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Analytical traveling-wave self-pulsing solutions of a homogeneously broadened ring laser are
presented in the limit that the dipole relaxation rate is much greater than the atomic inversion re-
laxation rate. The phase velocity v(A) as a function of the normalized pump A is given explicitly.
This function has a simple relation with the upper boundary o. ,„(A) of the Risken-Nummedal-
Graham-Haken (RNGH) instability domain in the (a, A) plane, where a is the wave vector of the
perturbations. The self-pulsing may appear in diFerent ways, depending on how the stationary solu-

tion becomes unstable. If the instability of the stationary solution is caused by an unstable mode
touching upon the upper boundary of the RNGH-instability domain in the (a, A) plane, the self-

pulsing is supercritical; if the unstable mode lies on the lower boundary, a subcritical self-pulsing
arises, and the system is bistable. This rule provides new signatures of the self-pulsing phenomena
and will be helpful to experimental identification of the self-pulsing arising from the RNGH insta-

bility. The linear stability analysis reveals two kinds of instabilities for these self-pulsing solutions.
One kind of instability is rooted in the RNGH instability of the stationary solution and may occur
even when the amplitude of the self-pulsing solution approaches zero. The other kind of instability
occurs when the oscillating amplitude of the self-pulsing solution becomes large. Above this large-
amplitude instability threshold no traveling-wave self-pulsing can be stable any longer. The results
for the corresponding Lorenz model are also presented.

I. INTRODUCTION

The multimode instability in a homogeneously
broadened unidirectional ring laser was first investigated
by Risken and Nummedal' and Graham and Haken in
1968. They found that the stationary solution in the on-
resonance case experiences a multimode instability if the
pumping reaches a critical value (see Secs. II A and III)
and predicted the onset of ultrashort self-pulsing. This
critical pumping is usually called the second threshold, in
contrast to the first threshold, where lasing begins.
Direct numerical integration of the Maxwell-Bloch laser
equations showed that the steady self-pulsing solution is a
traveling wave, and for certain values of the cavity length
the pulsing solution can be stable below the second
threshold. '

In the vicinity of the stability threshold, the self-
pulsing was analyzed by Haken, and Haken and Ohno
as an extension of the Ginzburg-Landau theory of phase
transitions to systems far from equilibrium, and the re-
sults of the temporal form of the laser output were found
to be in good agreement with the numerical solutions of
Risken and Nummedal.

After the work of Haken in establishing the fundamen-
tal link between a single-mode laser and the Lorenz mod-
el, Graham showed that a similar analogy exists between
a phase-locked multimode laser and the Lorenz model. '

By means of this analogy, he derived the second thresh-
old in a way that connects it to the Lorenz instability.

By numerical integration Mayr, Risken, and Vollmer
found that, for a still higher pump parameter, even the

pulses themselves will change and either chaotic or
periodic breathing of the pulse can occur. "

More recently, the treatment of the multimode insta-
bility in homogeneously broadened unidirectional ring
lasers above the second threshold has been extended by
many authors to consider different cases, and the results
show that the multimode laser possesses a rather compli-
cated phenomenology. ' We will only mention some
of them which are closely related to the Risken-
Nummedal-Graham-Haken (RNGH) instability and are
of interest for the present paper.

The first consideration of detuning in a homogeneously
broadened multimode laser was provided by Zorell, '

who investigated small detuning values and found that
the amplitude eigenvalue was responsible for the onset of
unstable behavior at a higher excitation level than in the
corresponding resonant case. More recent studies by
Narducci et al. and Lugiato et a/. , have shown that,
out of resonance, the phase eigenvalue can become re-
sponsible for the development of an instability. There-
fore the instability is brought about by a destabilization
of the phase, that is, by a mechanism that is different
from the one that is operative in connection with the
RNGH instability.

