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We develop a semiclassical theory of the polarization properties of phase conjugation by two-
photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the
pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medi-
um consisting of stationary atoms with a ground and excited state connected by two-photon transi-
tions. As an illustration of the general results, we consider an SO~So two-photon transition, which
is known to lead to perfect polarization conjugation in the limit of third-order theory. We show
that the fidelity of the polarization-conjugation process is degraded for excessively large pump in-
tensities. The degradation can occur both due to transfer of population to the excited state and due
to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Mal-
cuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

I. INTRODUCTION

Optical phase conjugation is a process that can remove
in double pass the aberrations impressed on an optical
wave in passing through a distorting medium. Ideally,
the wave generated by the phase-conjugation process
possesses two properties: ( 1) wave-front reversal: the
scalar field amplitude of the generated wave is the com-
plex conjugate of that of the incident wave and (2) polar-
ization conjugation: the polarization vector of the gen-
erated field is the complex conjugate of that of the in-
cident field. Polarization conjugation is often a desirable
property because it can be used to correct for polariza-
tion distortions. Many interactions that can be used to
produce a phase-conjugate wave front do not possess this
second property. We will refer to a process that possesses
both of the properties described above as a vector-phase-
conjugation (Vpc) process.

Polarization properties of phase conjugation have been
studied theoretically by a number of researchers'
within the context of third-order theory. In particular,
Grynberg' and Ducloy and Bloch have predicted that
degenerate four-wave mixing (DFWM) based on two-
photon atomic resonances will lead to VPC for arbitrary
states of polarization of the two pump waves for an ap-
propriate choice of atomic levels. This possibility has
been tested experimentally by Malcuit et al. " using the
35~6S two-photon transition of sodium. They observed
high-fidelity VPC for pump intensities well below the
two-photon saturation intensity, i.e., when the assump-
tions of Refs. 1 and 2 were satisfied. However, when the
pump intensities were increased in order to increase the
phase-conjugate reAectivity, the vector character of the
phase-conjugation process was found to be severely de-
graded.

In order to explain these experimental results, we
present in this paper a theory of DFWM resonantly
enhanced by a two-photon-allowed atomic transition.

Our theory treats the DFWM process for arbitrary states
of polarization of the interacting fields, and includes the
efFects of saturation by the pump fields. Existing
theories' ' of two-photon resonant phase conjugation
that include saturation efFects are restricted to the scalar
case, i.e., to the case where all interacting fields have the
same polarization.

II. THEORETICAL FORMULATION

We model the nonlinear optical medium as a collection
of stationary atoms with a single ground state ~0) con-
nected by two-photon transitions through the intermedi-
ate states ~k') to a single excited state ~2), as shown in
Fig. 1. The atoms interact with an electromagnetic field
of the form

E(r, t)=E„(r,t)e ' '+E„*(r,t)e' ',
where 2~ is close to the two-photon resonance frequency
(i.e., 2co=co2o, where A'co2o is the energy diff'erence be-
tween the excited and ground states), and where the frac-
tional variation of E (r, t) in an optical period 2'/co is
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FIG. l. Energy-level diagram showing the ground state ~0)
and the excited state ~2) which are connected by two-photon
transitions through the intermediate states

~
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small. Similarly, the atomic polarization of the medium,
which acts as the source of the conjugate field, is
represented as

P(r, t)=P„(r, t)e ' '+P" (r, t)e™.

We consider the case in which no intermediate state is
resonantly excited. We therefore assume that the inter-
mediate states do not acquire appreciable population and
that there are no appreciable coherences among these
states. Consequently, the only nonzero components of
the density matrix are the ground-state population poo,
the excited-state population pzz, the one-photon coher-
ences pk 0 and pzk, and the two-photon coherence pzo.
We assume that the excited-state population decays back
to the ground state with a decay rate I . Hence popula-
tion is conserved, i.e. Poo+Pzz

To simplify our working equations, we assume that for
a subset

I
k ) of intermediate states the detuning from the

one-photon resonances is small compared to an optical
frequency. ' We hence introduce the slowly varying
quantities cr,. by means of the relations

