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Traveling-wave convection in the presence of a horizontal magnetic field
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The problem of time-dependent convection flow in a layer heated from below with no-slip boun-
daries is investigated in the case of electrically conducting fluids permeated by a homogeneous hor-
izontal magnetic field. The Prandtl numbers of 0.1 and 0.025 are considered. Because the onset of
oscillations is delayed owing to the presence of the magnetic field and because of the reduced heat
transport in the case of traveling-wave convection, the Nusselt number is typically larger in the
magnetic case. Convection in the form of symmetric traveling waves becomes unstable with respect
to two different types of asymmetric disturbances. The monotonic asymmetric instability is pre-
ferred at high magnetic field strength, while the oscillatory asymmetric instability is found in the
low-field case. The magnetic field can thus be used as a control parameter to follow the transition
from one type of asymmetric wave convection to another.

I. INTRODUCTION

The transition from convection, in the form of steady
rolls, to a time-dependent state of oscillating motions, in
the form of waves traveling along the axis of the rolls, has
always been of special interest to investigators since this
transition marks an important step towards the onset of
chaotic motion. The onset of oscillations is connected
with the occupation of a new degree of freedom of
motion in that the vertical vorticity becomes finite, which
vanishes for steady rolls. The simplest description of the
oscillatory instability is obtained in the limit of vanishing
Prandtl number of the fluid in the presence of stress-free
boundaries. ' The analytical theory also indicates that the
frequency of oscillations is related to the circulation time
of the motion in the convection rolls. In recent years, the
finite amplitude properties of traveling-wave convection
have been explored. A systematic investigation of those
properties as a function of the Prandtl number has been
given by Clever and Busse (referred to in the following
as CB), in which paper references to related earlier work
can be found. In the present paper, this analysis is ex-
tended to the case of an electrically conducting fluid that
is permeated by a horizontal magnetic field.

Convection in a liquid metal heated from below in the
presence of a homogeneous horizontal magnetic field is of
special experimental interest. Since the convection rolls
become aligned with the direction of the magnetic field, a
highly regular pattern of rolls can be obtained. This reg-
ularity persists even after the onset of three-dimensional
motions in the form of traveling-wave convection. More-
over, the magnetic field strength provides an additional
control parameter as a function of which the transition to
oscillatory convection and other higher transitions can be
varied. A number of important results on transitions to
chaotic fluid motion have been obtained by this experi-
mental technique. The problem of traveling-wave con-
vection in the presence of a horizontal magnetic field is

also of interest in geophysical and astrophysical applica-
tions of convection theory. Convection in the earth' s
core and in the solar atmosphere is influenced by the
presence of magnetic fields. Convection rolls nearly
aligned with the direction of the magnetic field appear to
occur in the penumbrae of sunspots and the traveling-
wave convection and its instabilities may be related to
some three-dimensional properties observed in penum-
brae.

The onset of the oscillatory instability of steady con-
vection rolls in the presence of a horizontal magnetic field
has been computed in an earlier paper, which will be re-
ferred to as BC. These results provide the starting values
for the finite amplitude analysis, in this paper, of the
traveling-wave solutions bifurcating from the steady rolls.
Following BC, we shall assume the limit of high magnetic
diffusivity A, which is appropriate for experiments in
liquid metals. Accordingly, the magnetic Reynolds num-
ber is vanishingly small and the main effect of the mag-
netic field is its stabilizing effect on the onset of the oscil-
lations. The magnetic field also delays the third transi-
tion to asymmetric traveling waves described by the criti-
cal Rayleigh number R&&&. There are two different types
of this instability, one of which cannot be observed in the
absence of a magnetic field unless the Prandtl number be-
comes very small.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

We consider a horizontal layer of an electrically con-
ducting fluid which is permeated by a homogeneous hor-
izontal magnetic field with the flux density Bo. Using the
thickness d of the layer as length scale, d /~ as time
scale, v~/d yg as scale for the temperature, and BOK/k
as scale for the magnetic field, we introduce a nondimen-
sional-description of the problem. The symbols ~, v, y, g,
and A, denote the thermal diffusivity, the kinematic
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viscosity, the coefficient of thermal expansion, the ac-
celeration of gravity, and the magnetic diffusivity, respec-
tively. Since the magnetic field 8 and the velocity field u
in the Boussinesq approximation are solenoidal vector
fields, the general representation

u =V X ( V X kp) +V X k1((+ Ui =5$—+a/+ Ui, (la)