Also significant is the work of Lugiato et al. in
which they generalized the earlier treatment of Risken
and Nummedal' and Graham and Haken to allow arbi-
trary values for the ring-cavity transmission, so that the
longitudinal profile of the stationary field and of the
atomic variables is no longer a constant. In addition to
the self-pulsing phenomena, the injection of numerical
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noise shows the presence of numerous coexisting basins
of attraction for higher pump parameters.

Kotomtseva, Loiko, and Samson have proposed a
mathematical model for investigating instabilities of vari-
ous layer systems. ' Based on this model, the physical
processes creating instabilities in a standing-wave laser
are classified. Possible successions of bifurcations are
identified, which switch the system from stationary solu-
tion to periodic, quasiperiodic, and irregular self-pulsing
regimes in the laser.

It is worth mentioning the experimental observations
of the higher-order instabilities and multichromatic
operations in dye lasers by Hillman et al. , Stroud,
Koch, and Chakmakjian, ' and Lawandy, Afzal, and
Rabinovich. These new experimental phenomena have
addressed the question of multirnode instabilities in

homogeneously broadened systems and have inspired
many theoretical investigations. ' ' We believe
that the rnultichromatic operations and the higher-order
instabilities are rooted in the band structure of the energy
level of dye molecules and are not directly related to the
RNGH jnstabiljty.

We mention in passing that the self-pulsing phenomena
in inhornogeneously broadened lasers have been exten-
sively studied by Casperson and other authors. '

Although much work has been devoted to the investi-
gation of self-pulsing in homogeneously broadened lasers,
it has still remained one of the more poorly understood
phenomena, at least in the following aspects.

Though numerical integrations reveal that the self-
pulsing is a traveling wave at pump not too far above the
second threshold' (for review papers see Refs. 13, 15,
17, and 19), how the phase velocity of the pulse depends
on the other parameters is unknown. This means that
the Prandtl number in the corresponding Lorenz equa-
tions is undetermined. '

Though previous work demonstrates that both super-
critical and subcritical self-pulsing may develop from the
RNGH jnstabjljty i, 4—6, &3, 2s, 3& no simple rule has been
found that tells whether the self-pulsing will be a super-
critical or a subcritical one for a concrete system.

Though numerical investigations have shown that a
self-pulsing may exist and may become unstable under
certain conditions, ' "' 6 the linear stability
analysis for the self-pulsing based on the full set of
Maxwell-Bloch equations is still lacking.

The purpose of this paper is to present results with
respect to these and some other aspects based on an
analytically soluble model. This model is the usual two-
level, homogeneously broadened, unidirectional ring laser
in the resonant case' ' "' ' under the assumption
that the dipole relaxation rate y~ is much greater than
the atomic inversion relaxation rate y~~. In this limit, we
are able to obtain analytical self-pulsing solutions in or-
der to determine the phase velocity as a function of the
pump, to find out the relations between the self-pulsing
and the RNGH instability, and to analyze the linear sta-
bility of the self-pulsing solutions. All of these were con-
sidered to be a forbiddingly difficult task in the general
case.

Since the work is based on the full set of the multimode

Maxwell-Bloch laser equations, ' i.e., we do not elimi-
nate the polarization, our results not only apply to lasers
satisfying y=y~~/y~((1, which include solid-state lasers,
semiconductor lasers, dye lasers, and CO2 lasers, but also
provide insight into lasers with arbitrary y.

It should be noted that our investigations are limited
for traveling-wave pulsations. In this case, all the
Fourier components of the pulsation are locked in fre-
quency and the pulsation consists of just one basic fre-
quency component apart from its harmonics. The phys-
ics of this mode locking is not quite clear (for mode lock-
ing of lasers see Ref. 12), even though the stability of the
self-pulsing solution for pump not too far above the
second threshold justifies the existence of such solutions.