POO ~00& P22 ~ 22

b, z is small and the one-photon detunings b, kp and b, zk are
large compared to the decay rates of the corresponding
coherences. In this case we can adiabatically eliminate'
the one-photon coherences by formally setting dk0=0
and 6 zk =0 in Eqs. (5) and (6). These coherences are then
given in terms of w and o.

zo as

ako w —1
~ko

ko

akz
020 ~

ko

azk w +1
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aok
Ozo ~

ko

W = —I'(tlj+1) —2i(gpzO20 —Q20O02),

&20 — [l (52+ Qpp Q22 )+ Y ]&20 IQ20W

(9)

(10)

where y =yzo, and the two-photon coupling constants are
defined by

where we have taken Azk = —Ako. By substituting these
expressions into Eqs. (4) and (7), we arrive at the two-
photon, two-level density-matrix equations of
motion' '

e
—i zest

(3) Ik kj

k ~kO

and make the rotating-wave approximation to obtain the
density-matrix equations of motion

tv= —I (III+1)+2 + (ia ko k iak cr k—),
k

w —1
ako ( ~ko+rko)ako+Iako

2
I kzazp

w+1
azk ( ~zk + Y2k )azk + a2k

2
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20 ( ~2+rzo)bozo+ g ( akoazk azkako)
k

(4)
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(7)

where w =o.
zz

—o.
oo is the population inversion, y, is the

decay constant for the u; coherence, and the detunings
are defined as 52 =cozo

—2', Ako =coko
—co, and

hzk =a@2k —m. The one-photon coupling constants are
defined as ako=apk = (dkp E )/fi and azk =akz
= —(dzk E )/A, where d,j = —er;I are the electric-diPole
matrix elements.

We consider the case where the two-photon detuning
I

The coupling constants Qoo and Qzz correspond to the
Stark shifts of the ground and excited states, respectively,
and Qzo corresponds to one-half of the two-photon Rabi
frequency. '

We solve Eqs. (9) and (10) in steady state to find the in-
version and the two-photon coherence:

1+(~2+ Qoo Qzz)—'/r'w=
1+(a,+g —g„)'/y'+4(1/yl. )lg„l' '

. Qzo 1 —i (52+ Qpp
—Qzz)/y

1+(~2+Qpo
—Q» )'/r'+4(1/r r ) I Q„l'

(13)

In the scalar limit, these solutions reduce to the ones ob-
tained by Sargent et al. ;' however, since our coupling
constants a, depend on the state of polarization of the
optical fields, we can treat the tensor nature of the in-
teraction in our theory. Finally, the steady-state polar-
ization amplitude P (r)=N Tr(do ) for the medium is
given by

P ( ) = —NX
ok ko —'NX Ok kz kz Oka d a +d a

k ko k ~ko

dok ako dk2a2k

k ~kO

(Q20 Y)[ (~2+Qpp Q22)/r j
1+(b,,+Q —g„)'/y'+4(1/yI ) Ig„l'

2(1/yI )Ig
1+(b,,+g —g„)'/y'+4(1/yI ) I

Q„l'

III. PHASE CONJUGATION
UTILIZING AN Sp ~Sp TRANSITION

We now treat the case of phase conjugation by DFWM
specialized to the geometry shown in Fig. 2. We assume

I

that all interacting waves are infinite p1ane waves propa-
gating almost parallel or antiparallel to the z axis. We
consider the case of a nSO~n "SO two-photon transition
because in the third-order limit this excitation scheme
gives rise to perfect VPC. ' This choice of levels also ap-
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FIG. 2. Geometry for phase conjugation by DFWM with the
strong pump waves Af and A„propagating along the +z' direc-
tions, and the probe wave A~ and conjugate wave A, propaga-
ting along the +z directions. The angle between the two axes is
assumed to be small, so that all fields are polarized in the x-y
plane.

proximates those of the experiment of Malcuit et al. "
For this excitation scheme, the only intermediate states
that connect the ground and excited states are the mag-
netic sublevels of the n'P& levels, as shown in Fig. 3.
Note, for example, that an e+ = + (x+i y)/v'2 circularly
polarized photon can interact' only with the
lnSo, m =0)~ln'P„m =+1) transition or the
I
n 'P, , m = +- 1 )~ n "So,m =0 ) transition.