B=—i+5h+ag,
K

(lb)

=P ' — V b,zP+5 (u.Vu), (2a)

can be used where k and i denote the unit vectors in the
vertical and in the magnetic field direction, respectively.
We shall use a Cartesian system of coordinates with the x
and z coordinates in directions of i and k. Since we re-
quire that P, g, h and g are bounded functions whose
averages over the x-y plane vanish, the possibility of a
mean flow must be described separately. In writing (1)
we have anticipated that a mean flow can occur only in
the x direction and that only fluctuating modifications of
the imposed magnetic field can occur.

By taking the z components of the curl and of the curl
squared of the equations of motion, we obtain two equa-
tions for P and g. Similarly, by taking the z components
of the equation of magnetic induction and of its curl, two
equations for h and g are obtained. These equations must
be supplemented by the heat equation for the deviation 8
of the temperature field from the basic state of pure con-
duction and by the horizontal average of the x com-
ponent of the equation of motion. The latter average will
be indicated by a bar. The six equations assume the fol-
lowing form after all terms with (t/I, as a factor have
been neglected since we are assuming the limit of high
magnetic diffusivity:

V d~P —bz8+Qi Vb, zV h

gradient in the x direction as will be discussed below in
more detail. The temperatures T, and T2, with T, (T2,
are prescribed at the upper and lower rigid boundaries of
the layer, and po and p denote the density and the mag-
netic permeability of the fluid, respectively. For a more
detailed derivation of Eqs. (2), see BC.

The high magnetic diffusion limit offers the advantage
that the variable h can be eliminated immediately from
the problem by the use of Eq. (2d) in Eq. (2a). The elim-
ination of the other magnetic field variable g is not quite
as straightforward, but Eq. (2e) can be solved most readi-
ly if electrically insulating rigid top and bottom boun-
daries are used. Since we also require that the tempera-
ture perturbations vanish at the boundaries, the bound-
ary conditions become

P=g=g =8=0 at z =+—,
'8

(4)

It is well known that convection sets at the critical
Rayleigh number R, in the form of rolls aligned with the
direction of the horizontal magnetic field. For these
rolls, g and g vanish identically and the nature of the
magnetic boundary conditions is irrelevant. But the in-
stabilities of the rolls are influenced by the magnetic
boundary conditions. For the moderate field strength
considered in this paper it is not likely, however, that the
dominant role of the oscillatory instability in low Prandtl
number fluids found by BC will be much affected by
different magnetic boundary conditions.

In the present paper, the traveling-wave convection
evolving from the oscillatory instability superimposed
onto the steady rolls will be investigated. For this pur-
pose, the dependent variables P, g, 8, and U are expanded
into complete systems of orthogonal functions satisfying
the appropriate boundary conditions,

[a(~„cosm a~ (y ct)—
1, m, n

V 52$+Qi V52g=P

V 8—Rb, zg= 8+u.V8,
at

ized(+a (u.Vu)
t

(2b)

(2c)

sinla x
+a( „sinma (y ct)]

&

—g„(z)

—:g (a( „4( „+a( „4( „),
l, m, n

(sa)

V b,zh+i. Vb, zP=O,

V h~g+i. Vbzt((=0,
82

U P' U= P' —[b $(B„,—Q
—8 Q)]+g,az2 at az

(2d)

(2e)

= g (b( „6( „+b( „6( „),
1, m, n

(Sb)

8= g [b( „cosma (y ct)—
I, m, n

sinla x
+b( „sinma (y ct)] ' —

&

'sinn'(z+ —,').cosl n„x

where 62 denotes the horizontal Laplacian, 62—=V —(k V), the bar indicates the average over the x-y
plane, and where the Rayleigh, Prandtl, and Chan-
drasekhar numbers are defined by

R:—y(T~ —T, )gd /(tv, P:—v/a. , Q:Bod /p(gcvA, , —

respectively. We have also introduced the constant g,
which represents the possibility of a constant pressure

1((= g [c( „cosma (y ct)—
l, m, n

coslo. x
+c( „sinma (y —ct)] '

sinla„x

X sin( n —1)m (z + —,
'