The main results and the organization of the paper are
as follows. The Maxwell-Bloch equations for a
traveling-wave pulsation are analytically solved for the
first time in Sec. II. The solutions are given in an explicit
form with two variables to be determined, namely, the
phase velocity and the number of the periods of the pulse
appearing in the cavity, which will be called the pulse
number in this paper. The phase velocity is determined
by the periodicity of the laser cavity as a function of the
pump parameter. It is shown analytically that the veloci-
ty is always greater than the velocity of light in the active
medium, a result already suggested by numerical integra-
tions, ' and by analytical calculations in the vicinity of the
second threshold. ' In comparison to Ref. 31 this result
means that the model used here permits only the fast (i.e.,
U &c) pulsations to occur, but not the slow (i.e., U (c)
ones.

In Sec. III a relation between the self-pulsing solutions
and the boundaries of the RNGH-instability domain in
the (a, A) plane is established, where a and A are the
wave vector and the pump, respectively. Based on this
relation, we show that the pulse number is largely limited
for a stable pulsing solution. Furthermore, we show that
the pulsation may appear in different ways, depending on
how the RNGH instability of the stationary solution
occurs. If the unstable mode lies on the upper boundary,
then a supercritical pulsation will appear above the
RNGH threshold; if it lies on the lower boundary, a sub-
critical pulsation arises and. the system is bistable.

The linear stability analysis of the self-pulsing solutions
is performed in Sec. IV based on the full set of the
Maxwell-Bloch equations.

In the good cavity limit, two Floquet exponents prove
to be relevant to the stability of the self-pulsing. One of
them may be calculated analytically and is shown to be
nonpositive. The other one is analytically discussed in
Sec. V in the small-amplitude limit and is numerically
studied in Sec. VI.

The linear stability analysis reveals two kinds of insta-
bilities for these pulsing solutions. One kind of the insta-
bilities is rooted in the RNGH instability of the station-
ary solution and may occur even when the amplitude of
the self-pulsing solution approaches zero. This instability
will be called RNGH-type instability. The other kind of
instabilities occurs when the oscillating amplitude of the
self-pulsing solution becomes large. Above this large-
amplitude instability threshold there is no stable
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traveling-wave self-pulsing any more. Numerically it is
known that different complicated solutions may ex-
ist, " but we do not know to which state the system
would switch. It should be noted that both the RNGH-
type instabilities and large-amplitude instabilities refer to
the self-pulsing solutions, while the RNGH instability
refers to the stationary solution.

In Sec. VII relations between the self-pulsing solutions
and the Lorenz model are discussed. It is shown that the
self-pulsing solutions are confined on one branch of the
critical curve in the parametric plane expanded by the
Prandtl number and Rayleigh number on which the
Lorenz instability for the stationary solution sets in. The
results and some open questions are discussed in Sec.
VIII.

II. MAXWELL-BLOCH EQUATIONS
AND THE SELF-PULSING SOLUTION

A. Maxwell-Bloch equations

aD A
II

=y A+1 D — (EP—*+E*P—)
2

(3)

where E refers to the electric field strength, P to the mac-
roscopic polarization, and D to the macroscopic inver-
sion density of the active medium, which have been nor-
malized with respect to their steady-state values. K, y~,
and y,

~

are the cavity loss, the relaxation rate of the polar-
ization, and the relaxation of the atomic inversion, re-
spectively. A is the pump parameter defined by
A—:(Do —D,h, )/D, h„, where Do is the unsaturated mac-
roscopic inversion density and D,h, the macroscopic in-
version density at the lasing threshold. c is the velocity
of light in the medium.

By definition, A=O is the lasing threshold and for
A ~ 0 there exists a stable time-independent solution.
Stability analysis of these equations in the on-resonance
case shows that this stationary solution experiences a
multimode instability if A exceeds the second thresh-
old. ' In the present paper, we call this instability the
RNGH instability and denote the second threshold by
AR~G~. A short description of the RNGH instability
and the determination of ARN&z will be presented in Sec.
III ~

It is our purpose to study the space- and time-
dependent solutions developing from this instability.
Since the frequency of the unstable mode is of the order
of Qy, ~y, , we normalize the space and time coordinates
by

(4)

The starting point for this study is the same set of
Maxwell-Bloch equations that was the basis for ear-
lier studies of multimode instabilities in homogeneously
broadened, unidirectional ring lasers

BE + BE (P E)
dt Bx

aP =y (ED P), —
at

In terms of the damping constants defined by

the Maxwell-Bloch equations (1)—(3) take the form

dE BE
B +'Bg

&y =ED P,—
Bv

=y(P E)—, (6)

aD A=&y A+1 D ——(EP—*+E*P)
07" 2

This set of Maxwell-Bloch equations is more convenient
in discussing a self-pulsing laser in the limit y ~0.