The diagrammatic analysis of Fig. 4 displays pictorial-
ly why third-order processes lead to perfect VPC for
two-photon resonant media and why the fidelity of VPC
can be degraded by higher-order processes. Note that in
a perfect VPC process an e+ circularly polarized probe
photon leads to the generation of an e circularly polar-
ized conjugate photon, and vice versa. In Fig. 4(a), the
pump intensity is assumed to be suSciently low that only
third-order processes can occur. The conjugate photon is
then necessarily created by processes such as the one il-
lustrated in which one photon from each pump field is
absorbed and the probe and conjugate photons are neces-
sarily emitted with equal and opposite angular momenta,
producing perfect VPC. For high pump intensities, pro-
cesses involving more than two pump photons can occur,
and the vector nature of the VPC process can become de-
graded, since a photon can be emitted into the conjugate
wave with the wrong circular polarization, as illustrated
in Fig. 4(b).

To describe quantitatively the polarization properties
of the two-photon resonant DFWM interaction, we must
evaluate the two-photon coupling constants Q; and the
sums over k in Eq. (14). To do this, we assume that the

rn=-1 m=0 m=+1

FIG. 3. Relevant states for the nSo~n "So two-photon exci-
tation scheme. Circularly polarized field components can in-
duce only the transitions shown.
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and the sums over k in Eq. (14) are
2 2

y dQk +kQ g MQQE
k k

2

g dOk+k2 X dk2 Ok g MO2E
k k

(16)

The expression for the polarization amplitude P (r) is
hence given by

detunings for all relevant intermediate states are approxi-
mately equal and set Ako=b, for all k. For all interact-
ing waves propagating almost parallel or antiparallel to
the z axis, the coupling constants and the sums over k can
be expressed in terms of the two-photon matrix elements

—~ «I
—)~(+)—~ ~(+)p( —

)

ij ~ Pik Pkl ~ ik Pkj
k k

where r,'.
—'= + (x+iy ),"/V2. The coupling constants are

found to be

P (r)=— M E +' (E E„)E'
2 1 i '(b, +co IE /I —)

fib) 2I2 1+ 2(b, +cps IE I /I, ) +IE„E I /I
NRcos IE. E.l'

2I,' 1+@ 2(62+~, IE.I2/I, )'+ IE„E„I'/I,'

where we have introduced the two-photon saturation in-
tensity

and the Stark-shift parameter

l~, l~'&yl-

2e'IM2QI
(18)

&y I (MOO
—M22 )

(19)
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where cos~E ~ /I, gives the shift of the two-photon tran-
sition frequency.

The first term of Eq. (17) gives the linear contribution
to the refractive index and arises from off-resonant,
single-photon transitions originating from the ground
state. The two remaining terms are the nonlinear part of
the atomic polarization. Note that the second term has
the vector character of E„* and the third term that of E„.
By inspection of Eq. (17) we see that in the third-order
limit the third term vanishes and the second gives rise to
perfect VPC, in agreement with the predictions of Refs. 1

and 2.
For the DFWM geometry of Fig. 2, it is convenient to

express the total field E„(r ) as

pump

pu

"Sp
obe

n'Pg

Jugate

"Sp

be

E (r) =Eo(r)+ A (z)e'"'+ A, (z)e (20) ate (b)

P (r)=[P,(A, )+P,(A')]e

+[P ( A )+P ( A,*)]e'"'. (21)

where Eo(r) = Afe'"' + A„e ' ' represents the field of
the two counterpropagating pump waves, and A and

A, are the slowly varying probe and conjugate field am-
plitudes. We assume that the probe and conjugate fields
are much weaker than the pump fields. We hence linear-
ize the expression for the polarization with respect to the
probe and conjugate field amplitudes about the amplitude
Eo of the strong pump field, and obtain

nsp

m=-1 m=o m=+1

FIG. 4. Processes leading to phase conjugation in an
nSO ~n "So two-photon excitation scheme. The thick arrows
denote pump photons, the thin solid arrow the probe photon,
and the thin wavy arrow the conjugate photon. (a) In a third-
order process, the probe and conjugate photons are necessarily
emitted in cascade, and perfect VPC is obtained. (b} In a fifth-
order process the probe and conjugate photons need not be em-
itted in cascade, and in the example shown the conjugate pho-
ton is emitted with the wrong circular polarization.

