—n?
to give

d=An*+2Anm, +nF—nk . (1

(a) 7z t
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FIG. 5. The variation of the velocity distribution function
p (v,z) with z for a velocity corresponding to an initial energy of
10°k T, and deceleration through a factor of V'10, (a) kinematic
expansion for =35, (b) kinematic expansion in the collisionless
limit.
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For every value of ¢ we choose 50 values of A7 between
—2.5 and +2.5 and solve (11) to yield a set of values of
1.. The range of An chosen extends the calculation 2.5
FWHM each side of the mean velocity in the distribu-
tion. Interpolating linearly between two values of p for
values of 1, which bracket that found from Eq. (11) com-
pletes the transformation from 7,¢ to A7,¢ coordinates.
Results of calculations for acceleration are shown in Figs.
4(a)-4(c) for the thermodynamic case, =35 and for the
collisionless case, respectively. Results are shown in Figs.
5(a) and 5(b) for deceleration. In Figs. 4(b) and 5(a) the
distributions have been numerically normalized to satisfy

2.5
f_z'fn(An,qS)dAn—l .

III. DISCUSSION AND CONCLUSIONS

We pose the following question: is it feasible that gas
flows can be accelerated or decelerated in the interstellar
medium such that the time for significant acceleration or
deceleration is comparable with the time between
momentum transferring collisions? If this is the case
then the ballistic phenomena described here are
significant for straightforward gaseous systems and the
linewidths and shapes which an observer might discover
would be subject to the influence which we have de-
scribed in Secs. I and II over and above the purely ther-
modynamic phenomena. Let us take the example of a
flow of gas with 10'2 H,m ~* and a temperature of 100 K
attracted towards some massive object, which we have
suggested in Sec. II A might be a white dwarf of mass
(say) equal to 1 solar mass (~2X 10 kg). We set out to
calculate how close a flow would have to be to such a
massive object, mass M, given that 6=35. The latter con-
dition as we know ensures that we are in the partially
ballistic regime. From the properties of the cloud one
may estimate that 7~5X10° s, implying F=0.9 ms ™2,
which we can equate with GM /r2. Thus r, the average
distance of some part of the flow from the massive body
has to be =~1.2X10'© m. We note that this distance is
very much greater than the radius of a typical compact
object of one solar mass. For example, a white dwarf
may have a radius of ~5X10° m (Ref. 15) and no
significant atmosphere at distances of more than a few
km from its surface. Therefore from this distance of
~10'" m inwards, velocity bunching and kinematic
compression could indeed begin to develop.

A further consideration relates to the possibility, in
principle, of observing the effects of kinematic compres-
sion (or expansion) rather than merely demonstrating
that velocity bunching to whatever extent can take place.
We need to establish that there can be sufficient optical
depth in an absorption line in a distance sufficiently short
that the large acceleration necessary for kinematic
compression does not shift the relevant line too far out of
resonance. For our example of H, in the preceding para-
graph we choose the R(1) line of the (0-0) Werner bands
C 'M,-X ' at around 1000 A. This line is well known
in absorption'® in the interstellar medium. Using the ob-
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servations of Hessler!” and the calculations of Wol-

niewicz'® and Dalgarno and Stephens!® we may estimate
an Einstein B value of ~3X 10" m?J~'s™! for the R(1)
absorption line. The number density in J=1 of H, is 0.62
of N“z (=10 m™3) at 100 K.'® The line-shape function
¢=[V'm X (Doppler width)]™! is 6.2X 107! s giving an
absorption coefficient of 0.62(hv/4m)B$Ny,=1.83
X 1073 m~!. We therefore expect unit optical depth over
a distance of 5.46 X 10* m. In order to shift the resonant
frequency a Dopper width (=9100 MHz) we require an
acceleration yielding a velocity change of 310 ms ™' over
this distance. It may readily be shown that acceleration
of this magnitude can be achieved only if » falls to
6.2X 107 m whereas we note that kinematic compression
onsets at a distance of ~200 times greater. Thus, in this
important case, Doppler shifting would not cause
compression to be unobservable. We recognize that the
resolution requirements for the observation of the effects
of compression may be severe, lying in excess of 500 000
in the above example. However, we also note that much
of what has been said of compression applies equally to
kinematic expansion which by its nature places less
stringent demands on resolution.

It is worthwhile to check that our calculations showing
kinematic compression for =35 are consistent with very
few collisions taking place in the time required for
significant acceleration in the system described above.
The calculations shown in Fig. 4(b) correspond to an ini-
tial 57 (7;) of 5, that is a velocity of 4.55 kms™! (for H, at
100 K) and a final 7 [ =(79?+¢)'"2, $=2300] of ~ 18 cor-
responding to a velocity of 16.4 kms™!. The time re-
quired to undergo this velocity change at a constant ac-
celeration of 0.9 ms™2 is ca. 1.3X10* s. Noting that
much the greater part of the kinematic compression takes
place for ¢=150 it is clear that for an average 7 of
~5X10° s there is time for only one or two collisions to
take place as the flow undergoes significant acceleration.
Thus our calculations for 6=5 are consistent with our
physical intuition.

Our brief order-of-magnitude estimates raise the ques-
tion of whether any observations presently in the litera-
ture appear to exhibit the kinematic effects which we de-
scribe. We have not conducted a wide search but we note
that white dwarf atmospheres involving H, and Hg ab-
sorption exhibit anomalous line shapes which have been
attributed to  non-local-thermodynamic-equilibrium

effects.?® Values of 8 span the appropriate range in the
outer boundary of white dwarf atmospheres and kinemat-
ic compression and expansion may play a role in a full in-
terpretation of the line shapes found in these observa-
tions. Whatever the observational status of these kine-
matic phenomena, our results present an intriguing pic-
ture of masses of gas subject to gravitational forces of
sufficient strength to cause appreciable acceleration or
deceleration on a time scale sufficiently short that col-
lisions cannot keep up and cannot maintain a Maxwell-
Boltzmann distribution of molecular velocities.

In conclusion we should mention three further aspects
of this work presently under development. First, the ki-
nematic phenomena which we have discussed here have
potentially observable consequences through emission
and absorption line shapes of astrophysical atoms and
molecules. Using the Doppler formula our results may
readily be transformed into frequency rather than veloci-
ty distributions. A full line shape would be formed by the
superposition of increasingly compressed or expanded
and Doppler shifted profiles. Second, we plan to solve
the Boltzmann equation through Monte Carlo simula-
tions using a many-particle model. Third, we are
presently considering the influence of kinematic expan-
sion in the formation of emission lines in quasars. We
should like to draw attention to the fact that the particles
whose velocity distributions we have been discussing are
of an unspecified physical nature and need not be atoms
or molecules. We are therefore at liberty to apply the
theory of kinematic expansion to ensembles of gas clouds
which form part of the standard model of quasar atmo-
spheres.?! 72* We find that the very broad asymmetric
emission lines of C3* and the broad Lyman-a lines which
are the signature of quasars can be very accurately
modeled using the distribution function of Eq. (5).2* We
have also developed a (special) relativistic theory of kine-
matic expansion for this purpose which will be presented
elsewhere. 2*
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