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Recently demonstrated techniques for measuring collision-induced phase in macroscopic optical
coherence are described and analyzed in detail. The time-dependent phase measured by this
method is used to study imaginary collision kernels for optical radiators that are related to the
phase by Fourier transformation. The results indicate that classical velocity changes may make an
important contribution to the imaginary kernel, in contrast to the real kernel, which is dominated

by diffractive velocity changes.

I. INTRODUCTION

Since the early 1970s, it has been appreciated that a
complete description of velocity-changing collisions for
optical radiators (optical coherence) in vapors requires a
quantum-mechanical treatment for both the internal and
center-of-mass degrees of freedom.! ™3 This is due to the
fact that an optical radiator consists of a superposition of
ground and excited electronic states, each of which is
shifted and deflected differently in a collision with a per-
turber. In collision experiments that study the motion of
optical radiators, only the oscillating part of the atomic
charge distribution is observed in the measurement. The
differential-scattering cross section then is determined by
the overlap of the quantum-mechanical scattering ampli-
tudes for the superposed states. When the collision po-
tentials for the superposed states are not identical, the
differential-scattering cross section will not be real. Phys-
ically, this is due to the phase change acquired by the ra-
diator during a collision. As a consequence, the corre-
sponding collision-induced velocity change distribution
(i.e., the velocity-changing kernel) and the total-collision
cross section will have both a real and an imaginary com-
ponent.4

Considerable information on the real part of the
velocity-changing kernel for infrared and optical radia-
tors has been obtained by measuring the time-dependent
decay of the intensity of two-pulse photon echoes. The
long measurement time scales obtainable with photon-
echo techniques yield correspondingly high-velocity reso-
lution. Radiator destruction and velocity-changing cross
sections, and average velocity changes per collision, have
been measured by this technique for infrared>® and opti-
cal radiators.””® It has been demonstrated that the real
part of the velocity-changing kernel for an optical radia-
tor is principally diffractive, the measured velocity
changes exhibiting perturber mass, total-cross-section
scaling, and magnitude characteristic of diffraction.®

Imaginary kernels, by contrast, appear to be relatively
unexplored, although they are a unique feature of the
scattering of superpositions of dissimilar states. Unlike
the real kernel, for which long-range interactions with
small phase shifts make important contributions, the
imaginary kernel requires for its existence nonzero phase
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shifts. It is therefore particularly well suited to investi-
gating large phase-shift effects such as the ‘“‘trajectory
separation,”* which arises when the classical paths for
the superposed states do not coincide. This occurs for
impact parameters below the Weisskopf radius, where the
relative phase shift of the superposed states is of order 1
rad. It has been shown that, in this case, the classical col-
lision trajectories are separated in direction by more than
a diffraction angle, which is the uncertainty in the classi-
cal scattering angle.* Prior to the work presented here,
only indirect information on imaginary kernels has been
obtained from the nonlinear pressure dependence of the
line shift measured for infrared radiators.’

In this paper we describe in detail new techniques that
measure time-dependent optical phase in vapors to study
imaginary collision kernels for optical coherence.'®!! An
important feature of the work is the creation of optical
Ramsey fringes in the velocity distribution of the popula-
tion inversion. These are generated by means of two op-
tical pump pulses and lead to a fringelike absorption
profile for a weak counterpropagating probe beam.
Collision-induced phase is readily determined by compar-
ing the probe absorption fringes obtained simultaneously
in two vapor cells, one with perturbing gas, the other
without. The results of the measurements indicate that
classical velocity changes may make an important contri-
bution to the imaginary part of the velocity-changing
kernel in contrast to the real part, which is dominated by
diffractive velocity changes.

Optical Ramsey fringes have been investigated previ-
ously for improving spectral resolution in both vapors
and beams,'? but application to collision-induced optical
phase measurement was not explored. Recently,
velocity-changing collisions of ground-state Zeeman
coherence in Sm vapor has been investigated using
collision-induced Ramsey resonances.!? In this work, sub-
level coherence is created in a selected velocity group us-
ing a modulated pump laser. Velocity-changing col-
lisions transport this coherence to another velocity group
which interacts with a probe field tuned to resonate on a
coupled transition. This leads to a radiated field at a fre-
quency equal to that of the probe plus or minus the Zee-
man shift. The phase of the field is determined by the
difference between the pump modulation frequency and
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the Zeeman shift and the time needed for the coherence
to diffuse between the selected velocity groups. This
leads to a Ramsey fringe in the signal observed using Ra-
man heterodyne detection.!*> Although the technique is
in principle sensitive to the collision-induced phase of the
Zeeman coherence, only the diffusion-time distributions
were measured in the experiments.

This paper is organized as follows. Section II presents
the basic experimental technique and summarizes the re-
sults of detailed calculations which are presented in the
Appendix. Section III describes the Fourier-transform
technique, which is employed to obtain the raw phases
from the data. Results and conclusions are summarized
in Secs. IVand V.

II. EXPERIMENTAL TECHNIQUE

An important feature of the technique presented in this
paper is the use of velocity-space Ramsey fringes to mea-
sure collision-induced optical phase in vapors. This
method, which is quite easy to implement, is depicted in
Fig. 1. The experiments are performed in !"*Yb utilizing
the 1So—>3P1 transition at 556 nm. In this case, the nu-
clear spin is zero, and the system behaves as an ideal
two-level medium (i.e., a J =0—> 1 transition).® Two opti-
cal pulses (~10 mW/mm?) separated by a time delay T
are generated by acousto-optic modulation of stable c.w.
dye-laser radiation® and propagate into a heated vapor
cell containing Yb and a rare-gas perturber. This pro-
duces a Ramsey-fringe-like population inversion in the
Yb as a function of velocity due to the Doppler shift of
the moving atoms (i.e., the time-separated pulses produce
frequency-space fringes).

Neglecting for the moment the effects of collisions, the
appearance of a fringelike inversion can be understood
physically, as follows. Just after the first input pulse, a
macroscopic polarization is created in the medium, where
each atom radiates at the natural frequency o, in its rest
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FIG. 1. Experimental scheme.
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frame. The power absorbed by a given group of atoms
from the second pulse depends on the relative phase be-
tween the polarization and the field of the second pulse at
time 7. For atoms moving at speed v along the pulse
propagation direction, this phase is the product of the
frequency detuning as seen by the moving atoms and the
time delay T. This is just §=(w+wro—kv —w()T in the
absence of collisions, where k is the optical wave vector
2w/, wapo is the frequency shift of the acousto-optic
modulator, and « the unshifted laser frequency. For
pulses of zero duration, the inversion will be <« cosg.
Hence, due to the Doppler shift kv, a population inver-
sion with fringelike velocity dependence is created in the
medium.