Here the amplitudes P, (A, ) and P, ( A~ ) are contribu-
tions to the source term for the conjugate field that de-
pend linearly on the conjugate field and the complex con-
jugate of the probe field, respectively. Analogously,

P~( A~ ) and P~( A; ) are the source terms for the probe
field. Explicitly, we find that the second contribution of
Eq. (21) (which represents coupling from the probe field
into the conjugate field) is given by

Nfiy i (1—i5~)r' 52cos

2 1+(5~) + iEo Eoi [1+(5') + iEo Eoi ]

1+(52) cos
(Eo.Eo)(Eo' A„')Eo

[1+(5p)'+ IEo'.Eol']'

(1—i5' )1 '5'co'
(Eo Eo)(Eo A')Eo*

[1+(5', )'][1+(5', )'+
~ Eo E~']

I co+—,(Eo.Eo)(Eo' APEo
2 1+(5~) + Eo E'

(1 —i52) r'5~cps

[1+(5;)'][1+(5,')'+ ~

E'.E' ~']'

(1—i5,')r
, 2 ~

(Eo.Eo) (Eo' A~ )Eo'[1+(5;)'+~E,
' E,'I']'

(22)
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where we have introduced the dimensionless quantities
EO=Eo/V'I„ l"=I /y, cos=cos/y, and 52=5&/y, and
the Stark-shifted detuning is defined as 52 =62
+cos~Eo~ /I, . By inspection of Eq. (22) it can be seen
that only the first term has the correct tensor property
for VPC, since it is the only term whose polarization will
always be the complex conjugate of that of the probe
wave. All other contributions lead to the generation of a
conjugate field whose polarization can be different from
the complex conjugate of that of the probe field.

Using the linearized expression for the nonlinear polar-
ization [Eq. (21)] as a source term in the driven wave
equation, we derive coupled amplitude equations govern-
ing the spatial evolution of the probe and conjugate fields
in the constant-pump-amplitude limit. These equations
have the form

dA, = —2nik(P, ( A, )+P, ( A*))q,
dz

dA = —2rrik ( P*( A, )+P*( A* ) )q,
dz

(23)

dA,
2~i k ( —P, ( A* ) )q .

dz
(24)

To characterize the polarization properties of the gen-
erated conjugate field, we calculate the fraction of the
conjugate field having a polarization vector that is the
complex conjugate of that of the original probe field. To
do this, we introduce the polarization unit vector of the
probe field e such that A = A e, and we decompose
the conjugate field in the form A, = A~&G+ A&e&,
where e& =e * is the polarization conjugate of the probe6 —

p
field (the "good" component, i.e., the polarization-
conjugate component) and es (the "bad" component) is

the polarization unit vector orthogonal to eG, i.e.,
ez e 6 =0. When decomposed into the good and bad po-
larization components, Eq. (24) becomes

dA~
=iK~ A *,

dz

dA~ = I Kg Ap
dz

(25)

where we have introduced the coupling constants KG and
K~ for the generation of the polarization components eG
and ez, respectively. The coupling constants are related
to the polarization amplitude P, ( A' ) by the equations

where k = neo/c, and where the angular brackets denote a
spatial average over a period of the fringe pattern created
by the interference of the two pump waves. Spatial
averaging is necessary in order to extract the phase-
matched part of the polarization driving the probe and
conjugate fields [Eq. (21)]. Equations (23) constitute a set
of coupled linear differential equations, and hence they
can be solved directly; however, the form of the solution
is extremely complicated. Instead, we obtain a solution
for the case of' a medium suSciently thin that the probe
amplitude can be assumed to remain constant and that
the effects of absorption on the generated conjugate field
can be ignored. Then Eqs. (23) reduce to the single equa-
tion

K6

KB

2~k ( P, ( A„* ) ) q.e G

2~k(P, ( Ap ))q e~
A*

(26)

The phase-conjugate reAectivities associated with the
generation of the ez and e~ polarization components can
be obtained from the solutions of Eqs. (25) with the
boundary condition A, (L)=0, and are given by

