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Atomic dipole in front of a phase-conjugate mirror
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We study the effect of the presence of a phase-conjugate mirror on the evolution of a classical ra-
diating dipole and of a quantum-mechanical two-state atom. In both cases the modified evolution
equations are solved and explicit solutions are presented. The evolution of the classical dipole and
of the atomic coherences depends on the initial relative phase of the atomic dipole and the phase-
conjugate mirror.

I. INTRODUCTION

For many years much theoretical and experimental
work has been devoted to the question in what way the
evolution of a radiating system is affected by the presence
of macroscopic media. Especially, the spontaneous emis-
sion of an atom in front of dielectrics' or conductors
(ordinary mirror), in the neighborhood of other
atoms ' or in cavities' ' has been studied. The advent
of the phase-conjugate mirror' (PCM) has opened new,
interesting ways to manipulate the matter-radiation in-
teraction, since it has several new features.

Firstly, the PCM reverses the propagation direction of
the incident radiation independent of the angle of in-
cidence. Therefore the effect of the PCM on the atomic
evolution does not depend on the distance between the
atom and the PCM. This is true for distances up to the
coherence length of the atom, since then we have to ac-
count for the finite speed of light. Since the PCM con-
sists of a nonlinear medium driven by pump fields, the
generated phase-conjugate reflection can gain energy at
the expense of the energy of the pump fields. Conse-
quently, for sufficiently high pump-fields intensities, the
reflectivity of the PCM can exceed unity. Finally, the
PCM has an inherent phase due to the driving pump
fields. Therefore, we expect that the decay properties of
the atom must depend on the initial phase of the atomic
dipole. Due to these properties, we expect that the pres-
ence of the PCM will give rise to new interesting effects
in the atomic evolution.

Several authors' ' have discussed the damping of a
classical dipole in front of a PCM. These papers concen-
trated mainly on finding the modified damping rates of
the dipole, while no attention was given to the phase
dependences of the evolution. Furthermore, the results
for the damping rates in these papers seem to diverge.
The problem of a quantum-mechanical atom in front of a
PCM has also received some attention. ' However, this
treatment did not account for the phase dependence,
since it focused on the populations rather than the coher-
ences. Recently, Cook and Milonni' studied the evolu-
tion of a sample of N identical atoms in front of a PCM.
In this treatment, the number of atoms taken was large
and confined in a small volume compared to the radiation
wavelength, and the semiclassical theory of radiation was

applied. With these approximations, the intensity of the
collective fluorescence was studied.

In the present paper, we consider the evolution of a
classical dipole and of an atom in front of a PCM based
on nearly degenerate four-wave mixing. We describe the
PCM in Sec. II both classically and quantum-
mechanically. The classical description is used in Sec.
III. where we obtain an explicit expression for the time
evolution of a classical dipole in front of the PCM. This
evolution depends on the initial phase y of the dipole and
on the phase P of the PCM. In Sec. IV we present the
quantum-mechanical description of the PCM and obtain
an explicit result for the evolution of the density matrix
of the two-state atom. The evolution of the coherences is
found to be similar to the classical dipole evolution.
These results illustrate the importance of the phase in the
evolution of a dipole or atom in front of a PCM.

II. DESCRIPTION OF THE PHASE-
CON JUGATE MIRROR (PCM)

When a radiating system, such as a classical dipole or a
quantum-mechanical atom radiates in front of a PCM,
this system couples with a radiation field that in turn is
coupled to the PCM. In this section, we discuss the evo-
lution of the radiation field due to its coupling with the
PCM. The coupling of the dipole with the local radiation
field will be studied in subsequent sections.

The model of the PCM that we shall use is based on
nearly degenerate four-wave mixing. This process occurs
when an incident beam with frequency cu; intersects a
standing light wave of frequency coo in a nonlinear medi-
um with third-order susceptibility g' ', and it leads to the
coherent generation of radiation counterunning and
phase conjugate to the incident beam with frequency

(2.1)

The setup is sketched in Fig. 1(a). In terms of photon
processes, a photon of the incident beam leads to stimu-
lated emission of an additional photon into this beam,
and to creation of a photon in the phase-conjugate
reflected beam, at the expense of absorption of two pho-
tons, one from each of the opposite-running pump waves
that make up the standing wave [Fig. 1(b)].
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agating along the positive z direction, so that
k;=(0,0,k;). The wave numbers k& and the frequencies
co& are related by k&=co&/c. These three incident input
waves generate a third-order nonlinear polarization in the
medium. We are only interested in the polarization
which generates a field at a frequency near resonance.
The contribution obeying the phase-matching condition
is then'

