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For the first time to the authors' knowledge a mathematically rigorous method is used for treat-
ing finite-time deviations from the exponential decay in the case of spontaneous Lyman-e transi-
tions in a two-level hydrogenic atom. First, in the so-called Weisskopf-signer model (where the
rotating-wave approximation is implied) finite-time deviations with a rigorous validity range, based
on accurate error estimations, are derived, Second, in order to obtain the frequency shift (Lamb
shift), counter-rotating terms are taken into account by using a projection-operator method
developed a decade ago by one of the present authors [J. Seke, Phys. Rev. A 21, 2156 (1980)]. By
means of this method, equations of motion for dipole-moment expectation values are derived
without employing the usual Born approximation. These equations are solved by using the method
of the Laplace transform and its inverse. Again finite-time deviations from the exponential decay of
the dipole-moment expectation values with a definite validity range are obtained. Finally, it should
be emphasized that all the results presented in this paper contain accurate error estimates which are
absolutely necessary in a rigorous mathematical method.

I. INTRODUCTION

Long-time (asymptotic) deviations from exponential
decay in the case of spontaneous emission from a single
two-level atom have been shown by many authors (see,
e.g. , Refs. 1—3). All these authors have used the so-called
dipole approximation, which was subject to criticism in
our previous work (hereafter to be referred to as I).
Namely, in I we have shown that neglecting retardation
effects in the atom-field interaction (dipole approxima-
tion) leads to an asymptotic result that differs
significantly from that obtained without this approxima-
tion. For this reason, in the present paper no kind of di-
pole approximation will be made. This can be achieved
by limiting ourselves to the case of the Lyman-a transi-
tion in a two-level hydrogenic atom.

In the present paper a twofold generalization of the re-
sults in I will be achieved. First, for the first time a
rigorous mathematical method will be used for the es-
timation of the finite-time deviations from exponential
decay in the Weisskopf-Wigner model of spontaneous
emission in which the rotating-wave approximation
(RWA) is implied. In this connection the work of Ro-
biscoe should be acknowledged. By using a method
which differs from ours, he derived finite-time deviations
from exponential decay for the above model in the RWA.
Unfortunately, he has given no error estimations for his
approximations. This. is, however, absolutely necessary
for the determination of the validity range of the calculat-
ed deviations. On the contrary, the validity of all our
present results is based on a very accurate estimation of

the errors arising from the used approximations.
Second, since the RWA (applied in the Weisskopf-

Wigner method) leads to an incorrect frequency shift
(Lamb shift) in the oscillation frequency of the expecta-
tion values (EV's) of the dipole-moment operators, the in-
clusion of the counter-rotating (antiresonant) terms in the
calculations is absolutely necessary. It should be men-
tioned that by including counter-rotating terms a correct
frequency shift can be obtained only in the scope of the
two-level model. In addition to this, the calculation of
the correct frequency shift, of course, requires the in-
clusion of all the levels of the atom, as well as taking
into account the relativistic effects. In the present paper
only the two-level mode1 wi11 be treated and thus the in-
clusion of the counter-rotating terms can be achieved by
a special projection-operator technique, ' which was
developed a decade ago by one of the present authors
(J.S.) by modifying the Robertson projection-operator
method. " By using this special projection technique we
are able to derive closed equations of motion (EM's) for
the dipole-moment EV's without making use of any kind
ofperturbation approximation as to the strength of the in
teraction between the atom and the radiation field. This
is an important fact, which makes possible a consistent
comparison of the present results with those of the
Weisskopf-Wigner method (where no kind of perturba-
tive approximation was used). Unfortunately, this impor-
tant fact was until now overlooked by all authors (see,
e.g. , Refs. 3 and 12—14), who, going beyond the RWA,
have used new methods like projection-operator tech-
niques' ' or Heisenberg equations of motion. ' Name-
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e
Hq~ = —-- A-P

mc

= J dco[g (co)a (co)—g*(co)a+(co)](s+ —S )
0

(1.3)
is the interaction Hamiltonian which neither implies the
RWA nor ignores retardation elfects (dipole approxima-
tion). Here S' and S—are atomic population-inversion
and dipole-moment operators, respectively, defined by

s'= —,'(ll && ll —l2&(2l), s+=ll &&2l, s-=l2&& ll,

with

[S+,S ]=2S', [S',S +—

]=+S*, (1.4)

ll&=ln, =2, j, =l, m, =o&,
12&=ln =1,j =O, m =0&

(1.5)

ly, the authors applying these methods were forced to
make a second-order perturbation approximation, the
so-called Born approximation (BA), in order to obtain
closed EM's for EV's. However, the application of the
BA means that the approximation regarding the resonant
terms in the interaction Hamiltonian is poorer than that
of the Weisskopf-Wigner method.

In other words, only the elimination of the BA from
the projection-operator technique makes it possible to ob-
tain results that are superior to those of the Weisskopf-
Wigner method. By using our special projection-operator
method, where no kind of usual BA appears, we obtain
closed integro-differential equations for the dipole-
moment EV*s as the only unknowns. In obtaining these
equations we make a kind of RWA in the exact closed
EM's. However, this RWA is very different from the
RWA on the Hamiltonian itself, since it takes into ac-
count counter-rotating terms as far as to give the Lamb
shift, which is correct only in the scope of the two-level
model as mentioned above.

The equations for the dipole-moment EV's will be
solved by using the Laplace transform and its inverse.
Since logarithmic functions of complex variables appear,
analytic continuation in the infinitely sheeted Riemann
surface is necessary. Further, a mathematically rigorous,
but very involved, localization and evaluation of the poles
and their residue contributions provided with the respec-
tive error estimates will be given. Finally, for the first
time, finite time -deviations from the exponential decay
will be calculated with a definite validity range based on
careful error estimations.

For calculations in the present paper, we use the Ham-
iltonian for a single two-level hydrogenic atom (system
A ) interacting with the radiation field (system R ):

H =Hp+H~~,
where

Ho=cooS"SItt+ J dcocoa+(co)a (co)I„(Pi= 1)
(1.2)

is the unperturbed Hamiltonian (I„and I~ are the unit
operators in the Hilbert spaces &„and &~ of systems A
and R) and

as the excited state and ground state of an hydrogenic
atom in the case of the Lyman-a transition (2P~1S).
Here we chose m, =0, but our further calculation as well
as the final results are independent of the choice of m,
(i.e., the treatment of the other two cases with m, = 21 is
quite identical). The symbols a*(co) denote the creation
and annihilation operators for a photon with frequency
co, and quantum numbers j =1, m =m, —m@ =0 (which
follows from the selection rules), and r=o (electric mul-
tipole field). The coupling constant g (co) includes all the
retardation effects and is given by'

' 1/2
( i)co—'" y

22[1+(co/A) ] coo

3c
2ap

g(co)= 2'

& vlv&=1, &~,j,m, r=ol v&=o,

( co,j,m, r=olco',j ', m ', r' =0 &
=5(co—co')5,~'5 , (1.7)

a+(co)l V&= lcoj =1, m =0, r=o&,

( l
V & is the vacuum state).
The paper is organized as follows. In Sec. II we derive

finite-time deviations from the exponential decay in the
RWA. In Sec. III by using a special projection-operator
method we derive closed EM's for the dipole-moment
EV's by taking into account the influence of the counter-
rotating terms. In Sec. IV these EM's will be treated
analytically by using the Laplace transform and its in-
verse. In Sec. V the path of the integration on the
Riemann surface will be adequately deformed in order to
obtain the contribution of the Weisskopf-Wigner pole
yielding the exponential decay and an integral describing
the deviation from the exponential decay. In Sec. VI this
deviation will be estimated for finite and asymptotic
times. In Sec. VII we draw a conclusion. In Appendix A
we evaluate some integrals used in preceding sections. In
Appendix 8 we describe the fixed-point method and use it
for approximate evaluation of the poles. In Appendix C
the argument principle is used for the determination of
the number of poles and zeros. Their localization is also
performed. In Appendix D approximations for the in-
tegrands of Secs. II and VI are given.