In the experiments, the absorption a of a weak coun-
terpropagating c.w. probe wave (~0.2 uW) originating
from the same laser is measured as a function of laser fre-
quency . For a fixed-input pulse separation 7, this mea-
surement is performed at a fixed time just after 27 rela-
tive to the first input pulse. The reason for making the
measurements at time 27 when the input pulses separated
by a time T will be explained below. The absorption of
the weak probe wave depends on the population inversion
of the velocity group v, which is resonant with the probe.
This requires o +kv =w,. Solving for v and inserting in
the time-dependent phase ¢ yields ¢=2AT, where
A=w—wyt+wrn/2. Hence, the probe absorption versus
laser frequency contains a fringelike component
« cos(2AT).

In the presence of velocity-changing collisions of the
optical polarization, the phase ¢ =2AT of the absorption
fringe measured at time 27 is altered by a time-dependent
phase @(27). The probe absorption fringe is then
xcos(2AT + ).

For finite duration pulses, the fringelike part of the ab-
sorption signal takes the general form

alA)= A (A)cos(2AT + @)+ A (A)sin(2AT +¢) , (1)

where the sine term arises because the finite-duration
pulses lead to a finite range of effective pulse separations.
Collision-induced phase ¢(27T) is determined by compar-
ing simultaneous absorption traces from cells at different
perturber pressure as a function of A, Fig. 2. As dis-
cussed in Sec. III, fast Fourier transformation is used to
determine @(27T) as the relative phase between the two
signals, one from a reference cell at zero perturber pres-
sure, the other from the main cell at nonzero perturber
pressure.

The detailed calculations of the Appendix show that
the probe absorption fringe signal should peak at a time
2T relative to the first input pulse. This is confirmed by
the experiments and is easily understood. Since the pop-
ulation inversion contains a fringelike velocity depen-
dence, the probe-induced polarization contains a
cosinusoidally modulated distribution of Doppler-shifted
frequencies. When the velocity integral is performed to
find the net time-dependent probe-induced polarization,
the result depends on the Fourier transform of cosvT
which peaks in the time domain at time T relative to the
second pulse when the grating is formed. As discussed in
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FIG. 2. Probe absorption vs laser frequency for 77=95 ns.
The larger (smaller) signal corresponds to the reference (main)
cell. Laser frequency increases to the left. Note the phase shift
between the two signals.

detail in the Appendix, this is closely related to stimulat-
ed echo formation.

An important point is that the collision-induced phase
@(2T) does not change after the time 27T, when the
probe-induced polarization comes into equilibrium and
tracks the population inversion. It is for this reason that
probe absorption measurements are made at a time just
after the peak signal at time 2T.

As discussed below, ¢(27) is a nonlinear function of T
from which the imaginary part of the velocity-changing
kernel can be obtained by Fourier transformation. In or-
der to determine this function, measurements are done
for a number of input pulse separations T and hence ob-
servation times 27, as shown in Fig. 4.

According to the Appendix, in the presence of col-
lisions, the macroscopic polarization is altered both dur-
ing the period T between the first two pulses when the in-
version fringe is formed, and during the probe polariza-
tion build-up period T relative to the second pulse. Both
destruction and velocity changes occur, causing nonex-
ponential decay of the amplitude of the fringelike absorp-
tion signal, analogous to that measured in echo experi-
ments.® In addition, the phase of the probe absorption
fringe at time 27T is shifted according to

T
@(2T)=—21Im fo T, (0)dt , )
where
Tou()=Y— [~ d(Av)W,,(Av)cos(kAvr) . (3)

Equation (3) shows that the imaginary part of the one-
dimensional collision kernel W, (Av) is related by
Fourier transformation to the phase @(27). This result
uses the same approximations as in the analysis of two-
pulse-echo experiments,* where the real part of integral
given in Eq. (2) is measured. It is assumed in writing Eq.
(3) that the kernel is a function only of the velocity
change Av along the laser-pulse propagation direction
and is symmetric in Av. This approximation is valid for
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excitation near the center of the Doppler profile for the
small-angle velocity changes which the radiator survives,
provided that the initial and final velocity changes are
small compared to the perturber thermal speed.'* At
small time delays T, the rate ImI",,(T) reduces to the
usual line shift §,.* In this case, p(2T)= —28,T, exactly
the result one obtains by shifting the resonance frequency
o by 8 in the time-dependent phase ¢ above. In gen-
eral, for a given pulse delay, only velocity changes small-
er than the period ~A/T of the population Ramsey
fringe can cause phase shifts without degrading the am-
plitude of the fringelike part of the absorption signal.
Hence, the pulse separation controls the velocity resolu-
tion. As T— «, the slope of the phase versus time-delay
curve is determined by the imaginary part of the total
collision rate Imy,,, independent of the details of the ker-
nel shape. Hence, in the limit 7T—

e(2T)—co—2Imy,,T , 4)

where ¢ is the y intercept of the asymptotic line. The
measured value of the y intercept can be related to the
value of the imaginary kernel for Av =0 using Egs. (2)
and (3) for large T and the representation of the & func-
tion, Eq. (6), below as

c0=27”Wb,,(0) . (5)

Equation (3) can be inverted to find the kernel in terms of
the measured phase versus time-delay curve. For excita-
tion near the center of the Doppler profile, the kernel is a
symmetric function of Av.'* Using the cosine representa-
tion of the & function valid in the positive quadrant
(T,Av 20)

8(b —a)=£fwcosub cosua du, a,b=>0 (6)
mJ0

one obtains

ImW,, (Av)=-" [ * dt cos(k Avt)
mTYo
X[Imy o, —ImL,(2)] . (7

This result can be cast in a more practical form by in-
tegrating by parts to obtain the imaginary kernel directly
in terms of the measured phase versus time-delay data.
With Egs. (2) and (4) the kernel is given by

ok - :
ImW,, (Av)=5— [c0+ J. dT kv sin(k AvT)

X[e2T)+2y T —col |

(8)

where the integration by parts is done in such a way that
the integrand —0 as T— . In this way, the kernel can
be obtained from the data as long as the asymptotic re-
gion has been measured. This result is closely related to
that obtained previously for real kernels.'’
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II1. PHASE DETERMINATION BY FAST FOURIER
TRANSFORM

As described in Sec. II, the collision-induced phase
@(2T) can be determined by comparing the relative phase
of the sinusoidal absorption signals obtained from the
reference and main cells, Fig. 2. Accurate determination
of the phase is achieved by using fast Fourier transforma-
tion of the probe absorption traces as shown below.