I
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FIG. 5. Coupling strengths [in units of (2~kXfiy/I, l'] for
the good polarization component eG =—e~ (solid line) and the or-
thogonal (bad) polarization component e~ (dashed line) of the
conjugate wave as functions of the detuning 6, from the two-
photon resonance for several difterent values of the summed

pump intensity Io=II+Ib with II=I&. (a) For a very low
pump intensity (Io = 10 I, ), perfect VPC behavior is obtained.
(b) For Io =10 'I„a slight degradation of the VPC process is
already evident. (c) For Io =10 I„the VPC process is almost
totally degraded even though the pump intensity is still much
lower than the two-photon saturation intensity. In all cases, the
pump waves have linear and parallel polarizations. The rnateri-
al parameters are I /y=5X10 and co&/y= —0. 1, and the
probe polarization is described by Eq. (31) with 0=45' and &p ar-
bitrary.
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RG =
I AG(0)l /I A (0)l = i~G L

and

&s=IAe(0)l'/ A, (o) '=I~pl'L',

where L is the length of the nonlinear medium. The
quantities ~G I

and Ii~e I
are hence the coupling

strengths for the generation of the polarization-conjugate
component eG and the orthogonal component e~, respec-
tively.

As noted earlier, only the first term in Eq. (22) neces-
sarily leads to VPC, i.e., has only an eG component. We
decompose the other terms, whose polarizations are

determined by factors such as (Ep A~ )Ep, into the basis
of eG and e~ as follows:

(Ep. A')Ep= IEpl A *(G,eG+B,es),
(Ep Ap )Ep IEpl Ap (G2&G+BiEe )

(Ep A' )Ep =
I Epl A (63&G+B3eii )

(27)

(Ep A*)Ep = IEpl'A *(G4eG+B4&e ),
where the coefficients 6,- and B, depend only on the po-
larizations and phases of the interacting fields. By using
Eqs. (22), (26), and (27), we find that the coupling con-
stant KG giving rise to the polarization-conjugate corn-
ponent is given by

( 1 i 52)r—'5'i pcs
(Ep.Ep) Ep G3[1+(5,')'][1+ (5,')'+ IEo'. Ep I']

I co
+—.. . (Ep Ep) Ep G31+(5') + IEp Epl

(1 —i5', )r 5',~,'
[1+(5',)'][I+(5p)'+ IEp Epl']'

(1—i5', )r'
(Ep.Ep) Ep G[1+(5,')'+ IEp Epl']'

2n kN fry i z(1—i5' )I" 5 co

2 1+(5,')'+ IE,' E,'I' ' ' [1+(5')'+ IE,'.E,'I']'
1+(52) cos

(Ep Ep) Ep G2 i—
[1+(52)'+

I Eo'Et I']'

(28)

where we have written the results in terms of the dimen-
sionless quantities introduced in Eq. (22). The expression
for the coupling constant K~ is given by an expression of
the same form as Eq. (28) with the first term omitted and
with 6; replaced by 8,- in each remaining term.

There are two mechanisms that can degrade the VPC
process. One of them is the transfer of population from
the ground state to the excited state. This mechanism be-
comes significant for pump intensities of the order of the
two-photon saturation intensity, i.e., IEpl -I, . The oth-
er mechanism that can degrade the VPC process is the
Stark shift of the two-photon resonance frequency. This
effect becomes important when pcs IEpl /I, —I, i.e., when
the Stark shift of the two-photon transition frequency is
of the order of the population decay rate of the transi-
tion. For large values of the Stark-shift parameter, this
effect may become significant at pump intensities well
below the saturation intensity. Therefore the relative im-
portance of the two mechanisms depends on the ratio of
r toMs

IV. RESULTS FOR SPECIFIC PUMP-WAVE
POLARIZATIONS

In this section, we treat four special cases of pump-
wave polarizations and determine the coupling constants
Kg and Kz for the generation of the two polarization com-

ponents of the conjugate wave. An efficient VPC process
has a high coupling strength lscGI for the good polariza-
tion component eG, and zero coupling strength li~ii I

for
the bad component e~. A measure of the fidelity of the
polarization conjugation process is the quantity

I~G I'
Fvpc =

I~GI'+l~, l' ' (29)

Ep=(Afe'"'+Abc ' ' )x . (30)

For future convenience we define I; =
I A,. l

. For a probe
wave in an arbitrary state of polarization, we represent its
polarization unit vector as

e~ =cosO x+ sinOe '+ y, (31)

and hence our basis vectors are given by
eG = e ' =cosO x+ sinOe '+ y and by ez = —sinO x

which gives the fraction of the total conjugate field hav-
ing the proper state of polarization. In the results
presented below, the quantity Fvpc is evaluated at the de-
tuning 52 from the two-photon resonance which pro-
duces the largest value of I~G I

. In all cases, we give the
coupling strengths in units of (2~kNfiy/I, )2.