P (co„—2coo —co; }

=Re[e~' 'E, (r)E2(r)[E, (r)]"e

(2.3)

The wave propagation in the nonlinear medium is
governed by the Maxwell wave equation

I g' j B2 l B2
E(r, t)= P(r, t),

Bz c Bt e c Bt
(2.4)

FIG. 1. (a) Nearly degenerate four-wave mixing geometry.
E& and E2 are strong pump fields, while E; and its phase-
conjugate reflection E„are weak. (b) Scheme of four-wave mix-

ing in terms of atomic transitions. Absorptions are indicated by
double arrows and stimulated emissions by single arrows.

Throughout this paper, we position the nonlinear
medium, with length L, along the z axis [see Fig. 1(a)].
The distance between the atomic dipole and the PCM is
D. The atomic dipole is located at z = —D. The bound-
ary of the nonlinear medium at z =0 as indicated in Fig.
1(a) is then the actual mirror surface of the PCM. We as-
sume that the distance D is much larger than the wave-
length of radiation, and we take the diameter of the sur-
face of the PCM to be small compared to this distance D.
Due to these assumptions, the radiation emitted by the
atomic dipole has normal incidence on the PCM and
passes through a layer of the nonlinear medium of thick-
ness L. The only geometrical parameter that enters in
the description of the PCM is, then, the solid angle 4m'
subtended by the PCM at the atomic dipole. Throughout
this paper we ignore the polarizations of the fields.
Furthermore, we assume that the depletion of the stand-
ing wave is negligible and that the resonance frequency of
the dipole is equal to the frequency of the pump photons.
Finally, we neglect losses in the nonlinear medium. For
later use we separately consider a classical and quantum-
mechanical description of the fields in the PCM.

where P(r, t) is the total polarization in the medium.
Throughout this paper, we neglect effects due to the
linear polarization. The nonlinear P' ' [Eq. (2.3)] gen-
erates a phase-conjugate field E, with frequency co„and
propagating in the —z direction. Here we shall employ
the slowly varying amplitude approximation (SVAA),
which assumes that the amplitudes of the fields do not
change much over a distance that is large compared with
the wavelength. Hence we have

B'E, BE(
kg

BZ2 Bz

Furthermore, we shall assume that

(2.5)

[CO& CO„/ ((CO0, (2.6)

d E„(z)= —ig[ E(z)]'e' ',
dz

where we have defined, using (2.6),

(2.7)

[3]E E2 (2.8)

and

and that g' ' varies negligibly in the relevant frequency
range. Substituting (2.2) and (2.3) in (2.4), while using
(2.5} as well as the fact that the depletion of the pump
fields is negligible, yields the differential equation between
incident and phase-conjugate field

A. Classical description of the PCM 6=k„—k, . (2.9)

The four classical monochromatic fields that are in-
volved in the four-wave mixing can be written in the gen-
eral form

Conversely, the pump fields together with the phase-
conjugate field give rise to a third-order nonlinear polar-
ization that couples to the incident field, according to

E&(r, t)=Re[E&(r)e t t ], (2.2)
d

[E,(z)]'= —i rt*E„(z)e
dz

(2.10)

with /=1, 2, i, and r. The counterrunning pump fields
E&(r, t) and E2(r, t) have frequencies co&=coz=coo and
wave vectors k, = —kz. The incident field E, (r, t) is prop-

with q and 5 defined in (2.8) and (2.9), respectively. We
assume that the PCM extends between z =0 and z =L.
Solving (2.7) and (2.10) for given boundary values E„(L)
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and E, (0) yields for the reflected phase-conjugate field at
020, 15

[ak &kl 1 (2.19)

E,(0)=vs[E;(0)]*+psE„(L)

and for the transmitted field at z =L

[E,(L)]*=ps[E;(0)]*+vs e ' E„(L),
where

sin( AL ) itt~
vg = l Yj'

A cos(AL) ~ i 5—sin(AL )

—i 6L/2Ae
A cos(AL) —,

' t'6 —sin(AL)

(2.1 1)