)

(c( „4( „+c( „4( „),
I, m, n

U =g U„sinn m.(z +—,
' ),

(5c)

(5d)
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X[m a +1 a +(n —I) m ] (6)

which satisfies the condition g =0 at z =+—,'. After in-
serting the expansion (5) and (6) into Eqs. (2a) —(2c), mul-
tiplying these equations with the functions 4,-k, 4, I„
e;Jk, 6;~k, 0';~k, and 'P;J&, and averaging them over the
fluid layer, we obtain a system of nonlinear algebraic
equations for the unknown coefficients a;k, etc. These
equations are not given here since they are similar to
those used in earlier work. ' The system of algebraic
equations is solved by the Newton-Raphson method after
the system has been truncated. As in CB87, we neglect
all coefficients Q; k, etc. , and corresponding equations
whenever the subscripts satisfy the truncation condition

E+j+k)NT .

where the indices l and m run through all non-negative
integers, while n runs through all positive integers. The
functions g„(z) have been introduced by Chandrasekhar
and have been used in earlier work by the authors. Fol-
lowing CB, the upper functions inside the wavy brackets
must be chosen for odd m, the lower functions for even
m. In the case of the traveling-wave solution bifurcating
from the steady rolls, all coefficients with odd I+n van-
ish, which reduces the numerical effort considerably.

For a given expression (5c) for l((, Eq. (2e) can be solved
readily by

a
lmn g

+Imn + jmn g
+Imn

lmn Bx

ish when the Prandtl number becomes of the order unity
or larger. For the small Prandtl number considered in
this paper, the mean flow is not negligible, however. Un-
fortunately, this component of the velocity field had been
neglected originally and the small Prandtl number results
of CB are slightly in error for this reason. Corrected re-
sults are given in a recent paper" in which the influence
of a vertical magnetic field has been considered.

III. TRAVELING-WAVE CONVECTION

When traveling-wave solutions of the form (5) for
different values of R, Q, and P are generated and com-
pared, the most remarkable property is their general
similarity. Their properties depend primarily on the su-
percritical Rayleigh number R —R». The Rayleigh
number R» for onset of oscillations, of course, varies
strongly with Q and P; but there is little indication for
separate influences of the Prandtl number or of the mag-
netic field. We thus show only two figures, namely, Figs.
1 and 2, depicting some typical properties of the

By considering the convergence with increasing NT of
sensitive properties of the solution, such as the convective
heat transport, we can check the quality of the approxi-
mation. Usually an approximate solution is regarded sa-
tisfactory if the heat transport does not change by more
than a few percent when NT is replaced by NT —1.

Because of the invariance of the problem with respect
to a translation in the x direction, the phase of the travel-
ing wave can be fixed without loss of generality by requir-
ing that the coefficient a

& & &
vanishes. This procedure

provides an extra equation which is just what is needed to
determine the phase speed c. From the form (5) of the
solution, it is clear that a finite Reynolds stress in the x
direction can exist, but it always vanishes in the y direc-
tion as we have anticipated earlier. In solving Eq. (2f) we
distinguish two cases. In small aspect ratio layers it is
reasonable to assume that side walls inhibit a mean hor-
izontal fluid flow. A pressure gradient will arise opposing
the mean flow such that the integral of U over z vanishes.
this constraint will diminish as the aspect ratio increases,
and for very large aspect ratios the mean pressure gra-
dient g can be neglected. We thus consider two limiting
cases: (i) restricted case:

+ 1/2
rl is chosen such that Udz=0 is satisfied, (8a)—1/2
(ii) unrestricted case:

(8b)

As will be evident from the results to be discussed in
the following, the differences between the two cases are
not very large. The effect of the mean flow tends to van-
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FIG. 1. Traveling-wave convection with R =3500, Q =30,
a =2. 1, and a =2.9 in the case P =0.025 with restricted mean
How. The top (bottom) picture shows lines of constant vertical
velocity (toroidal stream function l(() in the plane z=0. The

1/2
middle picture gives lines of constant, Odz. Dashed lines

indicate negative values.
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FIG. 4. Same as Fig. 3, but for P =0.025 with a~ =2.9 and
values of a„as indicated in Table II.
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FIG 2 Same as Fig 1 in the case R =10500, a=100,
a =2.5, and a =2.6 for P=0. 1.