1 c
1 —— (10)

Later on we shall show that g is independent of g and al-
ways satisfies 0&g&1. Therefore, the limit g~0 will
lead to v ~c but not to a divergent g.

In terms of g, Eqs. (6)—(8) for the traveling-wave self-
pulsing have the form

dE
&yr) =P E, —

dg
—dP

&y —=ED P, —
d

dD A=v'y A+1 D — (EP*+—E*P)—
dg 2

(13)

We shall solve these equations in the limit y ~0 in the
following sections.

C. The dominant part of the self-pulsing solution

As suggested by Eqs. (11)—(13), we expand all the un-
known quantities F with respect to &y

F =Fo+F, V y +F~y +
where F may be E, P, and D.

In general, we should also expand g according to Eq.
(14). However, it is easy to see that up to the order y, g2
and higher-order expansions will not be involved in our

B. Equations for traveling waves

Like the earlier work, ' ' we discuss the traveling-
wave self-pulsing solutions, i.e., we assume that the self-
pulsing solutions are functions of the local time variable

g=r —g/u,

where v is the space- and time-independent phase veloci-
ty.

The self-consistency of this assumption is proved by
the existence and the linear stability of the traveling-wave
solution with respect to the full set of the Maxwell-Bloch
equations as we shall see in this and the following sec-
tions.

Now we introduce a space-time —independent constant
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discussions; and in the order of &y, we can show that,
though g, cannot be determined, it is irrelevant to all the
physical results that we shall describe. For example, up
to order y, g& does not change the periodicity of the dy-
namic quantities, which puts restriction on the dynamic
solutions, nor does it contribute to the real part of the
Floquet exponents, which concerns the linear stability of
the solutions. Therefore, for the sake of simplicity, we
assume g, =0 and g=go in further discussions. In fact,
q, =0 is also supported by the discussions in Sec. VII.
Results and expressions which contain g, as a free pa-
rameter are presented in Appendix B.

Inserting the series in Eqs. (11)—(13), we find, to the
zeroth order, that

which implies, due to Eq. (21), that

D, (0)=0, (26)

provided that I;„%0. Under this initial condition, Eq.
(24) becomes

D 1(g)=(1+ii)A[lnI0(g) —lnI, „+I,„—I0(g)], (27)

which yields

Di(g) =++(1+ii)A[lnI0(g) —lnI;„+I;„—I0(g}] .

(28)

This equation may be used to calculate the maximum in-
tensity

Eo=Po, Do=1 . (15) I,„—:max [I0(g)] . (29)

In the first order of &y, Eqs. (11)—(13) are

dEo
P, E,—,

dPo
0 1 1 1

=E D (P E)— —

dD]
=A(1 —E0E0 ) .

(16)

(17}

(18)

Eliminating (Pi —Ei ) by equating Eqs. (16) and (17), and
considering Eq. (15), we obtain

Eo EoD

dg 1+il
(19)

Io=EoEo, I, =EoE, +EoE&, . . . .

In terms of I0, Eqs. (19) and (18) can be written as

dIo
(1+ii) =2I0D, ,0 1

(20)

Now let us introduce the intensity I=EE', which can
be expanded into y series according to Eq. (14), and the
coefficients are given by

In fact, a pulse must reach its maximum I,„, at least a
local one, somewhere; and at this point Di(g) is equal to
zero due to Eq. (21). Considering Eq. (28), this means

lnImin Imin =lnImax Imax (30)

Imin —1 —Imax (31)

is expected because we can show by integrating Eq. (22)
within one period that the average value of I0(g) is equal
to unity.