In the experiments, the laser frequency typically is
scanned ~56 MHz. For the shortest input pulses
(~12-15 ns) and time delays, the scan width is increased
to —~84 MHz to accommodate the larger width of the
fringe pattern. The frequency is scanned by means of a
computer-generated ramp voltage which controls the
length of a Fabry-Pérot cavity to which the laser is
locked. The scan is divided into 512 points at each of
which two analog-to-digital channels sample the output
of two boxcar amplifiers, one for the reference cell, the
other for the main cell. At an input pulse repetition rate
of 17 kHz, about 100 samples are taken at each laser fre-
quency point in a 5-ms sample time. The total scan time
for 512 points is then ~2.5s. The absolute laser frequen-
cy is not stabilized since only the relative phase is re-
quired for the measurements. In order to maintain
centering of the absorption traces within the scan range,
however, the computer is programmed to shift the start
voltage, holding the ramp excursion fixed. In this way,
approximate centering of the signals is achieved during
the time required to step the pulse separation T through a
number of values, taking typically five frequency scans at
each value. Pulse timing is accomplished with a
computer-controlled-delay generator (SRS DG535) the
output of which is sent to a home-built pulse-duration
generator. In addition, the delay generator is used to
control the boxcar gate timing for observation just after
the optimum time 27T relative to the first input pulse. As
discussed above, the phase does not change after 27.

For a typical scan, the fringelike part of the probe ab-
sorption trace takes the form

F(As;a)= A, (A—a)cos[2T (A—a)+¢]
+ A (A—a)sin[2T (A—a)+¢], 9)

where to simplify the notation, we take ¢ =¢(2T). Note
that as a function of A, the fringe “frequency” is just 27.
The goal of the technique described in this section is to
accurately extract the collision-induced phase shift ¢(27")
of this fringe from the data.

The fringelike absorption traces which are obtained in
the experiments are shifted somewhat from the center of
the laser frequency scan, which we define here as A=0,
and occur at an offset frequency a. It is useful to center
the traces with respect to the scan range by numerically
shifting the traces by a discrete number of frequency
steps. After shifting, the signal is nearly centered and
takes the form of Eq. (9) with a —a +b, where b is the
frequency shift, and a +b is nearly zero. The resonance
at A=a +b then occurs nearly at the center of the scan.
The reason for centering the scan will become clear
below.
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The absorption trace as a function of A is Fourier
transformed according to

F(n=[" dAe ™ F(Aa+b)
~e D4 (r—2T), (10)
where 7 is the time conjugate to the frequency A and
A (T—zr)=gf_°°w dA'{ A, (A)cos[(1—2T)A"]
— A (A)sin[(r—2T)A']}  (11)

is a real amplitude due to the symmetry and antisym-
metry of the coefficients of the cosine and sine terms, re-
spectively, in Eq. (11) as derived in the Appendix. In Eq.
(11) terms <expi(7+2T) are dropped, and we consider
720 only. This procedure is valid when the r=0,+2T
Fourier transform peaks are well resolved, as is the case
for input pulse durations small compared to 27T. The
peak of the Fourier-transform amplitude then determines
2T. Using Eq. (9) for F(A;a +b) and Eq. (11), the phase
of the Fourier transform is given by

P(r)=@—7(a +b) . (12)

Equation (12) shows that if @ + b0, the transform phase
will vary linearly with 7. By adjusting the shift b so that
a +b =0, this 7 dependence is nearly eliminated. This
reduces the phase error due to imperfect determination of
the value of 2T. It is for this reason that the shift b is ad-
justed to center the trace within the scan range. Figure 3

PHASE @

AMPLITUDE

,—
T=2T

FIG. 3. Amplitude and phase of the Fourier transform of a
probe absorption vs laser frequency trace. Note that the phase
(1) is nearly horizontal at the amplitude peak for 7=2T.
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FIG. 4. Collision-induced phase ¢(27T') vs time delay T. The
solid curves show the fits obtained using Eq. (18). The dotted
lines show the phase @(2T)= —28,T for the pressure shifts ob-
tained from the Lamb-dip measurements.

shows the magnitude and phase ®(7) for the Fourier
transform of one probe absorption versus laser frequency
trace which has been shifted as discussed above. Accord-
ing to Eq. (9) with a —a +b, ®(27) is just the phase of
the fringelike absorption trace at the center of the scan
A=0. The relative phase between the reference and main
cell signals, which are identically shifted in the analysis,
is then given by

P(2T;P)=®, ;. (2T;P)— &, (2T) , (13)

where T is the pulse separation and P is the perturber
pressure in the main cell.

In actual analysis of the data, the peak of the trans-
form magnitude (for 7#0) is first determined to find the
effective value of 27. The results are in good agreement
with the values expected based on the known scan range
and input pulse separation 7. Then the phase of the
transform for both the reference and main cell signals are
determined at the same value of 7=2T. To increase reso-
lution, the 512 data points are loaded into a 4096-point
array before taking the transform. Further, the constant
background component corresponding to 7=0 is sub-
tracted off prior to taking the transform so that max-
imum dynamic range is obtained. By measuring phase
versus time curves at a number of different perturber
pressures, phase versus pressure is obtained for each
pulse separation T. At zero perturber pressure in the
main cell, the relative phase typically is quite small,
=<0.05 rad with a variation of about 0.01 rad. The rela-
tive phase is found to vary quite linearly in perturber
pressure. Fitting the phase versus pressure to a straight
line gives the phase shift per Torr for each value of T
yielding the results shown in Fig. 4.