II. FINITE-TIME DEVIATIONS
FROM EXPONENTIAL DECAY IN THK RWA

In I, by applying the RWA to the interaction Hamil-
tonian in Eq. (1.3), we have already derived an asymptot-
ic result for the probability amplitude b, (t) for finding a
two-level hydrogenic atom in the excited state and no
photons in the radiation field [cf. Eqs. (4.11) and (4.12) in
Ij.

In order to have an estimate for b, (t) for finite times,

(1.6)

where y =10 s ' is the Einstein coe%cient for spontane-
ous Lyman-a radiation, up=10' s ' is the energy sepa-
ration of the two atomic levels, and ap 10 cm is the
Bohr radius.

For one-photon states the following normalization re-
lations hold:
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we must give a more detailed derivation of the results in
I. The starting point is our initial-value problem [cf. Eq.
(4.3) 111 I]

b, (t)= — f des f(co)f dre ' b, (t —r) .
2& 0 0

(2.1)

Here b1(0) is given an initial value of b1(t) and f(cu) is
the natural smooth cutoff function

(o,o) breach cat

coA(~)=
( II2+ 2)4

(2.2)

In order to solve Eq. (2.1) we apply the Laplace transfor-
mation'

b, (z) = f b1(t)e "dt,

so that we get a new (algebraic) equation for the function
b, (z),

sheet -4

FIG. 1. Path of integration C in Eq. (2.8) and the deformed
path K on the Riemann sheets 0 and —1 used in Eq. (2.15). The
Weisskopf-Wigner pole u on sheet —1 is crossed in the process
of deformation.

b, (z) =b, (0) des f (co)
Z +

27T 0 z t (coo co)
(2.3)

with

I( )= f des f (co)
0 67 u

C, (u) C2(u)m.
+

20,

+f (u)[ —log(u)+InA+im. ], (2.5)

Still following the lines in I, we substitute u =iz +cop and
introduce a new function

b, (0)
B,(u) = —ib, ( iu +irido) —=

u —coo+ ( X /2vr )I ( u )

11k,cop

24~
u —co + 5A, Q

64

~~0
ln

277 cop

Cdogsi, (2—.9)
2

completely avoid dealing with these singularities, since
none of them is passed in the process of deforming C into
K. That is to say, the integrand in Eq. (2.8) behaves
much better along K, because we are "far away" from the
singularities around u = —i 0, so that less technical work
with estimates has to be done.

In Appendix B we apply the fixed-point method for
finding approximate values of the poles and give a
rigorous error estimation. Here we summarize the re-
sults. The approximate value u, of the Weisskopf-
Wigner pole u (which lies on the lower Riemann sheet:
number —1) and the corresponding error b, „=~u

—u, ~

read as

C (u)= (110 +180 u +90 u +2u ),f (u)
12

(2.6) (4.1X10-" (2.10)

C2(u)= (5A —150"u —5A u —u )
f(u)
160 u

(2.7)

Here, we use the convention log(u) for the multivalued
natural logarithm of a complex variable [for the evalua-
tion of I ( u ) see Appendix A].

Next we note that the Laplace inversion (and substitu-
tion z = iu +ice—o) yields

From this and the theory of residue calculus it follows
that

Res(e e '"'B, (u), u ) =R1(t), (2.11)

where R, is the approximate value of the residue (cf. Ap-
pendix B):

t cidpf

b, (t) = f e ""B,(u)du,
2&l C

(2.8) R, (t) =b, (0) exp
A.not

2
5 11

kQ + A.cop
64 24m

where C is according to Fig. 1. Note that the integrand
of Eq. (2.8) is analytic for Im(u) &0 and "lives" on the
Riemann surface of log(u). According to Fig. 1, we de-
form the path of integration C to the path K. This choice
is rather special, and was also used by Davidovich and
Nussenzveig. It has the following advantage. In I
(where the path C was used) singularities appear around
u = —i A, whose infiuence on the error terms is hard to
estimate. However, by the special choice for K, we may

0+ ln2' C00

/ ]Res(e e '"'B1(u), u )f
—fR &(t)f [

(2.12)

Further, it holds that

( 10K, exp( Afoot /2)
~
b1(0)

~

. (2.13)—
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b, (t)=Res(e 'e '"'k, (u), u )+D, (t),
where

I ctlo t

D (t)= . 8 (u)e '"'du
2&l K

(2.14)

(2.15}

describes the deviation from the exponential decay. So
altogether Eqs. (2.14) and (2.15) give us the solution of
our basic equation, Eq. (2.1). Since the integral of Eq.
(2.15) cannot be exactly evaluated, we next deal with ap-
proximations of D, ( t }. It should be noted that Robiscoe
has given similar approximations for 6nite-time devia-
tions from the exponential decay by using a different
method without error estimations. In contrast to this, we
would like to stress that all our approximations are aug-
mented by rigorous estimates of the respective errors.
Here, we outline our method by giving a few steps (for
more details see Appendix D).

(1) We write down the integral in Eq. (2.15) by using a
concrete parametrization of the path K. This gives us

(5) Now we look at the "remaining" part of our in-
tegral and, since 5 is reasonably small, we may approxi-
mate the integrand in the small interval [0,5] by making
use of Eqs. (D7)—(D10) in Appendix D,

b/(x}= Af (u)
No(u )N, (u )

A.Q

2
COp

i/2A, 0 5.6A,AX+
3

X
Ct)p COp

(2.19)

where u =(1—i)Qx. By integrating this inequality we
may estimate the error which arises if the complicated in-
tegrand of Eq. (2.16) is replaced by the simple function

u/co, o,

Ibi(0) f &/(x)e ""'IIdxv'2 s

2m 0

, , lb, (0)i+15.84, , lb, (0) .
A,

2
1

6o~ot 2~ ~ot

D, (t)= 1
b, (0)e '(1 i) — kf (u)e '"'Qdx

0 No(u)N, (u)

(2.16)

(2.20)
(6) We finally integrate the simple function A, u /coo over

the interval [0,5] in order to approximate D, (t) in Eq.
(2.16),

Here u =(1—i)Qx and f (u) is as in Eq. (2.2). Further-
more, for the denominator we have chosen the following
notation:

lbi(0)l fv'2 QO

277 snt-
b, (0)

2m
'

(1—10 )g Qt

(2.18)with 6p cop/0 .

No(u)=u —too+ Io(u), N, ( )u=N (0)u+il f (u),
2~ '

(2.17)
where the subscripts 0 and —1 denote different branches
of the functions N(u) and I(u) [cf. Eqs. (2.4) and (2.5)]
on the Riemann surface of log( u ).

(2) We restrict ourselves to times t ) 10 ' s.
(3) In order to estimate the integral representation of

D&(t) in Eq. (2.16), we choose a suitable real number
5=1.69X10 and divide the interval of integration:
[0, ~ ) = [0,5]U [5, ~ ). This turns out to be practical for
the next steps.