The sign of D, given by Eq. (28) is determined by Eq.
(21), i.e. , D, (g) (0 when I0(g) evolves from I,„ to I
and D, (g) )0 when I0(g) evolves from I;„to I,

Defining

(32)

It is easy to prove that for any given I;„~1 (or I,„~1),
Eq. (31) uniquely determines I,„(or I,„) satisfyingI,„~ 1 (or I;„~1). This uniqueness means that all the
local maxima of the pulse are equal to each other and so
are the minima.

The inequality

dDi
d

=A(l I ) . — and substituting Eq. (28) into Eq. (21), we obtain
(22)

dg=+ 1 dIo

I0+1nI0 —1nI,„+I;„I0—(33)

Between the two maxima adjacent to the initial
minimum, the solution is

Io( () dg

y Qlny —lnI;„+I;„—y
(34)

dIo
(I+q)

1

2IoD
A(1 I0)—(23)

Since all the maxima are equal to each other, Eq. (34)
defines a periodic function I0(g) for given I;„(orI,„)
and A, see Fig. 1. Let T be the period of the pulse; we
have from Eq. (34)

which yields the solution

( 1+g )A[lnI0(g) —inI0(0) +I0(0)—I0( g) ]

This set of nonlinear equations determines Io and hence
it describes the dominant part of the self-pulsing solu-
tions the limit y ~0.

In order to find the solutions for Io and D, , we divide
Eq. (21) by Eq. (22) and obtain

=D
1 (g) —D

1 (0), (24)

I0(0)=I;„=—min [I0(g)], (25)

where I0(0) is the initial value of I0(g). For a traveling
wave, we may choose, without loss of generality,

T= max dg

V A ~mi. y +lny —lnI, „+I,„—y
(35)

By means of Eq. (30) it is easy to show that Eq. (35) can
be simplified as
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max

min

T=T„ / N

FIG. 1. Self-pulsing solution Io as a function of g in the case
where there are N= 5 pulses in the ring cavity.

max dyT= = I
Imin +Imin y

(36)

f(g)=f(g+L+y~~) J/v) .
x

In order to describe the periodicity of the self-pulsing
solution with phase velocity U and the periodicity of the
empty cavi y, respt spectively it is convenient to introduce

(37)

LV'1
(() t «rlrt

N th t the period T of the pulse has to be compati-otice a
ble with the periodic ring boundary condition. e e
h und-tri length of the ring cavity, then by the

definitions Eqs. (4) and (9), the periodic boundary con i-
tions takes the form

D. The higher-order approximations
of the self-pulsing solution

dEi dEQ
(42)

dg dg
dP)

=E2 P2 +E&D] +EoD22 2

D —AEo(—E, +P, ), (44)1 0 1

where p= p anEp
=P d D = l have been considered. From

Eqs. (16) and (19),P, can be expressed by Eo and D, as

(43)

Pj = EQD&+E'I
1+g

Eliminating (P2 —E2) from Eqs. (42) and (43) and taking
Eq. (45) into account, we obtain the following equations
for E& and D&.

dE d Ep(I+t)) =E,D, +EoD2 ri-
d(

dD2 dEQ
D, 2AEo E,——Ar)Eo-

dg

(45)

(46)

(47)

Since

and

dE, d(EoE, )(1+ )E =(I+t))0 dg
—EQE, D, (48)

Thou h the higher-order approximations of the self-
pulsing solution are negligible in the limit y~0, we shall
show that the periodicity of the solution of the order of y
requires g o et be a function of A. In the order of y, Eqs.
(11)—(13) are

which characterizes the periodicity of the system. Obvi-
ously, for the solution Eq. (36) to satisfy Eq. (37) it is
necessary that

TQT= (39)

(40)

where lY is a na ura nulv t 1 number which describes how many
pulses or peaks of the self-pulsing solution are in the laser
cavity.