The first case we consider is that of pump waves with
linear and parallel polarizations. The total pump field Ep
can then be represented as
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Eo-Eo
B, =B4 = —cosOsinO

lE, f' '

B2 83
—cosO sinO ~

(32)

Since these expressions do not contain the phase angle y,
the VPC fidelity depends on the polarization state of the
probe wave only through the parameter O.

In Fig. 5 we have plotted the coupling strengths ~~G ~

and ~a~~ as functions of the detuning b2 from the two-
photon resonance for different values of the sum of the
pump-wave intensities Io=If+I& for the case If =I~.
We take the probe polarization to be described by 8=45'
(with y arbitrary). The polarization ellipse of such a
wave has an axis inclined at 45' to the x direction. The
normalized population decay constant is taken to be
I /y = 5 X 10 and the normalized Stark-shift parameter
is taken to be cuz/y = —0. 1. These values correspond to
the parameters for the 3S~6S two-photon resonance of
sodium, ' for which I =3.3 X 10 s '. Figure 5(a)
shows that at very low pump intensities the interaction
leads to perfect VPC, i.e. , ~~G ~

)) ~x~~ . The VPC char-
acter of the process becomes degraded, however, as the
pump intensity is increased, as shown in Figs. 5(b) and
5(c). In fact, for these particular values of the material
parameters, the VPC character of the interaction is lost
almost completely for pump intensities as small as l%%uo of
the saturation intensity. For the present case where
cats/I =200, the Stark shift of the two-photon transition
frequency is the dominant mechanism leading to the de-
gradation of the VPC process. Polarization rotation ex-
periments in a two-photon resonant medium are also
known to be affected by the presence of nonresonant
Stark shifts.

In Fig. 6 we have plotted the coupling strengths for the
case in which the Stark-shift parameter co+ vanishes but
in which all the other material parameters are the same
as in Fig. 5. High-fidelity VPC is now obtained using
much higher pump intensities than in the case of Fig. 5,
and consequently VPC with much larger reflectivities can
be obtained in the present case. We see that the two po-
larization components of the conjugate field become com-
parable in magnitude when the sum of the pump-wave in-
tensities is of the order of the saturation intensity. For
this case the transfer of population to the excited state is
the mechanism leading to the degradation of the VPC
process. However, for pump intensities comparable to
the saturation intensity, it is possible to obtain good VPC
fidelity by tuning the laser frequency away from the exact
two-photon resonance.

In Fig. 7 we see how the coupling strengths depend on
the polarization of the probe wave. We show the results
only as functions of O since the predictions do not depend
on the phase angle p [see Eq. (31)). The material parame-
ters are taken to be the same as in Fig. 5 and the sum of
the pump-wave intensities is taken to be

+cosine '~y. Using Eqs. (30) and (31), we find that the
factors G; and 8; defined by Eqs. (27) are given by