(4) According to Appendix D we may "neglect" the
contribution of the integrand in the interval [5, ~ ).
More precisely, we show that

b, (0)e '(1 —i) f e ™Qdx=M(t)+63(t),
2~ o ~p2

(2.21)
with the asymptotic main term

M(t) = — b, (0)e
2mcopt

and the correction

(2.22)

b3(t) = [1+( I+i )05t]e "+' 'M(t) . (2.23)

(7) The last step consists of collecting the various error
estimates for diff'erent parts of D, (t) and comparing their
magnitudes with that of the main term

b., (t) &16 6X10, t) 10 ' s .
M(t)

(2.24)

In this way the major result of this section is derived and
we summarize as follows.

Theorem 2.1. Let b (t1) denote the solution of the
initial-value problem, Eq. (2.1), then the following holds:
(i) According to Eq. (2.14) b, (t) can be written as a sum
of the "classical" Weisskopf-Wigner pole contribution
and a certain "correction" D, (t) (ii) The appr.oximation
for the Weisskopf-Wigner term reads as

Res(e ' 8, (u), u)=(1+6.„,)b, (0)exp. —A,Q)p 5QQ 1 1 A,cop A,cop
t —i — + ln

2 64 24m. 2n COp

t —A„t (2.25)

6„„&10k.=10, lb.„/u l
&4. 1X10 (2.26)

where the error terms 6„,and h„obey the following esti-
mates:

I

(iii) For the deviation from the exponential decay D, (t) a
reasonable approximation can be found for times
t)to=10 "s:



1930 J. SEKE AND W. HERFORT

D)(t)=M(t)+b(t)= —,—,b, (0)e '+b(t),I 67OE

2n.CO0 t

(2.27)

with M(t) as the asymptotic main term and
ib(t)/M(t)i &16.6X10

III. DERIVATION OF EQUATIONS OF MOTION
FOR DIPOLE-MOMENT EXPECTATION VALUES

WITHOUT RWA

In Sec. II we have calculated the probability amplitude
b, (t) for finding the atom in the excited state. Since the
ground state I2&(3) I V& is a stationary state in the RWA,
an incorrect frequency shift for the oscillation frequency
of the dipole-moment EV &S &, =b2 (0)b, (t)e
follows. Namely, according to Eq. (2.25) the frequency
shift contains the term —5A,Q/64. However, this term
gives no contribution if the counter-rotating terms are
taken into account. Moreover, the remaining term—(ka)o/ 2n. ) in(Q/a)o) is just half of the familiar Lamb
shift, since it includes only the energy shift of the excited
state, while that of the ground state is missing.

Therefore, the RWA does not give correct results for
the EV's &S—

&, of the dipole-moment operators. For
this reason, in this section we derive EM's for &S*&,
without using the RWA in the interaction Hamiltonian.
The projection-operator technique developed years ago
by one of the present authors seems to be a suitable
method for this task. '

We now generalize the initial condition for the pure
states of Sec. II,

—i ( t —t')(I —P)( Lo +L ~i( )T tt =e (3.10)

and I =I~(3Itt, L()=[HO, . . . ], and L» =[H„t(, . . . ]
[cf. Eqs. (1.1)—(1.3)].

We now let the operator iS*(Lo+L» ) act upon Eq.
(3.9) and afterwards take the trace over it which gives us
exact closed EM's for the EV's & S—

&, :

d&S*&,
=kia)& S*&,+I+(t)—

dt
—f dr[K*, +K~ (r)&S —

&,
0

+K', (r)&S+ &, ,],
where

I (t)=i Tr—» t(L„t(S+)U(t,o)e—

(3.11)

X [P„(0)—o w (0)]Pi( (0) I

K i (r) =Trzz [S Lzt( U(r, o)e —L» ,'Ipti(0)], —

(3.12)

By using the modified Robertson projection-operator
technique, " i.e., by difFerentiating and transforming Eq.
(3.7), and afterwards integrating it by applying an in-
tegrating operator T(t, t'), we obtain a connecting equa-
tion between p(t) and o „(t)ptt (0):

p(t) o—„(t)ep~(0)= i—f dt'T(t, t')(I P)—
( ()+ » )o „(t')Sp t((0)

(3.9)

with

I@(0)&
= [b, (o) I

1 &+b, (o)12 &] I
v &,

[ib, (o) i'+ ib, (o) i'=1], (3.1)

(3.13)

K2 (1 ) =Tr» [S+L~„U(r,o)e '—L»S (3)p„(0)]
to quite general initial conditions for statistical density
operators: (3.14)

p(o) =pg(0)pt((0), (3.2) K3 (r)=Trzt( [S L„z U(r, o)e — 'L»S spit (0)]—
p~ (0)= 2 I~ +2S'& S'&0+S+ & S &()+S &

S+ &O, (3.3) (3.15)

p„(o)= I
v& & vl, (3.4)

'L I

U(r, o)=Texp i f dt—'(I P)e 'L~~e—
where p(t) is the statistical density operator (which
satisfies the Liouville equation) and p„(t),p~(t) are the
reduced density operators defined by

(3.16)

(5' is the Dyson time-ordering operator). Now we can
make some simplifications in Eq. (3.11). Since

ihip(t) p~(t) T ~p( ) . (3.5)
p „(0)— „(0)=2S'& S'

& (3.17)
For the derivation of the EM's for the EV's & S—

& „we
use a generalized canonical density operator' and

~ „(t)= ,'I„+S+&S- &, +S-&S-+ &, ,

where

(3.6) Trz[L&z+'pii(0)S']=0, 1=0,1,2, . . .

Tr „[S*L„'~S'Sp~ (0)]=0, I =0, 1,2, . . .

(3.18)

(3.19)

o a(t)pt((0) =PP(t)+ 2Ia Spa(0),
with the projection operator

) =Pi((0) [S+Tr~t([S ( ' ' ' )]

(3.7) it follows that

I~(t)=0 .

Further,

(3.20)

+S Tr»[S+( . )]I . (3.8) K—, (r)=0 (3.21)
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because

Tr„[L„'z 'pit(0)I„]=0, l =0, 1,2, . . . (3.22)

it holds that

K3(r)=K2 (r) . (3.25)

Tr„[S*L„'zI„@pa(0)]=0, I =0, 1,2, . . . . (3.23)

Moreover, since

Lq~s+ =Loftis =2S' f dto[g(to)a (co)

Equations (3.20), (3.21), and (3.25) simplify the exact
EM's, Eq. (3.11), significantly, and only the coefficients
K2 (r) remain:

—g *(co)a +(~)], K2 (r)= —Tr~ ti[A*U( r0)e B*], (3.26)

(3.24) where

2 ——:I ~~S—=3, (3.27)

B*=L„„S*p„(0}
=+ ,'I„ f—dco[g*(co)a+(co)pz(0)+g(to)pti (0)a (to)] —S' f dco[g*(co)a+(co)pz(0) —g (ro)ptt (0)a (to)] .

0 0

(3.28)

A very important fact, which has not been shown in
the literature as yet, is that the time-evolution operator
U(r, 0) [cf. Ey (3.16)] acts as a unit operator in the ex-
pression for K2 (r) if the RWA is applied to L„„appear-
ing in U(r, 0). This holds only because the interaction
Liouvillian L~ti, contained to all orders in U (r, O),
does not give any contribution:

d&s'&,'
=+igloo&S+&,

—f d (&S*&, ,+ &S*&, ,)

X f dcoig(to)i (e""+e "
) .

0

(3.31)

Tr„z I A [(I P)L„z ]'B—*I=0, 1=0,1,2, . . . (3 29)

and, therefore,

Kp(RWA)(r) = Tr„R [A U —(r, 0)e B ]

In the sequel we will use the following notation:

S(t)=&S &„S*(t)=&S+ &, .