IV. RESULTS

Time-dependent phase curves for argon and helium
perturbers were obtained for a range of time delays be-
tween 30 and 245 ns. Data taken for time delays between
60 and 245 ns lie on nearly a straight line with a slope
which determines Imy,,, independently of the details of

TIME-DEPENDENT OPTICAL PHASE AND IMAGINARY ...

1945

the kernel shape as discussed above. The data presented
in this paper are not quite good enough to be inverted ac-
cording to Eq. (8). However, the imaginary kernel width
and velocity-changing rate can be estimated from the
data which contain substantial information. Since the
phase must go through the origin at T'=0, the y intercept
of the asymptotic line for large T is meaningful and deter-
mines the magnitude of the imaginary kernel for zero ve-
locity change according to Eq. (5). This can be used to
estimate the kernel width by noting that the integral (i.e.,
the area) of the kernel for all velocity changes must be the
imaginary part of the velocity changing rate Imy,. It fol-
lows from Eq. (3) for short times* that

Imy,,, =6, +Imy, . (14)

Hence, by determining the pressure shift §,, the velocity
changing rate Imy, and the kernel width can be deter-
mined. The pressure shift can be determined both from
the slope of the short-time data where @(27T)x —26,T
and independently using a Lamb-dip technique as de-
scribed below.

For simplicity, the imaginary kernel is taken to be
given by a Gaussian distribution, so that its width can be
compared with that obtained for the real part of the ker-
nel in the Yb system.? In this case,

e —(Av/8v)?

sovinr
From Eq. (15), the width is given in terms of the kernel
maximum as

ImW,,(Av)=Imy, (15)

Imy, _ 2VrImy,

v= _
' Imw,, 0V keo

) (16)

where Eq. (5) has been used. By substituting the Gauss-
ian kernel into Eq. (3) the time-dependent decay rate
takes the form

ImI‘,,a(t)=Im7/tm-—Imyve‘("5"’/2’2 , (17)

where k is the optical wave vector. Using Eq. (2), the
phase can be written as

Imy V7

kdvT
=— 2
@(2T) 2Imy,, T + 50 )
kdvT

=—2Imy T +cgyerf , (18)

where
2 x .2
erf(x)—‘/—;fo dye y

and erf( o )—1.

Equation (18) is fit to the data as follows. First, the y
intercept c, and the total collision rate are determined
from the long-time data. Then, the width of the kernel is
calculated from Eq. (16) using Eq. (14) to find Imy, in
terms of an input guess for the pressure shift §;. @(27T) is
then calculated and compared to the data using a ¥? fit.
The parameters for the best fits (solid curves, Fig. 4) are
given in Table I. The pressure shifts were compared with
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TABLE I. Imaginary kernel collision parameters.
8, (MHz/Torr)
Phase versus Lamp-dip
Perturber time-data method Imy,,, (MHz/Torr) Imy, (MHz/Torr) Sv (cm/s)
He +0.58 +0.60 +0.26(73:3%) —0.32 3501139
Ar —1.50 —1.34 —0.60(*5:3%) +0.90 479(112)

those measured using a Lamb-dip technique to obtain
Doppler-free resonances in the reference and signal cells.
Fifty scans each were taken at 0, 500, and 1000 mTorr
perturber pressure. The pressure shifts of the broad lines
were obtained by fitting a polynomial to the top of each
of the averaged resonances, using the reference cell signal
as a marker, and were found to scale quite linearly with
pressure. The shifts per Torr obtained by the Lamb-dip
method are given in Table I in parentheses (LD) and
compare nicely with those obtained from the phase
versus time data.

V. CONCLUSIONS

Measured imaginary kernel collision parameters for an
Yb two-level optical radiator contrast sharply with the
parameters obtained for the real kernel in the same sys-
tem.® In the latter case, the measured velocity changes
were diffractive in magnitude, 57 and 123 cm/s for argon
and helium, respectively. The larger result for helium in
this case is attributed to the smaller range of the helium
interaction potentials, leading to a larger diffraction an-
gle. Note that the diffractive velocity is nearly indepen-
dent of perturber mass.*® By contrast, the width of the
imaginary part of the collision kernel for argon is about
eight times larger than that of the real part, suggesting
that classical angle collisions may be important. In addi-
tion, the imaginary kernel width using helium perturbers
falls below the argon value. This further supports a clas-
sical scattering picture, since the lighter perturber results
in a smaller velocity change. However, the diffractive
width for helium perturbers is only a few times smaller
than the imaginary kernel width, so that the measured
velocity change is not really classical.

An interesting feature of the data is the lack of curva-
ture at longer time delays 7. Using k6vT/2=1 as a
crude estimate of the velocity change resolution [see Eq.
(18)], we expect that velocity changes as small as 70 cm/s
would be observable for the time scale of the data. This
resolution is comparable to the diffractive velocity
changes discussed above. Curiously, the phase versus
time data appear to be quite linear at the longest time de-
lays, suggesting that the diffractive contribution to the
imaginary kernel is small in this system. Experiments at
longer time delays would be useful in confirming this be-
havior.

It is interesting to discuss our data in the framework of
the qualitative trajectory ‘‘separation” picture of Ref. 4.
The line-broadening rates for both helium and argon per-
turbers are ~5 MHz/Torr, about half of the total col-
lision rate. Since the line-broadening rates are not small,
one expects that the average optical phase shift which

occurs during a collision is not small. As pointed out in
Ref. 4, when the broadening rate is not small, one expects
that for classical velocity changes (i.e., large compared to
difractive), the difference between the classical scattering
angles for each of the superposed states exceeds the
diffraction angle which determines the uncertainty in the
classical trajectories. This corresponds to ‘‘separation”
of the classical trajectories. From our results, the optical
radiator therefore appears to survive such collisions.

A possible explanation is that the relative phase of the
ground- and excited-state scattering amplitudes does not
oscillate rapidly enough to average out the one-
dimensional kernel unless the scattering angle is quite
large compared to the diffraction angle. In this case, the
summation over scattering angles which determines the
one-dimensional kernel for the superposition state might
not be negligible for the range of velocity changes ob-
served in this experiment. In this case, the qualitative
trajectory separation arguments of Ref. 4, which require
very different collision potentials and large scattering an-
gles, might not be an accurate enough approximation.
Note that in the measurement of the real part of the ker-
nel, the large diffractive velocity-changing cross section
due to long-range collisions may have masked a larger
angle scattering contribution due to collisions at shorter
range and hence smaller cross section. It is also possible
that some region of impact parameter exists for which
the classical deflections for each of the superposed states
are similar, due to the effects of both attractive and repul-
sive potentials. However, this seems inconsistent with
the large broadening rate. Further, for the imaginary
kernel to exist, the potentials cannot be too nearly identi-
cal, or the phase shift and hence the imaginary kernel will
vanish.