(2.12)

(2.13)

(2.14) [a, (0),a„(L))=0, [a, (0),a„(L)]=0 . (2.20)

To describe the four-wave mixing, we introduce separate
creation and annihilation operators for the fields on ei-
ther side of the nonlinear medium by a, (P) and a, (/3) for
the incident field and by a„(P) and a„(P) for the reflected
phase-conjugate field, where the index /3=0, L indicates
that the operators describe the fields for z &0 (/3=0) or
for z )L (/3=L). This idea of locally defined field opera-
tors is common in quantum-mechanical nonlinear op-
tics. In the four-wave mixing process the input
fields are independent ~ Therefore we have the relations

and with

(2.15)

Note that p& and v& satisfy the relation

(2.16)

showing that E„(0)and [E,(L)]*are related to E„(L)and
[E,(0)]* by a hyperbolic rotation. This is a direct conse-
quence from the fact that the relation coupling [E,(L)]*
and E„(L) to [E,(0)]* and E„(0) is unitary. For the clas-
sical PCM the conjugate field is zero at z =L. Hence we
put E„(L)=0 in Eq. (2. 11). The conjugate field at the
surface z =0 of the PCM is then proportional to the com-
plex conjugate of the incoming probe field. Note that the
amplitude reflectivity lvs I

can exceed unity as can be seen
in (2.13). The amplitude of the response field decreases
when the detuning between the frequency of the incom-
ing field and the pump fields becomes larger. Further-
more, the PCM has an inherent phase i/js that changes
with the phases of the two pump fields F] and F2. When
the incoming field has the phase cp at the surface z =0, so
that

E, (0)= IE, (0)le'", (2.17)

then the reflected conjugate field at this same plane has
the phase difference i/&

—2@ with the incident field. This
phase difference is invariant for a time translation of all
the fields. On the other hand, when only the phase of the
probe field is changed, this phase difference between the
incident field and the reflected field is modified. '

B. Quantum-mechanical description of the PCM

COk

Ek(r, t) =t'fi
2VAe0

ik-r —ie] t
(ake ' —H. c. ), (2.18)

with V the quantization volume and where ak and ak are
the annihilation and creation operators which obey the
usual commutation relations

Now we describe the PCM for a quantum-mechanical
incoming probe field and phase-conjugate reflected field.
For the pump fields, we retain a classical description.

The electric field operator outside the nonlinear medi-
um can be written in the form

1/2

Since in our simplified model we have neglected the losses
in the nonlinear medium, we can directly obtain the rela-
tion between the output field operators a; (L) and a„(0)
and the input field operators a, (0) and a„(L) from the
classical results (2.11) and (2.12) by replacing the classical
amplitudes E;,, by the corresponding field operators
iR(coo/2fieoV)' a; „. This yields for the annihilation
operator of the reflected field at z =0 (Ref. 22)

a„(0)= vsa, (0)+—psa„(L) (2.21)

and for the creation operator of the transmitted incident
field at z )L (Ref. 22)

a, (L)=p&a;(0) —v&e
' a„(L), (2.22)

with vs and ps defined in (2.12) and (2.13). Note that due
to the hyperbolic rotation the output field operators obey
the commutation relations

[tt„(0),a„(0)]=1, [a, (L),a, (L)]=1, (2.23)

III. CLASSICAL DIPOLE IN FRONT
OF A PCM

In free space the evolution equation of a classical oscil-
lating dipole p (t), which is damped due to emission of ra-
diation, is described by the Abraham-Lorentz equation

P( t)+ y'p(t)+ co~ (t) =0,
with co0 the oscillation frequency. The radiative reaction
term yP(t) in (3.1) accounts for the radiative damping of
the classical dipole due to the emission of radiation. This

as they should, according to (2.19). When losses in the
medium are taken into account the above quantization
procedure no longer holds, since additional noise opera-
tors also appear in the relations (2.21) and (2.22). ~

Since a„(L) is now a field operator, it cannot be omitted
in (2.21) in the quantum-mechanical description of the
PCM, in contrast to the classical case. This operator de-
scribes the quantum fluctuations of the vacuum field at
z )L. These vacuum Auctuations contribute to the
reflected phase-conjugate field after being amplified by
the PCM. The annihilation operator of the rejected field
for z (0 is thus a mixture of the annihilation operator
a„(L) of the field incident on the opposite side of the mir-
ror and the creation operator a, (0) of the incident field at
z =0.
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damping rate y follows from the requirement that the
emitted energy of radiation is compensated by the loss of
oscillator energy. When y is assumed to be small corn-
pared with the oscillator frequency (y (&co0), Eq. (3.1)
gives rise to two well-known solutions which are given by