IV. ANALYTIC TREATMENT OF EQ. (3.3I)

(3.32)

= —Tr„~(Ae 'B*}
= f dtoig(co)l (e""+e "

) .
0

(3.30)

This means that both the RWA applied to U(r, 0) in
the expression for Kz (r) as well as the BA applied to
K2 (r) lead to the same result. But one significant tluali
tative difference still remains, namely, the RWA takes
into account all orders of the interaction Hamiltonian
H~~, whereas the BA neglects any kind of interaction
which is of higher than second order. A consistent corn-
parison of the present results with those of Sec. II (ob-
tained by the Weisskopf-Wigner method) is now possible,
since in both cases we use only one approximation: the
RWA. In other words, if the present results had been ob-
tained in the BA (as is generally accepted in the litera-
ture), no consistent comparison with the results of Sec. II,
where no such approximation is made, would be possible.
Unfortunately, until now no one has become aware of
this inconsistency. Thus, for the 6rst time, we were able
to show that taking into account the counter-rotating
terms does not make the application of the BA necessary.

Finally, by using Eqs. (3.20), (3.21), (3.25), and (3.30),
Eq. (3.11) takes the following form:

By applying the Laplace transformation to Eq. (3.31)
and using the notation (3.32), we obtain two coupled
algebraic equations for the Laplace transforms S(z)
= f0"S(t)e "dt and (S ) (z):

s S(0)—(S') (z)X(z)
z + igloo+ X(z)

S'(0)—S(z)X(z)
z i coo+ X(—z)

(4.1)

(4.2)

where X(z) may be expressed by I (u ), defined in Eq. (2.5),

X(z) =i [I( —iz) —I(iz)] .
2m'

The solution for S(z) reads as

[z —i coo+ X(z) ]S(0)—X(z)S '(0)
S(z)=

z +2zX(z)+coo

(4.3)

(4.4)

Next we observe that making use of the Laplace in-
verse' we may represent the solution of Eq. (3.31) by
means of a path integral

S(t}=f S(z}e"dz, (4.5)
C
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where C denotes usually a vertical straight line in the z
plane, so that no singularities of S(z) appear on C or in
the semiplane on the right-hand side of C. Basically, Eq.
(4.5) gives the complete solution, and this equation will be
used for derivation of all further results. Since in X(z)
[see Eq. (2.5)] log(iz) appears, it is clear that the in-
tegrand in Eq. (4.5) is meromorphic in the semiplane
Im(z))0. Therefore, we look for an analytic continua-
tion of S(z) into the rest of the complex plane. Since
log(iz) has a vertical cut going downwards from z =0, we
find that S(z) "lives" exactly on the Riemann surface of
log(iz). Thus by labeling the "branches" of the log func-
tion with respect to the sheet of the Riemann surface on
which it is defined, we have

(o,o)

logt(iz) =log(iz)+2lmi, 1Hz . {4.6) skeet 0

Analogously, we involve the labels for the branches in the
definitions of X(z) and S(z). By using Eqs. (2.5)—(2.7),
(4.3), and (4.6) we obtain

sheet -1

Z

sheet 0

Qz
Xo(z) = ——

~ (~2 2)4

X (110 1804—z'+90'z' —2z')1

120

+log 0 2
(4.7)

skeet -1

FIG. 2. Path of integration C used in Eq. {4.5) and the de-
formed path lC on the Riemann sheets 0 and —1 used in Eq.
(5.1). The relevant poles crossed in the process of deformation
are z

&
(Weisskopf-Wigner pole) on sheet —1 and zo on sheet 0.

X,{z)=Xn(z)+ 2zi 0'z
(Q —z )

=TO(z)+2k f (iz) . (4.8)

The function f (iz) is precisely the natural cutoff function
defined in Eq. (2.2). Before getting involved with approx-
imations, we apply the theory of complex variables and
deform the contour of integration in Sec. V.

V. EXPONENTIAL-DECAY CONTRIBUTIONS
STEMMING FROM POLES

S(t)= g Res(e "S(z),z)+D(t), (5.1)

Our starting point is now Eq. (4.5). We note that the
integrand is defined as a multivalued function in the com-
plex plane, or more conveniently, as a single-valued func-
tion on the Riemann surface of log(iz). We now deform
the contour of integration C according to Fig. 2, so that
it becomes a contour K, which consists of two horizontal
rays emanating from 0 to —ao. Here one of the rays runs
on the sheet number 0, whereas the other one runs on the
(lower) sheet number —1. During the process of defor-
mation we might cross poles of the integrand in Eq. (4.5),
so that the residue theorem (see Ref. 17) yields

poles z of the integrand in Eq. (4.5) which are crossed in
the process of the deformation.

Before turning to the problem of calculating the poles
and residues appearing in Eq. (5.1), we observe that we
may reduce Eq. (5.2) to a simple form by using a parame-
trization of the path E [z(x)= —x, dz(x) = —dx, . . . ]:

Nt(z)=z +2zXt(z)+coo, I =0, —1 . (5.4)

Intuitively, one might expect zeros of NI(z) close to
( —1) itoo, since in this area zXt(z) is comparatively small.
In fact, in Appendix B we find the following.

Theorem 5.1. There are zeros zt of N&(z) on the respec
tive Riemann sheets, which read as

D(t)= . I e "[S i( —x) —So( —x)]dx . (5.3)
27Tl 0

We shall make use of this equation in Sec. VI.
We now turn to the sum in Eq. (5.1). Our first task is

to find all the poles appearing there. If one takes a close
look at Eq. (4.4), one recognizes that the poles of the in-
tegrand in Eq. (4.5) must be zeros of the respective
denominator in Eq. (4.4). Here we write down the
denominator of St(z):

where

D (t) = I e "S(z)dz1

27Tl K
(5.2)

CO0

I =0, —1

11k~0 A~0+ ( —1 )'i coo+ ln
2

(5.5)
is the deviation from the exponential decay, as will be
shown in the following. The summation is taken over all with the estimates for the corresponding errors
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Zl Zl
&1.4X10, 1=0,—1 .

ZI
(5.6)

The term (11/12m)Atoo —(Acro/m) 1n(n/coo) in Eq. (5.5)
represents the frequency shift (Lamb shift).

As will be shown in the following, the main contribu-
tion stems from the so-called Weisskopf-Wigner pole:z, . The essential tool for computing the zeros zp and
z

&
is a fixed-point theorem, described in Appendix B.

In Appendix B we also outline the method for finding the
approximate values of the corresponding residues and
give estimates for the errors. The results are summarized
as follows.

Theorem 5.2. For the residue Res(e "S(z),z, ) (which
is usually referred to as the Weisskopf-Wigner contribu-
tion) and Res(e "S(z),zo), it holds that

Res(e "S(z),zt ) = A&e
' (1 =0, —1) . (5.7)

Here z, and zp are given by the Theorem 5.1; further-
more, A

&
and A 0 are defined by

3A, 11 ~oo A,+ln
2m 12 0 m

—Im[S(0)] —+ +ln11 0
2 m 12 Q

A i =S(0) 1+

(5.8)

COp

Ao =S(0) + +ln
4 2m 12 Q

+Im[S(0)] jib

2
(5.9)

it Re(XI )
Since the "phases, " e ', 1=0, —1, are already con-
taminated with some error (cf. Theorem 5.1), the absolute
value of the residues should be considered in the error es-
tirnation

2

Weisskopf-Wigner pole, with the amplitude 3,= 1,
yields the largest contribution to S(t) for t &10 . Still
we do not know all the other poles. In Appendix C we
show how to estimate their position and the values of the
corresponding residues. It turns out that all of them are
close to —0, but their contribution can be ignored.