Eo Eo
G =G* =cos O, G =G3=cos O,14(E(2'23
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FIG. 6. Coupling strengths for the good (solid line) and bad
(dashed line) polarization components of the conjugate wave for
the case in which the Stark-shift parameter vanishes (co&=D)
but in which the other material and experimental parameters
are the same as in Fig. 5. (a) Ip=0. 1I (b) Io=I {c)IO=10I, .
We see that good VPC with a higher coupling strength than in
Fig. 5 can now be obtained.
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FIG. 7. Coupling strengths for the good (solid line) and bad
(dashed line) polarization components as functions of the angle
0 and for any value of q. The state of polarization of the probe
wave is determined by the parameter 8 and the phase angle y
[see Eq. 131)] but the results are independent of p. The putnp
waves have linear and parallel polarizations, and equal intensi-
ties with IO=If+I~ =4X10 'I, . The material parameters are
the same as in Fig. 5. For the case of low pump intensities
where the VPC process is ideal, the coupling strength for the
good component is constant for all values of 8 and the coupling
strength for the bad component vanishes.
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IO=If+Ib =4X10 I, with If =lb. When the probe
field is linearly polarized along the pump polarization
direction (8=0'), the conjugate wave is seen to be the po-
larization conjugate of the probe wave. This result is ob-
tained because in this case the interaction is effectively
scalar. As 8 is increased, the VPC fidelity is seen to de-
grade rapidly. However, when the probe polarization is
linear and orthogonal to the pump polarization (8=90'),
perfect VPC is again obtained. Perfect VPC occurs for
this choice of polarizations because B; (and 6;) vanishes
for all i [see Eqs. (27)], and hence as vanishes identically.
Since the probe wave polarization is orthogonal to that of
the pump waves, no grating associated with the interfer-
ence of the probe and pump waves is formed (i.e.,
B;=6;=0). The only contribution to the phase-
conjugate signal is hence the contribution due to the
two-photon coherence induced by the two pump waves,
and this contribution always leads to perfect VPC.

We have also analyzed the case of linear and orthogo-
nal pump-wave polarizations. We find that this geometry
never leads to high-fidelity VPC because ~a.s ~

is compara-
ble to ~~G ~. In this case, the polarization state of the con-
jugate field depends in a complicated way on that of the
probe field.

We next treat the cases of circular pump-wave polar-
izations. For the case of co-rotating pump-wave polar-
izations, there is no two-photon coupling between the

~ nSo ) and ~n "So ) states, and hence no Phase-conjugate
field is generated. The case of circular and counter-
rotating pump-wave polarizations does lead to the gen-
eration of a phase-conjugate field and has been shown to
produce perfect VPC in the third-order limit for any iso-
tropic material. To treat this case, we express the to-
tal pump field as

I10s-(
)
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Kg. The coefficient K~ is now proportional to co& and per-
fect VPC is obtained whenever the Stark-shift parameter
vanishes, for any pump intensity. In addition, when the
intensities of the two pump waves are equal, the
coefFicients B2 and B3 also vanish, and hence for the case
of balanced pumping perfect VPC is obtained even when
the Stark-shift parameter does not vanish.

In Fig. 8 we have plotted the line shapes of the cou-
pling strengths for different pump intensity ratios If/Ib
keeping the sum of the pump intensities fixed such that
If+Ib=2I, . The values of the material parameters are
taken to be the same as in Fig. 5. The probe wave is tak-
en to have an arbitrary linear polarization, corresponding

—k '~Eo= Afe'"'e++ Abe '"'e (33) 0
-10

I

10
where as before e+ = + (xkiy)/&2. We now find it con-
venient to represent the probe polarization vector as

e = —cospe —sinpe'"e+, (34)

so that eG =Ep =cospe++sinpe ' e and
es = —sinPe++cosPe ' e . The coefficients 6,. and B,
then become

G =G'=—A Ab

I+I '
f b

If sin P+Ibcos P
If +Ib

Ifcos P+Issln P
If +Ib

Bi =B4=0, (35)

(Ib —If )cosP sinP
B2 = —B3=

If +Ib

Note that these results do not depend on the phase angle
g of the polarization vector of the probe wave. Compar-
ison of Eqs. (35) with Eqs. (32) reveals some qualitative
differences between the present case and that of linear
and parallel pump-wave polarizations. Since 8, and B4
vanish but 6& and G4 do not, there are now additional
terms in Eq. (22) that contribute only to vG and not to
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FIG. 8. Coupling strengths for the good (solid line) and bad
(dashed line) polarization components of the conjugate wave as
functions of the two-photon detuning 5& for various ratios of
the forward and backward pump intensities. The pump-wave
polarizations are circular and counter-rotating and the sum of
the pump intensities is kept Axed at Io=2I, . The material pa-
rameters are the same as in Fig. 5, and the probe polarization is
described by Eq. (34) with P= 45' and q arbitrary. (a) For equal
pump intensities (If /Ib = 1) perfect VPC is obtained even
though the line shape shows strong saturation. (b) If/Ib =10.
(c) For If /I& =100, the VPC process is almost totally degraded
even though the line shape is not noticeably broadened.
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FIG. 9. Fidelity of the VPC process as defined by Eq. (29)
plotted as a function of the ratio of the pump intensities. The
pump-wave polarizations are circular and counter-rotating.
The material parameters are the same as in Fig. 5. For low

pump intensities (Io=10 I } the VPC process is almost pcI-
feet (since the fidelity is near 1}for any value of the intensity ra-
tio. For higher pump intensities (Io=I, ) the VPC behavior is
degraded by the use of imbalanced pumping.