Our first attempts at modeling the kernel using quasi-
classical scattering amplitudes, based on the stationary
phase method and the van der Waals potentials, yield
velocity-changing rates which appear to be somewhat
small to adequately model the data. However, it is likely
that the approximations made in the analysis are too
crude. In addition, the imaginary part of the calculated
diffractive kernel appears to yield too large a velocity
changing rate to be consistent with the data. Further, as
stated above, diffractive scattering does not seem to con-
tribute strongly to the phase versus time data obtained in
these experiments.

In conclusion, we have demonstrated the measurement
of time-dependent collision-induced optical phase in mac-
roscopic coherence, using a simple technique based on
velocity-space Ramsey fringes. The nonlinear time
dependence of the phase versus time-delay curves ob-
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tained using this technique provides important informa-
tion about the imaginary part of the velocity-changing
kernel for an optical radiator (optical coherence). The
imaginary kernel is particularly sensitive to large phase-
shift collisions, in contrast to the real kernel for which
long-range small-phase-shift encounters play a dominant
role. From the measurements, it appears that the Yb op-
tical radiator survives much larger velocity changes than
previously measured or expected on the basis of qualita-
tive classical trajectory separation arguments. It is likely
that more detailed calculations are needed to model the
data, which measure velocity changes which are perhaps
not sufficiently large in comparison with diffractive veloc-
ity changes for classical scattering to be strictly valid.

The absorption fringe technique exploited here to
study imaginary collision kernels can be extended to
study the phase of the macroscopic coherence created in
any type of inhomogeneously broadened medium. This
may provide new information about some of the con-
densed matter systems investigated previously using
echo-related techniques.'®
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APPENDIX: PHASE MEASUREMENT BY
VELOCITY-SPACE GRATINGS

In the following, we calculate the time-dependent ab-
sorption coefficient for a weak c.w. probe wave which
propagates in the —Z direction into a cell which has been
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previously excited by two pump pulses. The pump
pulses, which are separated by a time interval T, propa-
gate in the +2 direction, and create a fringelike popula-
tion inversion or grating in the sample as described
above. The derivation begins with the density-matrix
equations for a two-level atom including a collision-
integral term.! ~3 These equations take the form

coll

dpba
dt

9Ppq v 9P pq
at dz

i
= —Z[H‘O’—f- U,plp +

(A1)

where a,b are either of the two coupled atomic states and
the interaction with the laser field is given by

U=—u-ER,?). (A2)
The collision term takes the form
1l
dpb CO.
—d—ta =—T paPpa(V,2,1)
+f dv' Wy, (v —v')py,(v',2,8) . (A3)

It is assumed in writing Eq. (A3) that the one-
dimensional collision kernel W, is a function of the ve-
locity change Av =v —v’ only. This is valid for excita-
tion near the center of the Doppler profile v ~0 for the
small-angle collisions of interest here.!* Further, for the
population equations b =a, the effect of spontaneous
emission in returning population to the ground state is
neglected. The effect of spontaneous emission is to alter
the grating amplitude, which is not of interest here.

.n solving for the collisional evolution, it is convenient
to use a Green’s-function technique. The Green’s func-
tion satisfies the following equation:

1
o) d Y PR
5;+va— Gy (v,z,t;0,2",t")+ T, Gy (v,2,t50",2',t)
—-f dv" Wy, (v —v" )Gy, (v",z,t;v",2",t')=8(v —v")8(t —t")d(z —z') . (A4)
The Green’s function can be determined by Fourier transformation of Eq. (A4) (Ref. 17) and takes the form
oty — ) © dk' °°|k|dT oKz =2 =0t =], ik'(v —v") =t .-
Gpalv,2,830"2',1) =00 —1) [ © = f T ik z =2 0t =g ik (o = fexp[—fT Ty, (k't)dr (A5)
[
The time-dependent decay rate is given b €6, )
P y given oy B(R,0=—"e " foitec. (A7)

CpkT)=Tp— [ * dAvW,,(Av)cos(kAvT) , (A6)
with Av =v —v’ the one-dimensional velocity change
along the laser-field propagation direction, and I';, is the
total-collision rate for the coherence p,, (or the popula-
tion when b =a). This result assumes that the kernel is a
symmetric function of Av, which is valid provided that v
and v’ are small compared to the perturber speed.

We begin by calculating the probe absorption with the
field of the backward propagating probe taking the form

The off-diagonal density-matrix elements are transformed
according to

—lwgt

Pba = O pa€ > (A8)

where w,=w;, —w, is the atomic resonance frequency, as-
suming that b is the excited state and a the ground state.
The evolution equation for the probe-induced coherence
then is given by
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coll
3 9 i iwgt doy,
5;+va— aba=—ZUbae O 0p) + [T
(A9)

o0 fee) o0 ’ ’ ’ .
oba(v,z,t)=f dt’f dz’f dv' Gy, (v,2,t50",2',t")i
- o0 - 0 - 0

where Ay=w —w, is the probe frequency detuning. Note
that the population inversion created by the traveling-
wave pump pulses is independent of z, so that the z’ in-
tegration selects out k'=—k in the Green’s function,
making the k' integral trivial.