Theorem 5.3. Let g denote any of the poles except the
ones already mentioned in Theorem 5.1. Then the fol-
lowing holds:

n&X
2

& lg
—( —n)l &n&X, (5.11)

g Res(e "S(z),g) & exp( —10 ), t ) 10 (5.12)

UI. ESTIMATION OF DEVIATIONS FROM
EXPONENTIAL DECAY IN THE CASE OF

DIPOLE-MOMENT EV's

4i Im[S(0)]
td2t~0

In contrast to I, in the present paper we shall not need
Abel's asymptote. The task to be accomplished now con-
sists of giving an approximate evaluation of D(t) for
times t ~ 10 ' s, including estimates of the errors. So we
start from the integral representation of D(t), Eq. (5.3).
We find it convenient to change the variable of integra-
tion, i.e., to put

(6.1)

x =Qy, dx =Qdx,

P(x)=S, ( —x) —So( —x) .

Thus the integral representation of D (t) reads as

(6.2)

(6.3)

In Sec. IV we found the integral representation (4.5) of
the solution of the basic equation, Eq. (4.1), and we used
the theory of complex variables in order to deform the
contour of integration. The residue theorem, finally, led
us to Eqs. (5.1) and (5.2). We now turn to the discussion
of Eq. (5.2). As will be shown below, the asymptotic
main term of S(t) reads as

l l
e "Res(S(z),zi ) l

—
l A&e

'
l l & 72k. =7.2X10 " D(t)= f np( —ny)e «'dy .

2&l 0
(6.4)

(1=0,—1) . (5.10)

It should be noted that the contribution of the

The next step consists of having a close look at the in-
tegrand P in Eq. (6.4). A tedious elementary calculation
yields

4Ai v(y)y (y—+i5o)I —y Re[S(0)]+5oIm[S(0)]jn ( —Qy)= f (y)+4k, y
(6.5)

where the following functions are used:

v(y) =(1—y')',
P(y)= —,", ——,",y + —,', y —

—,', y

r(y)= [P(y)+in(y)+ivr],A,y

(6.6)

(6.7)

(6.8)

2k ' COp

P(y) =(y +5o)v(y) — [P(y)+ln(y)], 5o=

(6.9)

The essential idea is now to divide the interval of in-
tegration in Eq. (6.4), [0, oo ) into three subintervals. The
reason for performing this subdivision is the different be-
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havior of the integrand /exp( —Aty) of Eq. (6.4) in each
of these subintervals. As we show in Appendix D the fol-
lowing theorem is valid.

Theorem 6.1. The function P( —Qy) satisfies the fol-
lowing inequalities: (i) For y EI, = [O, g), g =5o/10
= 10, it holds that

with the estimate for the "error term" E (t):

E(r) 1.3X10
M(t) ~Im[S(0)] ~t

(6.18)

4A,y Im[S(0)] ~ q 15' 5

(QP( —fly)~ &
4

ky

(iii) For y EI3 = [1+2/+~, oo ), it holds that

26ir2( 1+Q )2g
i Ap( —Qy) i

&

(6.1 1)

(6.12)

Let us brieAy comment on this technical result: It just
means that we can replace the function P( —Qy) in the in-
tegrand of Eq. (6.4) by 0 in intervals I2 and I3, and by
4ly Im[S(0)]/5o in I, . Thus Theorem 6. 1 gives the esti-
mates of the respective error functions.

Our next step consists of integrating the inequalities in
Theorem 6.1. This is quite elementary and we get the fol-
lowing.

Theorem 6.2. The following Anal estimates hold for the
integration in Eq. (6.4) over the intervals I„I2, and I3

1 A, 4i Im[S(0)]
[ (

2m r ) 2' 0

+e(t),
with the error estimate

le (r)l &
15' 5 4+

54 5' n, 't' '
0 0

(6.14)

and upper bounds

2 1 exp( Q,rit)—
~ ~

Ot
(6.15)

(6.10)

(ii) Fory&I2=[il, 1+2/~a. ], ~=exp(10 ), it holds that

VII. CONCLUSION

In this paper we have given a rigorous mathematical
treatment for the spontaneous Lyman-cz radiation emis-
sion from a single two-level hydrogenic atom. In our cal-
culations no kind of ultraviolet divergency occurs, since
all the retardation effects were taken into account. Fur-
ther, as a very important fact, at every step of our calcu-
lations, the diverse approximations are provided with
very accurate error estimates.

Finite-time deviations from the exponential decay were
calculated for two different cases. In the first case we
have treated the so-called Weisskopf-Wigner model
(where the RWA is implied) and derived corrections to
the exponential decay which are valid for times t «10
s.

In the second case we have gone beyond the RWA by
taking into account the counter-rotating terms. In order
to obtain results superior to those of the Weisskopf-
Wigner model we applied a projection-operator method,
where no kind of the usual BA is made. Thus we ob-
tained results for the dipole-moment expectation values
which contain the Lamb shift ( y /m )[—,", —»(&/coo) ]
differing from the familiar Lamb shift (obtained in the di-
pole approximation) ' by a non-negligible correction
1 ly/(12m. ). Further, by a complex, but very accurate, es-
timation method, deviations from the exponential decay
valid for times t «10 ' s were obtained. It should be
emphasized that the accuracy of all the results obtained
in the present paper is proved by error estimates.

Finally, we would like to stress the fact that the Lamb
shift as well as the deviations from exponential decay
were calculated for the two-level model; however, this
does not mean that the contributions of the other levels
(which were neglected in our model) are negligible. The
inclusion of these levels would inAuence the deviations
from the exponential decay (see Ref. 9) as well as the
value of the Lamb shift (cf. Refs. 7—9).

2 ir (1+5D) exp( Qt)—
r, ~Q

(6.16)

In other words, we may "neglect" the integrals over
the second and third interval for t «10 ' . Note that the
main term M(t) of Eq. (6.1) appears in Eq. (6.13). In
fact, in the last step of this section we compare the values
of all the contributions and errors with the value of the
main term for times t ) 10 ' and Im[S(0)]) —,

' . It
turns out that the main term is a good approximation for
the expression D(t) in Eqs. (5.2) and (6.4). We find the
following.

Theorem 6.3. For t «10 ' s it holds that
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APPENDIX A: EVALUATION OF SOME
ELEMENTARY INTEGRALS

Here we sketch the evaluation of I(u) [cf. Eq. (2.5)]
which is also used for the evaluation of X(z) [cf. Eq.
(4.3)]. The first step consists of rewriting the integrand

D( )
A. 4i Im[S(0)] +E( )

27T 0
(6.17) f (co) coA,

(0 +co ) (co —u)
(A 1 )
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f (co) P7 (to) +
(Q2+ to2}4

in the following form:

(A2)

= ld+(z)/dzl & tr holds. Assume furthermore that
I4(z(o)) —z(0)l (1—ir)R. Then the following statements
hold: (i) The sequence starting with z(0) EG and defined
by

Here P7(co) is a polynomial of degree 7 in to, and c is a
constant. We might be able to determine P7(to), explicit-
ly, using some ansatz, but we postpone this step for later.
Multiplying Eq. (A2) by co —u and putting to=u, we
deduce that c =f (u), where f (u) is defined by Eq. (2.2).
We thus complete our task if we evaluate the two in-
tegrals corresponding to the two summands in Eq. (A2).
It follows from integration technique that one can find a
polynomial Ps(to) with