(3.2)

v= fv/e'+—=v, , (3.3)

with va defined in (2.13), since only a fraction a (4ma
solid angle of the PCM) of the field emitted by the dipole
reaches the PCM. Here we implicitly assume that the
quantity vz does not vary appreciably over the width of
the spectrum emitted by the dipole. This requires that
the coupling strength yi is large compared with y/c.
Hence the positive-frequency part of the additional
damping term also will be av times the complex conju-
gate of the positive-frequency part of the radiative reac-
tion term. ' ' The presence of the PCM gives, therefore,
rise to an additional damping term and the evolution
equation (3.1) is replaced by

and its complex conjugate. Throughout this section we
shall only consider solutions of the evolution equation
with positive-frequency parts exp( —i~at).

In the presence of the PCM, the emitted field is
reflected back towards the dipole, and this reflected field
exerts an additional force on the dipole. The positive-
frequency component of the reflected field is equal to av
times the complex conjugate of the emitted field, with

already obtained by Bochove, ' but we believe that the
present treatment clarifies the essential part played by the
phase of the dipole. The solutions (3.5) and (3.6) diverge
from the results of Refs. 16 and 17, where the phase
dependence of the evolution was ignored. Our result
demonstrates that the phase plays an essential part.

In the case of solution (3.5), the damping force —yp
due to the self-field is in phase with the damping force
due to the reflected field, which yields an enhanced decay
rate. In the case of solution (3.6), the damping force due
to the self-field and the reflected field have opposite
phase, and the decay is obstructed. For a reflectivity
a

~ v~ ) 1, the dipole oscillation will be enhanced.
The ratio of A + and A determines the phase

difference between the damping force of the self-field and
that of the reflected field. This phase dependence is not
discussed in earlier work. ' ' References 16 and 17 did
not yield these different damping rates, since these works
did not consider various initial phases of the dipole com-
pared with the phase of the pump field. In contrast to
what is found in Refs. 16 and 17, the damping rate does
not vary within a continuous range. It is the initial phase
that selects a linear combination of the solutions (3.5) and
(3.6), each with its specific decay rate.

As a special case of (3.7), we consider the solution that
reduces to (3.2) in the limit of ~v~ approaching zero.
Hence we obtain

—i coat +i g/2
p (t) =Re[ pae

y( 1 —
al &I )t /2

2

P (t)+yP (t)+avyP[(t)]'e '+coap(t)=0 (3.4)
i sin( y ——'q )e ~ &+ al vl ~& ~~]

) (3.8)

p+(t}=i exp[ —
—,'y(1+a(v~ )t —it@at + ,'ig]—(3.5)

for the positive-frequency part of the dipole, where v is
defined in (3.3). Note that this evolution equation is no
longer linear in the complex dipole p (t), due to the pres-
ence of its complex conjugate: a linear combination of
two solutions of (3.4} with complex coefficient is not
necessarily a solution. On the other hand, (3.4) may be
viewed as a coupled set of real linear differential equation
for the real and imaginary part of p(t). In the case that
y, y~v~ ((co0, the second-order difFerential equation has
two independent solutions,

where y0 is the initial phase of the dipole. An interesting
feature of Eq. (3.8) is that the relative phase p0 —

—,'g
determines the contribution of the different damping
rates to the evolution of the dipole. This is not surpris-
ing, since from Sec. II it follows that 2y0 —P determines
the phase difference between the incident and the
reflected field at the surface of the PCM. When

qr0
—

—,'/=0, we obtain from (3.4) that the damping forces
due to the self-field and the reflected self-field have oppo-
site phase giving rise to obstructed decay. For
y0

—2/= 2m, both damping forces are in phase giving
rise to enhanced decay as is shown by solution (3.8).

p (t)=exp[ —
—,'y(1 —a~v~ )t —icoat + ,'i g] . —(3.6) IV. ATOM IN FRONT OF PCM

p(t)=Re[A+p+(t)+ A p (t)], (3.7)

with A+ and A arbitrary real coefficients. The values
of A+ and A are determined by the initial amplitude
and phase of the dipole.