The absorbed probe power per unit volume is then
given by

dl _

d————%Re(P-E*) , (Al1)
z

|
1dI 4rk |y €1 t , idg(t—1t') ot
7;——_7——'Ref_wdt€ exp[ fO

® ikv'(t—1t")
X f dv'e [04a
—

Equation (A13) gives the time-dependent probe absorp-
tion for an arbitrary population inversion. We see that if
the population inversion is created at time T in the form
of a fringelike pattern <« cos(kv'T) as is done in the ex-
periments, then the last integral corresponds to the
probe-induced polarization having a cosinusoidal fre-
quency distribution. When this distribution is
transformed into the time domain, by performing the v’
integral, it peaks for t —t'=T, i.e., t'’=t —T. (Note that
since t’ =t, the additional peak at t'=t + T never occurs.)
The minimum ¢’ for which the fringelike inversion exists
is T, the time at which the grating in the inversion is
created. Hence the absorption signal corresponding to
the fringe cannot be observed before t~2T. Thus, the
fringe signal increases over a time scale of a pulse dura-
tion as the observation time approaches 27. In general,
as long as the observation time is greater than 27T, the
principal contribution to the observed absorption fringe
arises from the peak in the integrand at t’=¢t —7T. This
behavior is closely related to stimulated-echo formation!®
and has been predicted in other contexts.!® Physically,
the continuous probe field can be considered to be an
infinite series of 8-function pulses, one for each value of
t’, each of which generates a stimulated echo at time
t=t'+T. The bandwidth of the echo is limited by the
Doppler width of the grating which is created in the sam-
ple. The width is of the order of the inverse pulse width
for the velocity selective excitation of interest here.
Hence, the echo duration is the order of the pulse dura-
tion. This has the consequence that the signal which is
observed at time ¢ is due only to the probe field which
was present at a time ¢’ within a pulse width of t'=¢ —T.
This is the reason for the peak in the integrand at

t'Fba( —k7')d7T

(v',t") =o' )] .
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The collision term in Eq. (A9) is identical in form to that
of Eq. (A3) with p—o. With the Green’s function, Eq.
(AS), the solution for o,, is readily obtained subject to
the initial condition o,, =0 at t — — :

€6
Hpa €00 —iAyt'—ikz
— e

(A10
2% )

[Uaa(vl’t’)—o-bb(ul’tl)] ’

f
where I =(c /87)6% and

E= 60’8\6 —ikz —iwt

is the probe field written in classical form. The probe-
induced polarization is given by

P=Re2p,, [ * p.(v,z,0)dv . (A12)

Carrying out the integrations, and defining A=w—w,
yields the probe absorption coefficient as

(A13)

f

t'=t —T. Further, we see that for measurements at
times greater than 27, the signal begins to decrease be-
cause the population inversion fringe decays—the probe
does not interact with the population fringe as soon as it
can.

An important consequence of the echolike behavior is
that in the integral of T'y,(—k7’), which determines the
collisional evolution of the optical polarization, one can
replace t —¢t’ by T, for observation times greater than 2T
by more than pulse duration. Hence, the effects of col-
lisions on the amplitude and phase of the polarization are
dependent only on the pump pulse separation 7. This ap-
proximation is valid provided that the Doppler shifts cor-
responding to the measured collision-induced velocity
changes are small compared to the pulse bandwidth so
that T'y,(k7) varies little over the time of a pulse dura-
tion.'” The absorption transient which arises from the
first pulse alone is readily shown to make a negligible
contribution to the signal for observation times more
than a few pulse durations after the second pulse, due to
Doppler dephasing—the probe absorption comes into
equilibrium with the new population inversion. Hence,
the important contributions to the absorption signal ob-
served at times greater than ¢ =27 can be calculated with
the lower limit of integration in Eq. (A13) replaced by
t,+7,, the time at which the second pulse ends (see Fig.
5). As long as the observation time is after ¢t =2T by
more than a pulse duration, the peak in the integrand will
occur for times ¢’ after the second pulse, and will be con-
tained in the integration region. Hence, the population
inversion for times after the second pulse is all that needs
to be determined. We therefore avoid the complicated
general integration of Eq. (A13).
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FIG. 5. Pump pulse timing.

To complete the calculation of the probe absorption
signal for observation times greater than 27, we now find
the shape of the population inversion created in the medi-
um by the two forward propagating pump pulses for
times just after the second pulse. Figure 5 shows the
pulse timing. The calculation is accomplished in two
steps. For short pulses, the effect of collisions during the
pulses is neglected. In this case, the evolution of the sys-
tem is determined by the interaction with the pump
pulses

U=—u- ’é%&e”kz_””—%c.c. R (A14)
where Q=w+w,o is the acousto-optically shifted laser
frequency of the pump pulses. During the time in be-
tween and after the pump pulses, the system evolves due
to collisions in the absence of the laser fields. It is as-
sumed that the probe field is weak enough that it does not
perturb the system. The polarization created by the first
pump pulse evolves collisionally during the time interval
before the second pulse to alter both the amplitude and
the phase of the grating which is created in the popula-
tion inversion when the second pulse arrives. However,
once the inversion fringe is created, Eq. (A13) shows that
for observation times t=>2T, as discussed above, the
collision-induced phase of the signal remains constant,
and the evolution of the probe absorption depends only
on the population inversion for times after the second
pulse.

With Eq. (A8), the density-matrix equations for times
during the pump pulses take the form

do,, 0,4, ipp, € ikz—iA 1
ata + aza = 2; 61,([)2 4 (Uaa_abb) y
A0 pp —0ag) _ 20, € ikz —iA t
EY 2= 2; 6,(t)e Postc.c.,
(A15)
a(o'blz_+_o.aa)
at S

where the rotating-wave approximation has been used
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and A,=Q—w, is the pump frequency detuning. The
last equation expresses conservation of population during
the pump pulses. This is valid for the short pulses of in-
terest here, during which velocity-changing collisions can
be neglected.

In order to solve these equations, it is convenient to
make the following substitutions:

Foa€ e (hy,

Bp(t)=—"—6,

. . ikz —iA t
Oy —i(u—iv)e L
(A16)
n=0p, 04>

A'=A,—kv .
With these substitutions, the evolution equations take the
form
B,(t)

P
2

u—iv—iA(u —iv)=— n,

(A17)
i =2B,(Du .

By taking the real and imaginary parts of Egs. (A17), a
set of first-order equations for u, v, and n is readily ob-
tained. These are straightforwardly solved by
differentiating the u equation with respect to ¢ to obtain

i +B% =0, v=—Au, A=2B,u, (A18)
where 3, is the magnitude of the pump Rabi frequency
when the pump field is on (square pulses are assumed)
and

B=(B+A)"2. (A19)
The u equation is then readily solved, from which v and n
are then obtained by integration. It is convenient to
work backwards from the second pulse which we take to
turn on at time ¢, and to turn off at time ¢, +7,. Accord-
ing to Eq. (A13) only the population inversion is needed.
Just after the second pulse, the inversion is given as

A7 2 ' 28, . ,
n(ty+71,)=n(t,) B'z—}—[;zcosd)z +~/§,Lsm¢2u(t2)
28,4’

_+_

(1—cosdy)v(t,) , (A20)

612

where the effective pulse area for the ith pulse is defined
by

¢ =B . (A21)
Equation (A20) gives the population inversion just after
the second pulse in terms of u, v, and »n just prior to the
second pulse. These quantities are in turn determined by
collisional evolution from the state of the system just
after the first pulse. Since the collision Green’s functions

determine the evolution of the matrix elements of o we
write
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1 —ikz +iA t
u(tz):—[e IKZ lpZ

; 04 (ty)—c.c.],

—ikz +iAp12

vity)=1[e O4lty)tcc ], (A22)

n(ty))=0p(t3) =0 44(15) .