P2(to)d co

(Q +co )

P5((o) ( A6to+ A7)d(o+
(Q2+ 2)3 Q2+ 2 (A3)

So altogether we find the following integration formula:

P3(to) ( A6co+ A7)de+
(Q2+ 2)3 Q2+ 2

+ f f (u)de
(A4)

Next we put P5(to) = Ao+ .
A 5' with unknown

coefticients A, , where i =0, . . . , 5. Differentiating both
sides of Eq. (A4), one finds a linear system of equations
for all the unknown coefticients in the integral. Tedious
calculation yields the following:

(11Q +18Q u +9Q u" +2u ),f (u)
12

(11Q +15Q u +5Q u +u ),f(u)
16u

(SQ +6Q u +u ),f (u)
4

(5Q +3Q u —3Q u —u )
f (u)
6A u

f'"'(Q'+ ')
2

(5Q +Q u —5Q u —u ),f(u)
160 u

A6 = f (u), —

A = (5Q —15Qu —5Qu —u )
f(u)
160 u

(A5)

(A6)

(AS)

(A9)

(A10)

(A 1 1)

(A12)

APPENDIX 8: APPROXIMATIONS
FOR THE POLES AND RESIDUES

Lemma B.l (fixed point theorem). -Let @(z) denote a
complex function analytic in 6:=Izl lz —z(0)l &R I and
continuous on the closure G= Izl lz —z(0)l &R I. As-
sume that there is some real non-negative number
~ & 1, so that for all z E G the inequality I

C)'(z)
I

Finally, we evaluate the integral between 0 and ~. This
now can be done in a completely elementary way and
after changing the notation C, (u)= Ao(u) and C2(u)
= A 2( u ), Eq. (2.5) can be deduced.

z(„+,) =4(z(„)) (Bl)

converges to the unique fixed-point z~ „~ in G, i.e.,
z(„)=@(z(„)). (ii) For the rate of convergence, one has

Iz(„)—z(

and

(B3}

Note for the proof This. is a summary of Theorems
6.12a and 6.12b on pages 524 and 525 in Ref. 18, together
with some standard statements as stated in the exercises
ibidem.

Our first application of this fixed-point theorem is
finding zeros of the denominator N, (u) = u —coo

+(A, /2m. )I, ( u) in Eq. (2.4) [I i =ID+2~if (u)]. If we
rewrite our problem as u =too (A, /2n—)I )(u), it be-
comes clear that we may apply the Axed-point theorem to
the function C&(u)=coo —(k/2n)I )(u). Since the term
(A. /2m )I i(u) is comparatively small for u close enough
to u =cop, we expect a fixed point close to u =cop. Thus,
with u~p~=cop —i0, we start an iteration for approximat-
ing this fixed point.

Lemma B.2. In the fixed-point theorem for
4(u)=too —(k/2m)I i(u), u(0) =coo, R =AQ, and v=4K. ,
the following statements hold true:

I I Zap 5$Q
64u( )) cop+

24~

A.ct)p Q
ln

2& cop

Cgpk,

2

(B4)

(4.1X 10 (B5)

Proof. By inserting u =too iO (we —start on the lower
sheet) into the equation u()) =@(u(o) ), we immediately
obtain Eq. (B4), where

lu(i) —u(, ) I

= II )(~,—iO)l &0.76K.Q
277

(B6)

as can be seen from Eqs. (Dl) and (D2). Further, by
making use of Eqs. (2.5)—(2.7), it is easy to show that

I+'(u)l = II' i(u)l «, (B7)

where lu —
cool &too/10, and the estimations lf (u)l

& 1.01 lul, lf'(u }I &1.01, I
C', (u)

I
& 1.01Q, IC', (u) I

& 10lul/m. , and Ilog, (Q/u)+in.
I

& 17 are taken into ac-
count. Therefore, from Theorem 8.1 we deduce that
b,„=lu(, )

—u(„) I
&4A, Q holds, so that Eq. (B5) follows.

Our next task is an approximate evaluation of the resi-
due.

Remark Iff (z) =M.(z)/N(z), so that N(z) has a sim-

ple zero at z =zo and M(z) is analytic in a (small) neigh-
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borhood of zp, then it holds for the residue that

M(z())
Res(f (z),zo ) =

ZQ
(88)

Zl(1) =@I(Zl(0) )

A.COpK

lzl(„) —zl(, )l &12 &85K,3coo .
1 —K

(816)

Lemma B 3 .F.or k, (u) in Eq. (2.4) we find

Res(B, (u), u ) =b, (0),
S„,= IRes(B, (u), u }—b, (0) I

& lozlb) (0) I .

(89)

(810)

Proof. Since u is a simple pole of N, (u ) = u —(I)(u), it
follows from the above Remark that

lzl(i) —zl I
& 109K,2coo . (817)

From this we see that zl(„)=(—I)'iso and thus the er-
ror is extremely small, i.e., the convergence is pretty
good. We are, however, interested in a simpler expres-
sion for &Pi(zl(o)), which can be obtained by means of a
power series: If we put (I)i(zl(Q) ) =zl = ( —I )'i coo[1—

cr l(zl(o) )], then the error amounts to

bi(0)
Res(B(u ), u ) =

1 —4'(u )
(811) Another simplification concerns Xl(zi(Q)) [cf. Eq. (4.3)].

If we put

Then Eq. (87) leads directly to Eqs. (89) and (810).
Our second application is the calculation of the zeros

in Theorem 5.1. In order to find zeros of Nl in Eq. (5.4)
we apply the fixed-point theorem to

—1/2
&,(z)

z =( —I )'ico 1+20
Z

&i(zi(o) }=&1=
A.cop Zap 1 1 cop+( —1)'+'i +ln

2 m 12 Q

(818)

then the following estimate is valid:
2

We state this more formally.
Lemma B.4. Put

COp

I Xi(zi(o) ) —Xl I
& 1 lkcoo (819)

crl(z) =Xi(z)/z, l =0, —1

@1(z)=( —1)'icoo[1+2crl(z)]
(812)

Zj + ( —1 )'i coo+

where we made use of elementary estimates with a power
series. Further, we put

Here the branch of the root has to be taken in such a way
that it becomes analytic in a neighborhood of i~p. Put
R =cooX10 and zl(o)=( —1)'icoo Then . for )c=7A, the
hypothesis of the fixed-point theorem is satisfied.

Proof. The first thing to show is that I(I&I(z)
I

&)c holds.
Note that

cr l (z }crl (z)
cI)I(z) = ( —1)'+ 'i coo

[1+2cr 1 (z) ]

Now, after some elementary calculations, the following
estimates can be shown:

67p

ZI Z/( ~ )y l =0, —1 (821)

one finally obtains the results in Theorem 5.2.
Our next task is to sketch the approximate evaluation

of the residues of the poles as stated in Theorem 5.1. Ac-
cording to Eq. (4.4) it follows that

(820)

By collecting the three estimates of Eqs. (816), (817),
and (819) and denoting the zeros zl(„, (according to their
localization on the lth Riemann sheet) by

lcr, (z)l &6A., lcr', (z)l & (813) M (z) = (z —icoo) [S(0)]+2i X(z) Im[S (0)], (822)
Q)p

With this result we easily derive

6kII I(z)l , , «7A, '.
(1—12K, )

r (814)

N(z)=z +2ZX(z)+co(),

and from the above Remark we have

M((z(( ))
Res(S((z), zl( „))=

Nl'( zl ( „))

(823)

(824)

Thus we proved that we may put K=7K . Next we show
that lzl(i) Zl(o)l & (1 ic)R. Note that

lzl(1) —zl(())l =o)QI [1+2(rl(zl(()) ) J

2coolcrl( l(o)l 12coo~ . (815)

This is evidently much smaller than (1 —ic)R =10 (1—7A, )coo, so that the estimate holds true.
This allows the application of the fixed-point theorem;

after having performed the first step of the fixed-point al-
gorithm and making use of Eq. (815), we find

QPp

Ir, (z,(„))—X, l
& llz~o

Izl(„)X((zl(„))—[21+( —1)'+'icool(, /7r]l

COp

4 31XQ)p

'2

(825)

(826)

Again one has to perform some estimates with a power

By making use of Eqs. (817), (819), and (820), one finds
the following estimates:

2
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series. Next we give approximations for M and N', re-
spectively,

M) =(z) i rpp)S(0)+2iX) Im[S(0)],
N I =2[z)+2XI+( —I )'+'irpp(A/i. r)] .