FIG. 10. Fidelity of the VPC process as a function of the sum
of the pump intensities for linear and parallel pump-wave polar-
izations. The material parameters are the same as in Fig. 5, ex-
cept that we have taken I =10 s ' implying that the normal-
ized Stark-shift parameter is co& /y = —1.8, and the normalized
population decay constant is I /y =0.15 corresponding to a sat-
uration intensity of I, = 32 MW cm . The dots are the experi-
mental data from Ref. 11.

to @=45' with i1 arbitrary in Eq. (34). Figure 8(a) shows
that perfect VPC occurs for equal pump-wave intensities,
even though the line shape shows that the process is
strongly saturated. As the pump imbalance is increased
[Figs. 8(b) and 8(c)], the VPC character of the process is
degraded but the line shapes show less broadening. The
lack of broadening is due to the fact that the saturation of
the two-photon transition for this choice of pump-wave
polarizations depends on the pump-wave intensities only
through the product IfIb.

In Fig. 9 we have plotted the VPC fidelity as defined in
Eq. (29) as a function of the pump intensity ratio for two
different values of the sum of the forward and backward
pump intensities. The material parameters are again the
same as in Fig. 5. For weak pump waves
(Io =If +I& = 10 I, ), nearly perfect VPC is obtained for
any intensity ratio. For Io=I„ the VPC fidelity is per-
fect when the pump intensities are equal but is almost to-
tally degraded for pump intensity ratios greater than 10.
These results are quite encouraging from a practical
point of view because they show that the pump-wave in-
tensities need to be balanced only to within a factor of 2
for high-fidelity VPC to occur.

V. COMPARISON TO EXPERIMENT

We now compare our theoretical results with those of
the experiment of Malcuit et al. " The experiment stud-
ied the case of linear and parallel pump-wave polariza-
tions, and utilized the 3S~6S two-photon transition of
sodium. A pulsed dye laser with a pulse duration of —15
ns was used. In the experiment it was found that the
VPC fidelity was severely degraded when the sum of the
pump-wave intensities was of the order of the saturation
intensity, estimated to be I, =2 MWcm . Figure 5,
which was plotted using the material parameters for the
3S~6S two-photon transition of sodium, predicts degra-
dation of VPC at a pump intensity which is much smaller
than the saturation intensity. Since the laser pulse length
was much shorter than the population decay time
1/I =300 ns, steady-state conditions were never reached

in the experiment. Due to the transient nature of the ex-
citation and due to the depletion of the excited-state pop-
ulation by amplified spontaneous emission, we believe
that the effective population decay time of the interaction
is much shorter than 300 ns. In order to obtain a good fit
to the experimental data, we have assumed an effective
population decay time of 1/I =1 ns. In this case, the
material parameters become I, =32 MW cm
cps/y= —1.8, and I /y=0. 15. In Fig. 10 we have plot-
ted the VPC fidelity [Eq. (29)] as a function of the sum of
the pump intensities for these values of material parame-
ters. The experimental data are shown for comparison.

VI. CONCLUSIONS

We have developed a theory that describes the polar-
ization properties of phase conjugation by two-photon
resonant DFWM. The theory includes the effects of satu-
ration by the pump waves. We have treated in detail the
case of Sp~So two-photon excitation. Our results show
that two mechanisms can lead to the degradation of the
VPC process: the transfer of population to the excited
state and the Stark shift of the two-photon resonance fre-
quency.

The primary conclusions of the paper are as follows:
the use of circular and counter-rotating pump-wave po-
larizations is the best configuration for producing high-
fidelity VPC with high reflectivity. In this case perfect
VPC is obtained for arbitrary high pump intensities as
long as the intensities are equal. For the case of linear
and parallel pump-wave polarizations, VPC with high
reflectivity can be obtained for transitions where the
Stark-shift parameter is small.
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