Then, the matrix elements of ¢ at time ¢, are given in
terms of those at time 7, just after the first pulse by

Opa(0,2,15)
=fj dz’fgo dv'Gy,(v,2,t5;0",2", 7)o, (7). (A23)

This result is readily obtained from Eq. (A9) for U,, =0
using the Green’s function solution, by adding a source
term to the right-hand side of the form

Ot — 1)o7,

which creates the correct initial conditions and vanishes
for ¢’ = 7,. Similar equations can be written for the popu-
lation terms o ,,0,, with the coherence Green’s function
replaced by the appropriate population Green’s function
Gy, etc. Since the populations are independent of z for
the problem at hand, the population Green’s functions
depend only on the velocity v and . We will not write
them here, however, because the population collisional
evolution affects only the amplitude and not the phase
which is of interest. The population term in Eq. (A20)
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« n(t,) does not contain phase information from the first
pulse and therefore does not contribute to the fringe in
the population inversion. Hence, only the coherence
terms u (¢,) and v (¢,) need be calculated in terms of the
conditions just after the first pulse. For a pulse which be-
gins at t =0 and ends at ¢t =7, Egs. (A18) are readily
solved assuming only n (0)7=0 to obtain

u(71)=——2é7sin¢’] n(0),
A’ 1—cos¢]

U(T])=Bp2 17 cosdy 0), (A24)
B 2
AIZ BZ ,

n(r)= F-Fﬁf;cosqﬁl n(0) .

Hence, with the definition of o,, in terms of u and v
above,

oba(71)=i[u(TI)—iv(Tl)]eikrm”T‘
8 (A25)
B,A" 1—cos¢; .| ikz—ia r
Opa(T))= ;;2 ———2-——~—12—;Vs1n¢, e ?'n(0) .

Using Eq. (A23) with the Green’s function Egs. (A5), the
z' integration yields a & function that selects out k'=k,
rendering the k’ integration trivial. The following result
is then obtained for the coherence at time ¢,:

w k © —ikv'(t, —71 ik (p —n' T
Opa(0,2,85)= . 2‘5: f_m ple VT ikt *Texp —f : 1I“,m(kT')a'T’
B A’ I—COS¢’ ikz —iA T
#———2—1-15B-,sin¢'1 n(O,v')e IAP ! . (A26)

Equation (A26) can be integrated using the same approxi-
mations employed for the two-pulse photon echo.* If
short pulses are used for the excitation (i.e., a large Rabi
frequency 3,), then the velocity spread of the polarization
created by the first pulse will be large compared to the
collisional small-angle velocity changes which are of in-
terest here. In this case, if the v’ integration were per-
formed first, the resulting function of (¢, —7,+7) which
appears in the integrand will be sharply peaked at
7= —(t,—7,) compared to the time scale over which

|

ikz —iA 1 LTT
Opa(0,2,2,)=e P 2exp I——f L (—k7)dr |e
0

Aty =)

f

I'y,(k7) varies. Hence, the exponential collision factor
can be taken outside of the integrals and evaluted with
7= —(t,—7;). With the collision factor removed, Eq.
(A26) is most straightforwardly evaluated by performing
the 7 integral first with the substitution 7=7+¢,—7,.
This permits the removal of a factor exp[ —ikv (¢, —7,)]
from the integral so that all terms in the integrand are
broad functions of v’. The 7 integration then yields a §
function which selects v =v’, rendering the v’ integral
trivial. The result for the coherence is then given by

A’ 1—cose]
Bp— d —i—B—LsinqS'l n(0,v) .

. 7
PR T (A27)

With this result, the u and v terms in Eq. (A20) for n (¢, +7,) are easily evaluated using Eq. (A22). If we choose for our
observation a time shortly after the peak signal at t ~2¢, we can neglect the population evolution due to collisions after
the time ¢, +7,, since the signal arises only due to the probe wave which interacts with the population fringe as soon as
it is formed, at t'~t,+7,~T, as discussed above. In this case, we expect a peak in the integrand of Eq. (A13) at
t'>~t,+ 71, when the results for n(z,+7,) are used. This turns out to be the case only for the o,, terms of Eq. (A22).
The complex conjugate terms <o, peak outside of the integration range, after the time ¢. Using these ideas, the
fringelike part of the absorption coefficient can be written as
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lﬂ _ 417'|Frba'/é\2 R ft dt,eiAO(t—t’)ex [_ ft—t’r (—k7)d 7+ ]
I dz fringe #i © htm P 0 be
ty—T
Xexp —foz lI"b,,(—kr')df'
1kv (t—t")+id'(ty—7 B A’ l_COS¢1 B
Xf d ! 5 o 23, sing}
B,A" 1—cosd; B
;’2 %—iz—b’;sinqﬁ; 20 ,,(0,0) , (A28)
T
where the lower integration limit is taken as ¢, +7, ac-  and the line-shape function is given by
ding to the echo analogy discussed above and
cording to the &y g(A)= A, (A)cos[2A(t, —7)— 2, ]
R(0,0)= 0 (00)=——Te U/, (A29) + A, (A)sin[2A(1, — 7))~ 204, , (A32)

with u the thermal speed. Using the same argument as
that of Eq. (A27), the amplitude of the integrand in Eq.
(A28) is seen to be a broad function of v relative to the
scale of collision-induced velocity changes of interest
here. If the v integral is done first then, noting that
A’'=A —kv, the resulting function of ¢t —¢'—(¢t,—7,)
will be sharply peaked at t —t'=t, —7, relative to the
time scale over which I'y,(k7) varies appreciably.
Hence, the collision term can be factored outside the in-
tegral and evaluated with ¢t —¢'=t, —7,. With this factor
removed, the integral in Eq. (A28) takes the form

f dv f dt,eiAO(t—t’)eiAp(tz—rl)
ty+tn,

ikv[t—1t ‘rl)]f(v)