(B27)

For the errors one finds, in a tedious but elementary way,
the following estimates:

' 2

(For this Lemma we also refer to Ref. 17.)
Our first candidate is the function k, (u) in Eq. (2.4).

We choose C to be "composed" by a finite part of K and
the circular part C * with radius R as is shown in Fig. 3.
With f (u)=u —

rpp, g(u)=(A, /2m)I)(u) (i =0, —1), and
R large enough (cf. Fig. 3), the hypothesis of the Lemma
of Rouche is satisfied along the circular part C*.

Next we observe that, from Eqs. (Dl) and (D2) and the
relation

Ct)p

Mr M) ~
&35Arop

2

(B29)
COp

~u
—

rpp~ & —, u EK2'
COp

) Ni' N I i

—& 110K,rpp

IMpI &6~rpp IM —iI &2rpp IN)'I &2rpp .

These inequalities lead to

(B30) one easily obtains

(B31) II(u} & lu —rppl, u eK, i =0, —12' (C2)

COp

IM)(z)( ))/NI (zI( )) M)/N ) I
&71~

' 2

(B32)

Finally, we remark that the expression N I [cf. Eq.
(B28)] can be approximated by

N I =N I =2( —1) irpp,

so that

~N I
—N l I & 3 4~rop .

(B33)

(B34)

W e thus remark that N I and M& are approximations for
M and N [cf. Eqs. (B22) and (B23)] on the respective
sheets of the Riemann surface (i.e., 1 =0, —1). The vari-
ous estimates, finally, yield Eq. (5 ~ 10) of Theorem 5.2.

APPENDIX C: ARGUMENT PRINCIPLE

The argument principle reads as follows.
Lemma C.l. Let f(z} denote a complex function

meromorphic in some simply connected open subset G of
a Riemann surface. Let C denote a closed piecewise
differentiable continuous curve in G having no double
point. Assume that f (z) has no poles or zeros on C. The
quantity

b,carg(f)= I f'(z)dz

and thus the hypothesis of Lemma C.2 is satisfied along
the whole curve C. So, according to this Lemma, instead
of the complicated denominator N(u) of B,(u) [cf. Eq.
(2.4)], we may deal with the very simple function
f (u) =u —cop, which has exactly one zero at u =cop and
no poles. Since N(u) evidently has no poles, we infer
that the function N(u) has a simple zero in the area en-
closed by C. We remark that we found an estimate for it
in Appendix B, Eqs. (B4) and (B5)~

Our next application of Rouche's Lemma and the ar-
gument principle will consist in deriving Theorem 5.3.
Here we start with the denominator N(z) of Eq. (4.4),
which is given by Eq. (5.4}. We use a path according to
Fig. 4, which consists of one and a half circles of large ra-
dius R and a part of the line Re(z) =0 denoted by K. It is
immediate that f (z) =z +cop and g (z) =z X(z) satisfy the
hypothesis of Rouche's Lemma along the circular part
C of the curve (cf. Fig. 4), since the term z dominates.
So we find 6n. for the value of b, +arg(f+g). Next

is equal to 2n times (Z P), where Z (P—) denotes the
zeros (poles) of f (z) in the area enclosed by C, each of
them counted with their order. For a continuous param-
etrization z(8) of C, b, c arg(f) is equal to 2ntimes the.
length of the curve U (8)=f(z (8) ) /~ f(z (8) ) ~, where 8
runs from 0 to 2m. .

For more details we refer to Ref. 17. The second im-
portant ingredient is the Lemma of Rouche.

Lemma C.2. Assume that the meromorphic functions
f (z) and g (z) are analytic in the simply connected open
subset of the Riemann surface. Let C be a curve, as in
Lemma C.l, and assume that f (z) has no pales or zeros
on C. Furthermore, assume that )g (z)

~
&

~ f (z)
~

holds an
C. Then

~c arg(f)=~c arg(f +g) .

skeet -2

sheet 0

FIG. 3. Curve C, consisting of the circular part C* and a
finite part of the path of integration K [cf. Eq. (2.15)]. Curve C
is used for finding the zeros and poles of the function k, (u) [cf.
Eq. (2.4)] by means of the argument principle in Appendix C.
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note that Im[NO( —iy)]&0 and Im[N i(iy)]&0 hold
for y &0. Therefore, from N(0+0)=coo&0, it follows
that the contribution of hx arg(f)=b, x arg(f +g)
=Ex arg(N} will be —2m. Thus altogether b,c arg(N)
=4m, so that Z P—=2 holds (cf. Lemma C.l). So we
find by Lemma C.2 that N(z) has two zeros more than
poles in the area enclosed by the curve C (see Fig. 4).

Next, a very elementary calculation shows that both
Xo(z) and X i(z) [cf. Eq. (4.7)] have a pole of the fourth
order at z = —0, and Xo(z) has no pole at z =Q. There
are evidently no other relevant poles than these eight
ones. Therefore, N(z) must have exactly ten zeros in the

area enclosed by C. We already found two zeros in Ap-
pendix B, so eight of them are missing. We next localize
the zeros close to z = —Q.

We first start with a simple scaling

z(p)= —Q(1 —p), pEC (C3)

and then, in order to apply the argument principle, in-
stead of N[z(p)] we introduce an auxiliary function
F(p)=mN[z(p)]p (2 —p) /Q which has the same zeros
as N [z(p)] but none of its poles. Further, we define the
following expressions F, (p) and Fz(p):

7 2

F, (p)=p ~ (1—p) n(2 —p) —2A, R4(p) ——+p—
2

+ m(2 —p) (C4)

F2(p) =2ink(1 —p) (C5)

where R4(p) denotes the remainder of the power-series
expansion for log(1 —p)/p (around p=0). We remark
that F(p)=F, (p)+F2(p), where the sign has to be
chosen according to the sheet number 0 or —1. If one
has a close look at F (p), one can see the following.

Lemma C.3. (i) Along the circle IpI = +A, the inequali-
ty IF (~)I & IF2(p)I is valid. (ii) Along the circle
IpI = A, /2 the inequality IF, (p)I & IF2(p)I is valid.

Proof. We outline the proof for (i) and (ii). It is reason-
able that one might simplify F;(p) (i =1,2):

F, (p) =Fi (p) = 16m p

F~(p }=F2 =2i m A. ,

(C6)

(C7)

IFi(p) —Fi(p) I
& 2051p I',

IF2(p) —Fq I
& 13K,Ip I

.