traveling-wave solution. As R is increased beyond R»
the waves retain their sinusoidal shape at first. Later,
higher harmonics become strongly noticeable as in the
case of Figs. 1 and 2. The amplitude of the distortion ap-
pears to saturate and a zig-zagging form consisting of
nearly straight roll-like segments is achieved in the low-Q
cases as shown in Fig. 1. Higher values of Q seem to pro-
mote some phases shifts between different components of
the wave solution and the wave shape is more rounded as
seen in Fig. 2. Because of the low Prandtl number, the
amplitude of the wave in the temperature field is smaller
than in the case of the vertical velocity field and the small
scale feature are damped by the high diffusion of the tem-
perature field.

Of special interest in the comparison between theory
and experimental results is the influence of the magnetic
field on the heat transport and on the frequency of oscil-
lations. The stabilizing influence of the magnetic field is
clearly evident in Figs. 3 and 4, which show the Nusselt
number for two different Prandtl number. As has already

Zx10 I I I I 1 I I E E I i

Qx10 I I I I 1 I 1 I l t I

10'

Nu —1 10

10
3x10 R —Rc 3xlo

Bx10

0

10FIG. 3. Nusselt number as function of the supercritical Ray-
leigh number for two-dimensional rolls (a~ =2.6) and for
traveling-wave convection for different values of Q (as indicated)
for P=0. 1. In the latter case, solid lines correspond to unre-
stricted mean flow conditions, dashed lines to restricted mean
flow. The values for a„are the same ones as given in Table I.

FIG. 5. Frequency co=a c of traveling-wave convection as a
function of the supercritical Rayleigh number for different
values of Q in the case P=O 1. As before, solid lin. es corre-
spond to unrestricted mean flow, while dashed lines indicate re-
stricted mean flow and the values of cz are given in Table I.
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FIG. 8. Same as Fig. 7, but in the case P=0.25 with the
values of a, and o.~ of Table II.

FIG. 6. Same as Fig. 5, but in the case P =0.025 with values

of a, given in Table II.

been emphasized by CB, traveling-wave convection be-
comes less eScient in comparison to roll convection in
transporting heat as the Prandtl number decreases below
unity. The application of a horizontal magnetic field can
thus increase the convective heat transport by a factor of
1.5 in the case P =0.1, but by as much as a factor of 5 in
the case P =0.025, as is evident from Figs. 3 and 4. It is
remarkable that curves of the traveling-wave solutions
for different values of Q appear to converge. The
strength of the magnetic field thus seems to have little
inAuence once the amplitude of the waves reaches a satu-
ration level.

This convergence for different values of Q is also seen
in the frequencies of oscillation plotted in Figs. 5 and 6.
Since the frequency is roughly proportional to the circu-
lation velocity of the rolls, the frequency at the onset of
oscillatory instability increases with Q just as R„ in-

E... =,'( i v x (v xi y) i'&, (9a)

and gives a measure of the strength of the vertical veloci-
ty. By contrast, the toroidal kinetic energy

E...—= —,'& ivxk1(i') (9b)

measures the strength of the toroidal component, which

creases. For a while, the frequency changes very little as
the Nusselt number stagnates with increasing Rayleigh
number. Together with the heat transport, the frequency
resumes its growth as it approaches the curve for vanish-
ing Q.

The property of stagnation also appears in the plots of
the kinetic energy of the poloidal component of the veloc-
ity field which are given in Figs. 7 and 8. This energy is
defined by

P„x10
'
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3x10 10 R —Bc

FIG. 7. Kinetic energy of roll convection and the kinetic en-

ergy of the poloidal component of the traveling-wave convec-
tion velocity field as function of the supercritical Rayleigh num-

ber for different values of Q in the case P =0.1. Solid lines indi-

cate unrestricted mean flow, dashed lines describe the case of re-

stricted flow. The wave numbers a and a~ are those of Table I.

Bx10

R —Rc 10

FIG. 9. Kinetic energy E„,of the toroidal component of the
traveling-wave velocity field as function of R —R» for different

values of Q in the case P=0. 1. Solid (dashed) lines indicate
unrestricted (restricted) mean flow. The wave number a and

o.~ are given in Table I.
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FIG. 10. Same as Fig. 9, but for P=0.025 with wave num-
bers a„and a~ as given in Table II.