Equation (3.7) demonstrates that the dipole in front of
the PCM decays with two different damping rates
y(1+a~v~) and y(1 —a~v~). These difFerent rates were

The general solution of (3.4) is an arbitrary linear com-
bination of (3.5) and (3.6) with real coe+cients The gen-.
eral physical solution for the oscillating dipole in front of
the mirror is, therefore,

We consider a two-state atom, with ground state ~g )
and excited stated ~e ) and with transition frequency co0.

The interaction Hamiltonian in the interaction picture
for the atom coupled to the vacuum 6eld in the dipole ap-
proximation is given by

1/2
COk

V0= iA+p-
2VAe0

X[ake "(S+e '+S e ')—H. c.],
(4.1)
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with raising and lowering operators S+,

S+ = le ) &gl, S = Ig & & el (4.2)

p is the atomic transition dipole and V is the quantiza-
tion volume. The coupling to the vacuum field causes
spontaneous radiative decay of the atom. We now posi-
tion the two-state atom in front of a PCM. Due to the
particular form of the PCM, we can divide the atom-field
interaction into two parts. Let 0 be the set of field modes
k which couple to the atom and the PCM, and are point-
ing in the direction from the PCM towards the atom.
The field modes with k & 8 are not affected by the PCM.
The coupling of the atom to these modes is given by (4.1).

The field modes with kEO that couple to the atom are
a6'ected by the PCM. These field modes contain the
reflected field generated by the PCM. The nonlinear po-
larization P' ' in the PCM is induced by the vacuum fluc-
tuations in the modes incident on both sides of the PCM.
This polarization modifies the field at the position of the
atom. This modification is accounted for by making the
substitution (2.21) for the annihilation operator of the
modes with k&0 at the position of the atom. This
demonstrates that the field modes with k E 0 become ex-
cited due to the presence of the PCM. The atom now
couples to a reservoir which is modified by the PCM as
expressed by the substitution of (2.21). The modified in-
teraction Hamiltonian describing the atom-field interac-
tion in the presence of a PCM is given by

COIV= iA—Q p 2V riteo
ke8

1/2

[ai,e "(S+e '+S e '
)
—H. c.]

COI

2''
ke8

' 1/2

I[@sag(L)e " —vsa i,e ](S+e +S e 0
) —H. c. j (4.3)

(4.4)

In order to express this evolution in the rapidly decaying
correlation functions of the radiation field, we formally
integrate the evolution equation (4.4), which yields

II(t)= ——f [V(r), II(r)]dr .
o

(4.5)

Substituting this result back into Eq. (4.4) and taking the
trace over the states of the radiation field then gives

with v& and p& defined in (2. 13) and (2.14), and where we
used (2.1). Since the modification of the field at the posi-
tion of the atom are described by a modification of the
field operators, the state vector of the modified vacuum is
unchanged.

The evolution equation for the atomic density matrix
can be obtained by using reservoir theory, which we
briefly outline. The radiation field is treated as a large
reservoir whose evolution is negligible influenced by the
interaction with the atom. The radiation field is initially
in the vacuum state l0)~ &Ol. The evolution equation for
the density matrix II(t) for the atom-field system, in the
interaction picture, is given by

p(t)= — Tr~ f dr[V(t), [V(t —r), II(t —r)]],
d~ g2 "

O

(4.6)

where p= Trz (II) is the reduced density matrix for the
atom alone. Next, we apply the Born-Markov approxi-
mation, in which the buildup of correlations between
atom and field are neglected. This is justified when a
characteristic evolution time of the atomic system is as-
sumed to be large compared with the atom-field correla-
tion time. Then Eq. (4.6) is approximated by

p(t)

2Trz d~Vt, Vt —~pt 0 z 0f2 O

(4.7)

Substituting (4.3) into (4.7) and evaluating the trace and
integral in the standard way, while omitting nonsecular
terms, gives for the evolution equation for the atomic
density matrix in the interaction picture

d p(t)= —
—,
' A (1+alvl )[S+S p(t)+p(t)S+S —2S p(t)S~]

dt

—
—,'aA lvl [S S+p(t)+p(t)S S+ —2S+p(t)S ]+aA vS+p(t)S+ +a A v*S p(t)S
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with v defined in (3.3},and a the fraction of the solid an-
gle occupied by the PCM and where we have used (2.16).
Furthermore, we have defined

3 2

(4.9)
2m soke

which is the Einstein coefficient for spontaneous emission
in vacuum. In Eq. (4.8) we have omitted a divergent
imaginary contribution describing a level shift. This level
shift turns out to be equal to the Lamb shift in free space.
We shall absorb this level shift in coo.