(Cg)

(C9)

This is certainly good if IpI & +A, = 10,which is much
smaller than 1. In fact, using Taylor-series expansions
one can show the following estimates:

(o,o)

I

I

Im
I

Then it is evident that the statements (i) and (ii) of the
Lemma are true, when F, and F2 are replaced by F, and
F2, respectively.

The statements of Lemma C.3 can be used in connec-
tion with Lemmas C.1 and C.2. Then on each Riemann
sheet (1=0,—1) the following holds: Along the circle
p= +k the function F, dominates, so that inside of the
circle there must be four zeros of F according to Lemma
C.l. Since along the inner circle p= +A, /2 the function
F2 dominates, there can be no zero of F inside. There-
fore, all eight zeros of the function N(z) (four on each
Riemann sheet) are contained in the annulus

L =
I z

I
II ~~/2 &

I
z —(

—II }I
& II ~~ I . (C10)

We turn to the estimates for the residues. Using the
scaling of Eq. (C3), an elementary calculation shows that

skcct 0
M, (z)

S,(z) =
z

Ei(p)
F'(p)

(Cl 1)

skeet —1 skcct 0 where Mi and NI are given by Eqs. (B22) and (B23),
F'(p) =F, (p)+( —1)'+ 'Fz(p), and

ahcct -2

FIG. 4. Curve C consisting of the circular part C* (one and a
half circles) and a finite part of the line Re(z) =0 denoted by E.
Curve C is used for finding the zeros and poles of the function
S(z) [cf. Eq. (4.4)] by means of the argument principle in Ap-
pendix C.

4 7 pEI(p) =A(1 —p) p Rq(p) ——+p —P

+( —1)'im. 2i Im[S(0)]

—[(1 p)+i coo/A]S (0)~p—(2 —p) (C12)
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IF(p)I &60A, ,

IF'(p)l &4mA

(C14)

(C15)

From Eq. (C15) we immediately conclude that all the
poles of S(z) are simple and this justifies a posteriori the
application of Eq. (C13). From inequalities, Eqs. (C14)
and (C15), it follows that

IRes(S(z), g) I & 5A, '" . (C16)

Finally, let g denote any of the (simple) poles of S(z) in
the annulus defined in Eq. (C10). Taking into account

l«s(e "S{z)g)l=e'a'"IRes{S(z) ()I

and Re(g) & —Q+QA'~, Theorem 5.3 follows.

APPENDIX D: APPROXIMATIONS
FOR THE INTEGRANDS OF SECS.II AND VI

In this appendix we sketch the proofs of those inequali-
ties which are connected with integrations over the de-
formed paths K in Secs. II and V, respectively. %'e al-
ready used some of these inequalities in Appendix C on
the argument principle.

Our first task is to note that for u =(1 i)Qx—with
non-negative real x,

(D 1)

holds as an elementary evaluation of the maximum of this
function, with respect to x shows. Our next concern is to
derive the inequality

Io(u) (0.26A, Q . (D2)

Starting from the definition of Io(u) [cf. Eq. (2.5)] and in-

troducing a new variable y of integration co= Qy, we find

Qy dy
Io u

2n 2m' o (1+yi)~[y —(1—i)x]

( AQ
y

v'2dy
2n o ( I+y~)4

(D3)

If we now replace the integrand in the last inequality by
v 2 in the interval [0,1], and by v 2/y in the rest interval
[1,~), and afterwards integrate, we find the final esti-
mate in Eq. (D2). Equipped with these inequalities, i.e.,

Eqs. (Dl) and (D2), it is easy to derive

IN, (u)l ~ lu —oioI(l —1.1X10 ) 1=0,—1 . (D4)

Here u has the same meaning as above. From Eqs. (D2)
and (D4) it is elementary to perform the following esti-
mate for the integrand in Eq. (2.16):

one observes that for a simple zero g

Res(S(z), g)=Res,P, [g= —Q(1 —P)] (C13)E(p)
F(p) '

holds true. Again, using Taylor-series expansions one
finds that for p EL [cf. Eq. (C10)],

f (u)=u, N(u)=coo .

So we find immediately that

iAf (u) i Au

No(u)N, (u)

(D6)

(Alf (u)I
1

No(u)N i(u)
1

No(u)

+ 1

No(u)

1 1 u

o~o' f (u)

(D7)
The common factor in front is bounded by A, IuI. Thus we
turn to the three summands in large parentheses. For the
first one, using Eq. (D4) and the bound for the common
factor in front, we get A, IuIIu —

cooI (1—10 ) as a
suitable bound. Since Iu —

cooI is decreasing, we finally
find a good bound for this first term:

s] =1.64
A.

I
u I

3
COp

{D8)

In a similar elementary way one finds a bound for the
second term:

3
"+ 3.

Ct)p COp

(D9)

And, finally, using power-series expansions we find a
bound for the third term:

X
s3 =8. 1

2
COp

(D10)

Thus summing up these estimates we obtain the estimate
of Eq. (2.19) in step (5) of Sec. II.

We now start discussing some of the technical details
in Sec. VI. So we turn to an explanation for the estimates
found in Theorem 6.1. We have three intervals there,
and we start with I&. The basic idea is that the following
simplifications can be made for y EI, :

v(y) =1, (Dl 1)

f (u) Q
No(u)N i(u) 2Iu —oioI2( I —l. I X 10 s)2

1

2(1 —10 )Q[(x —5o) +x ]

1 COp

(1—10 )Q5

(D5)
The last estimate follows from looking at the minimium
of the denominator function [(x —5o) +x ], which is at-
tained at x =5o/2. This last inequality being integrated
over the interval [5, 00 ) gives the estimate of Eq. (2.18) in

step (4) of Sec. II.
Our next task consists in deriving the estimate in step

(5) of Sec. II. Intuitively one expects in the interval [0,5]
that
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P (y) 11 (D12) Again, some elementary work leads to the estimates

z(y ) = ( —,", + Iny +i m ) .ky (D13) ~A'(y) —4A.5ay Im[S (0)] ~

(9.7A,5oy

~ JV(y )
~

(4. 88k,y 5o .
(D17)

The lny term is a bit subtle. We make use of the fo11ow-
ing elementary inequality:

2
1

3 1n10 2 —1/(311I10)(p 55 1.85 (D14)

which holds for 0(y (exp( —31n10)=50. In fact, with
this and more care in the approximations of v, P, ~, we
find that

52~ (y2+ 552 1.85 (D15)

Thus for the denominator 2)(y) in Eq. (6.5), after elemen-
tary tedious estimations, we find

54~ ( 352 1.85

l
1 /n(y) —I/50I 4. 2y '"/5,' .

We next denote by JV(y) the numerator in Eq. (6.5).

The inequalities (D16) and (D17) yield the statement (i) in
Theorem 6.1.

We next turn to interval I2. An estimate for the lower
bound of ~2)(u)~ is given by 4A, y . For ~A'(y)~ a crude es-
timate yields the upper bound 16Ay. This immediately
leads to statement (ii) in Theorem 6.1.

So we come to the third and final interval I3. As a
rough upper bound for

~
JV(y)

~
we may use 2 Ay "(I+5o)

[cf. Eqs. (6.5) and (6.6)]. In order to get a reasonable
bound for ~X)(y) ~

we have to be a bit more careful. Clear-
ly, we may estimate the lower bound ~2)(y)~ by f (y).
Having a closer look at lb(y) we find a lower bound
(y +5o)(1—y )", which itself can be bounded by y' /a.
again. So this leaves us with y /tc as a lower bound for
~X)(y)~. A combination of the estimates for ~JV~ and ~2)~

leads to statement (iii) in Theorem 6.1.
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