FIG. 12. Same as Fig. 11,but for P =0.025.

is introduced by the oscillatory instability. The angular
brackets in expressions (9) indicate the average over the
fluid layer. As the amplitude of the oscillations grows,
the toroidal component grows while the poloidal energy
hardly changes, according to Figs. 7 and 8, or actually
decreases as in the case Q=100 of Fig. 7. Since the
toroidal component of motion does not contribute to the
heat transport nor does it influence the frequency, these
latter quantities resemble the evolution of the poloidal
component of motion.

Figures 9 and 10 demonstrate that E„,grows propor-
tional with R —R», at least for a finite interval beyond
the Rayleigh number R» for the onset of oscillations.
The constant of proportionality involves the po1oidal
component of motion and thus increases with Q. Ulti-
mately the curves for different values of Q converge again
leading to the impression that the traveling waves are in-
dependent of Q for sufficiently high Rayleigh numbers.
This impression is confirmed by the evolution of the
shape of the waves as we have mentioned above.

In Figs. 3—10, both cases with a restricted mean flow,
as well as those with an unrestricted mean flow, have
been plotted. As expected, the main e6'ect of the mean
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i I I I I I I

10

V~)
10 20 30

~ 100

R —RC
10

FIG. 11. Kinetic energy of the mean flow, E f, as a function
of R —R« for different values of Q in the case P=0. 1. Solid
(dashed) lines indicate unrestricted (restricted) mean flow.

FIG. 13. Asymmetric traveling-wave convection for
R =12X10', Q =100, P=0. 1, a„=2.5, and a =2.9.
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TABLE I. Rayleigh numbers R» for the onset of symmetric traveling waves and R»& for the onset of
asymmetric instabilities in the case P=0. 1, a =2.6 for difFerent values of Q. The Rayleigh number

R»& is given for the monotonic, as well as for the oscillating asymmetric instability, and both, restricted
(r) and unrestricted (u), mean Aow conditions are considered.

R»
Monotonic asymmetric I

(r) (u
Oscillating asymmetric I

R»[(r) o; (r) R»$(u) cT;(u)

0
10
20
30
50
100

2.2
2.1

2.0
2.0
2.1

2.5

2145
2352
2596
2879
3539
5684

4513
4785
5184
6567

3605
3754
4006
4359
5105
7329

2707
3092
3529
3988
5085
9780

4.39
5.43
6.47
7.58

10.03
17.48

2801
3274
3882
4594
7869

5.02
6.41
7.92
9.73

17.72

flow conditions is seen in the plots of the frequency of os-
cillation, since the unrestricted mean flow is directed in
the direction of the traveling waves. But the amplitude
of the mean flow is rather small, as is evident from Figs.
11 and 12, where its kinetic energy has been plotted.
Since the mean flow is generated by the Reynolds stress
associated with the fluctuating component of the travel-
ing waves, its kinetic energy grows approximately like
(R —R„) . As R increases, the mean flow kinetic ener-
gies converge as expected. But while the growth rate de-
creases typically (with increasing Rayleigh number) in the
case P =0.1, an increase of the rate of growth is notice-
able for P =0.025. Before this effect becomes significant
with increasing Rayleigh number, however the symmetric
traveling waves discussed in this section become unstable.

IV. TRANSITION TO ASYMMETRIC
TRAVELING WAVES

The analysis of the stability of symmetric traveling-
wave convection with respect to three-dimensional
infinitesimal disturbances will not be discussed here in de-
tail since it follows closely the analysis described in ear-
lier work. Because the horizontal periodicity interval of
convection flows described in Sec. III is relatively large,
we do not expect wavelength changing disturbances to be
important. We thus shall restrict the attention to those
disturbances that fit the periodicity cell described by the
basic wave numbers a and a . This restriction has the
advantage that the symmetry properties of the stability
equations can be used to reduce the computational work.

As has been pointed out in Sec. II, the symmetric
traveling-wave convection is described by the subset of
the general representation {5) for which the coefficients

with odd 1+n vanish and for which the upper (lower)
functions in the curly brackets must be chosen for odd
(even) m. Four classes of disturbances are possible for
which either none, or one, of both of these symmetries
are changed into the opposite one. Otherwise the solu-
tions of the stability equations have the same form as the
symmetric traveling-wave solution (5) except for the extra
factor exp I o t

I
.