Xe
where f (v) is the broad function of v in the integrand and
the order of integration for v and ¢ has been interchanged.
To obtain the detuning dependence of the probe signal, it

_(tz_

is convenient to make the substitution 7=t —¢’
—(t,—7,). This yields the form
i(Ag+A Nty—7) 1oyt i(kv + )7
e 4 v) .
f—— dv —(t,—7) f( )

If the observation time is taken to be later than that of
the signal peak, at t =2[¢, +(7,— 1) /2] by the order of a
few pulse widths, the 7 integral yields approximately a 8§
function which selects kv = — 4, in the integrand, when
the velocity integral is done. This determines the shape
of the envelope of the fringelike part of the probe signal.
Putting this all together we obtain finally

ldl
‘I dz fringe
_ Oe—Ag/(ku)Z
=7
Xexp [—‘2Re fo Ly (—k7)d7 [g(A), (A30)

where the Doppler-broadened absorption coefficient is

T

= Amlseg el A31
AT ku Ve (A3D)

where 2A=A,+A,, so that A=w—wy+wse/2 is identi-
cal to the detuning of Eq. (1) of Sec. II. The effective
time separation T between the square input pulses is
T =t,—,. This equals zero when the square pulses
coalesce into one long pulse as it should.

The phase ¢,, is given by

pe —1m f

so that with Eq

T ArT,, (—k) (A33)

(A6) for T,,(—k7), and t,—7,=T,

@(2T)=—2¢,,(T) reproduces Eq. (2) as it should. The
amplitudes in Eq. (A32) are given by
)=——4B’2’ sin(ﬁ—,lsinqs—'2
< BIZ 2 2
X cos—icos?—,z—— 24 smﬁsm&
2 2 i3 2 2 |7
R (A34)
4B, . ¢1 . dr12a . |41t
A (A)=— B'f SmTSm-Z_?Sln 3

and are symmetric and antisymmetric functions of A, re-
spectively. The pulse areas ¢;=p3'r; are given by Eq.
(A21) where ' is of the same form as Eq. (A19) with A’
evaluated at kv = — A, the probe detuning, so that

B =(B:+4a")'"%, (A35)
where A=w—wy+w,sn/2. These results substantiate the
statements made in the text concerning the fringelike
part of the absorption signal which is of primary interest
in this paper.

In real experiments, the input pulses are not square,
but smoothly vary. In this case, the actual input pulse
time separation T should be the time delay between the
peaks of the pulses. This correctly determines the mea-
sured fringe ‘“‘frequencies” and properly corresponds to
the period of collisional evolution between the input
pulses and between the second input pulse and the signal
measurement time.

For completeness, we include a calculation of the back-
ground signal which is present in addition to the fringe-
like absorption. This is necessary for comparison of the
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calculated and experimental absorption line shapes. In
order to simplify the calculations, we neglect collisions
and spontaneous emission and determine the maximum
signal. The probe absorption is again given by Eq. (A13),
but we take I'y,(—k7) equal to zero. As above, for ob-
servation times more than a few pulse widths after the
second input pulse, the effect of the first pulse alone is
unimportant—the probe absorption comes into equilibri-
um with the new population inversion. Hence, the lower
limit of integration in Eq. (A13) can be set equal to t, + 7,
as above. The background absorption arises from the
non-fringe-like part of the population inversion for times
after the second pulse. This is due to the n(z,) term
which was neglected in Eq. (A20) in calculating the
fringelike part of the absorption. Using Eq. (A24) the
relevant part of the population inversion is given by

2 [32
n(t,+71,v)p= g +B cosd]
2 BZ
X A +—cos¢2 n(0,v), (A36)
B* B’
|
iﬂ = L ! ) HBglt =) ikv(r—1t)
Td: |, aovReftﬁTzdte fvwka've

Now, the velocity integral in Eq. (A37) is just the Fourier
transform of a broad function of kv, the Doppler band-
width being the order of an inverse pulse duration for the
velocity selective excitation of interest here. Hence, the
integral over v yields a sharply peaked function of ¢ —¢’
so that the principal contribution to the signal arises
from the region where ¢'~t. Thus, the region of ¢’ in-
tegration includes the peak, as expected from the echo
analogy discussed above with 7'=0. The integration is
most readily accomplished by evaluating the ¢’ integral
first. This takes the form

i(Ag+kv)i

1 1=ty =7, i F
—R dr ,
. efo e

where the substitution 7=¢ —¢' has been made and the
rest of the integrand in Eq. (A37) is real. Writing the real
part of the exponential factor as a cosine and making the
change of variables 7— —7 in the complex conjugate term
which results yields for Eq. (A38) the result 8(kv +A4,)
for observation times more than a pulse width after the
second pulse. The final result for the background term is

(A38)
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FIG. 6. Calculated probe absorption vs laser frequency de-
tuning A. T=¢,—7,=75 ns, 7,=7,=25 ns, and pulse areas
B,71=0.55 rad. Note that the separation between the centers of
the input pulses is 100 ns.

where the subscript B denotes background and all quanti-
ties are as in Eq. (A16), etc. With Egs. (A16) and (A29)
the background absorption is given by

2 2

AI2
12 B 02

AIZ
3'2 B

eV 2/u2

os¢)

cos¢2

(A37)

[
obtained by performing the velocity integral which
selects out kv = — A, to give

Ldl| st | 4A2 BZC o5,
I dz B 0 B'Z BIZ 1
2 2
‘;fz + phcosds | (A39)

where B’ in Eq. (A35) and the A are defined as above.
When collisions are included, it is easy to show that the
condition that t —¢t'=~0 in the integrand of Eq. (A37)
causes the background term to undergo an ordinary pres-
sure shift 8§ =ImI",,(0) (Ref. 4) provided that the pres-
sure broademng Yab =I4,(0) is small compared to the
Doppler bandwidth of the excitation pulses. With these
results, the expected signal in the absence of decay, in-
cluding both the background and fringelike absorption,
Egs. (A39) and (A30), is plotted in Fig. 6. The shape
nicely reproduces the experimentally observed fringe
profiles.
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