The result (4.8) can be interpreted as follows. The
presence of the PCM excites the vacuum field. The atom
in front of a PCM decays, therefore, in a heat bath, which
gives rise to stimulated transitions between the two states
with probability a A

~ v~ . An atom initially in the ground
state can be excited in this modified vacuum field. A spe-
cial feature of the heat bath in the presence of the PCM is
that it has an inherent phase. This gives rise to two addi-

I

tional phase-dependent terms in the evolution equation of
the atom. In an ordinary incoherent heat bath, such as a
broadband radiation field, these terms average to zero.
The property of generating a heat bath with an inherent
phase is characteristic for conjugating media. This phase
of the heat bath gives rise to a phase-dependent coupling
between the coherences. A similar effect was found for
the classical dipole, due to a phase-dependent coupling
between the dipole field and its complex conjugate.
These results are in contradiction with the results for the
two-level atom in Ref. 18, where inhibited decay of the
populations was found.

A phase-dependent evolution of the atomic coherences
is also found for an atom in a squeezed vacuum produced
by a degenerate parametric amplifier as has been dis-
cussed by Gardiner. The evolution equation of an atom
in such a squeezed vacuum is similar to (4.8).

The evolution equation (4.8) for the density matrix p
can readily be solved yielding

p„(t)= 2
+ p„(0)— exp[ —A (1+2a~v~ )t],(XV CXV

I+2a~v~ 1+2a v
(4.10a)

ps (t)=1 p„(t), —

p, (t)= ~p, (0)~ [ sin(g —
—,'@)iexp[ —

—,
' A (I+2a~v~+2a~v~ }t +-,'ig]

+cos(y —
—,'g)exp[ —

—,
' A (1 —2a[v[+2a(v( )t + —,'ig] f,

(4.10b)

(4.10c)

(4.10d)

with

(4.1 1)

We notice that p„(t) decays at an enhanced rate to the
nonzero stationary value a~v~ /(1+2a~v ), reflecting
that absorption from the ground state to the excited state
also takes place. Furthermore, we find that (4.10c) has
the form of Eq. (3.8). Note that there is no term
exp( icoot) in (4.—10c), since p describes the atomic evolu-
tion in the interaction representation. Again we obtain
two different damping rates whose contribution to the
evolution of the coherences depends on the phase of the
coherence. A change in the relative phase g —2y gives
rise to a nontrivial change to the evolution of the co-
herences. In contrast to the classical dipole case, the
damping rates now have the correlation factors
I+2a~v~+2a~v~ rather than 1+a~v~. This difFerence ba-
sically arises since a harmonic oscillator may have an ar-
bitrarily large internal energy, whereas the energy of a
two-state atom is bounded by the excited state energy.

on the relative phase of the initial atomic dipole and the
PCM.

The classical dipole evolution is described by Eq. (3.7).
There are two decay rates whose contribution to the evo-
lution are determined by the relative phase of the initia1
dipole and the PCM. The atomic evolution„described by
a density matrix, is given in Eq. (4.10). Apart from extra
effects due to the stimulated transitions caused by the ex-
cited vacuum field, we find that the evolution of the
coherences exhibit a similar behavior as the classical radi-
ating dipole. Furthermore, the presence of the PCM en-
ables the atom to make transitions from the ground state
to the excited state.

The essential phase dependence displayed in the evolu-
tion equations opens new interesting ways to manipulate
the phase and the spectral properties of the emitted radi-
ation. Since we have control over the phase of the two
driving pump fields that determine the phase of the PCM,
we expect that experimental verification of this phase
dependence is possible in principle.

V. CONCLUSIONS

In this paper, we discussed the evolution of a classical
radiating dipole and of a two-state atom in front of a
phase-conjugate mirror. We derived explicit expressions
for the time evolution of the classical dipole and of the
density matrix for the atom. Due to the inherent phase
of the PCM, these results depend, in a nontrivial manner,
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