In the parameter regime of interest only those distur-
bances which exhibit the opposite parity with respect to
both symmetries of the symmetric traveling waves yield a
positive real part of the growth rate a. There are two
different kinds of instability, a monotonic instability with
vanishing imaginary part o.; of the growth rate and an os-
cillatory instability with o, &0. The latter type of insta-
bility has been found in the nonmagnetic case. But the
monotonic instability becomes preferred as the strength
of the horizontal magnetic field increases according to
Tables I and II.

The property that an imposed magnetic field favors the
onset of the monotonic asymmetric instability is peculiar
to the case of a horizontal field direction. While a verti-
cal magnetic field plays a role, which is in many respects
similar to that of a horizontal magnetic field, it does not
seem to give rise to the monotonic asymmetric instability,
at least not for Prandtl numbers P ~0.025. Both asym-
metric instabilities give rise to relatively small
modifications of symmetric traveling-wave convection.
In Fig. 13 a plot is shown of finite-amplitude asymmetric
traveling-wave convection induced by the monotonic in-
stability. As in the case of symmetric traveling-wave con-
vection, the pattern remains steady with respect to the
appropriately moving frame of reference.

The case of the finite-amplitude mode of convection in-

TABLE II. Same as Table I but in the case P=0.025, a~ =2.9.

R»
Monotonic asymmetric I

R», (r) (u)
Oscillating asymmetric I

o;(r)

0
10
20
30

2.2
2. 1

2. 1

2. 1

1883
1936
1994
2076

2703
2679
2693
2727

2623
2627

2482
2679
2783
2875

1.55
1.97
2.29
2.69
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duced by the oscillatory asymmetric instability is more
difficult to analyze since the time-dependent basic equa-
tions must be solved. As has been discussed in Ref. 11,
this instability leads double-frequency traveling-wave
convection at Prandtl numbers of the order unity or to
standing oscillations at lower Prandtl numbers.

V. CONCLUDING REMARKS

The opportunities offered by the additional control pa-
rameter provided by the strength of the magnetic field in
convection experiments with electrically conducting
Auids have long been recognized by Libchaber and co-
workers. Unfortunately, the rather high values of Q and
the small aspect ratios of the convection boxes employed
in those experiments make it difficult to obtain a quanti-
tative comparison between theory and measurements. In
qualitative aspects general agreement is found, however.

The shift of the onset of the oscillatory instability to-
wards higher Rayleigh number with increasing field
strength is the most obvious feature and can easily be un-
derstood by the tension provided by the magnetic field
lines. More surprising is the property of the asymptotic
convergence of the convective heat transport of sym-
metric traveling-wave convection for different values of
Q. It appears that the inhibiting influences of the
Lorentz force on the toroidal component of the velocity
field and on the x-dependent component of the poloidal
velocity field lead to compensating effects on the heat
transport. The experimental data also show a conver-
gence of the heat transport for different va1ues of Q, but
this occurs in a different regime after the convection Aow
has become chaotic.

A typical feature exhibited by the experiments is the
decrease of the frequency after the onset of traveling-
wave convection. The measured data' resemble closely
the theoretical curves in Fig. 6 in this respect. On the
other hand, the theoretical computations have shown no
indication for a subcritical onset of traveling-wave con-
vection as observed in the experiment. ' This
phenomenon seems to be connected with the finite size of
the experimental convection box, which leads to a consid-
erable contribution from a standing-wave component. '

While the semianalytical theory of Fauve et al. ' pre-
dicts a subcritical onset of traveling waves for low values
of a for Q =0, this phenomenon has not been found in
our numerical computations at vanishing or low values of

The stabilizing inhuence of a horizontal magnetic field
on the onset of traveling waves will allow eventually the
experimental study of inertial convection, which mani-
fests itself in a large increase of the convective heat trans-
port at supercritica1 Rayleigh numbers. In numerical
computations' the Aywheel character of the two-
dimensional convect'ion rolls becomes well established at
low Prandtl numbers. But the experiments which have
been carried out with sufficiently high magnetic field
strength have not provided the heat Aux data for a com-
parison with the theoretical data.
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