Combining Eqs. (36) and (39), we obtain a relatton be-

max

Qlny —lnI;„+I;„—y

(1+t)) = +AEo(1 Io), —pEpD
(49)

I + t)

as can be derived from Eqs. (19), (21), and (22), Eqs. 46)
and (47) can be written in terms of I, and D2 as

dIi
2D I I i +2IQD2

dg 1+rI

2 I D) +AEo(1 —Io )1+g 1+q
dDz

AI, —D, —AgIoD
dg

(50)

(51)

In numerical calculations, it is more convenient to intro-
duce

which can also be written in the form

V2+
y

max—~ 2A=
Q lny —lnI;„+I,„—y

(41)

In Sec. IIE, we shall show that q, and hence the left-
hand side o q.f E . (41) is a function of A. Therefore, for a
given sys e ptern parameters g and T„we can calcu ate

E . (41)f N- ulse solution as a function of A from q.
and then solve the self-pulsing solution from q.E . (34).

Io( g)
g=2+Ag= I y+lny —lnI »+Im» —y

= +Q 1nIo —lnI, „+I,„—Io,&A(1+~)
D2

&A( I+q)

In terms of these variables, Eqs. (50) and (51) are

(52)

(53)

(54)
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Ii
2

g&A
dg

=D&I& +IoD2 Io(D ] + 1 Io)1+g
dD, D,

( I + rIAI o ) .
dg 2 A

(55)

(56)

10-

These equations can be written in vectorial form. To this
end, we de6ne

D& Io'-.-1/2 0.
I,

F—:
2.

T

AIo(D, +1 Io)—
D, (1+rIAIo )

Then Eqs. (55) and (56) take the form

(57)

(58)

(59)

—10
0 20

FIG. 2. For given g, (z~f) as a function of A has just one
zero point, which uniquely defines the function A =A(g).

=AF+f .
d

(1+g}
g(1 —iI )

(65)

It is easy to see that for given I;„(orI,„),both Io(g)
and D, (g) are T-periodic functions, where, due to Eqs.
(40) and (52), Tis given by

I
T=2J;"" (61)

Qlny —lnI;„+I;„—y

By the definitions, Eqs. (57) and (59), A and f are also
T-periodic functions. Generally, this does not ensure
that Eq. (60) has a T-periodic function, as required by the
periodic ring boundary conditions.

To find the condition that the inhomogeneous Eq. (60)
has a T-periodic solution, we refer ourselves to the
mathematical theorems introduced in Appendix A. '

Given any 0(I;„(1,it can be verified by using a
Runge-Kutta procedure that the corresponding homo-
geneous system of Eq. (60), i.e. ,

71+= 1
[A —2+&A(A —8)] .

2(1+A }
(66)

Since for a steady pulse the phase velocity (and hence i))
must be a real number, A has to exceed the minimum
second threshold given by Eq. (76), which is equal to 8 in
the limit y~0. Thus, it follows from Eq. (66) that

In fact, this simple relation is first encountered in the
linear stability analysis of the self-pulsing solution, which
will be discussed in Sec. IV, and then is numerically
verified to be precisely the function A(iI) defined by Eq.
(64).

Equation (65) yields the following two solutions:

(62) 0&g ~1/3&q+ &1 (67)

always has a T-periodic solution. Therefore, according to
Theorem II, the adjoint system

and

dz = —A*z
d

(63)
lim g =0,

P —+ oo
lim g+=1 .P~ oo

(68)

&z~r)=0,
where the operation ( ~ ) is defined in Appendix A.

(64)

also has a T-periodic solution z(g), and Eq. (60) has a T
periodic solution if and only if

g as a function of A is illustrated in Fig. 3(a). In what
follows, we denote a function f (rj) as f+ according to
7l =7l+.

According to Eq. (66)—(68), it follows from Eq. (10)
that

K. g as a function of A

Using a Runge-Kutta procedure, we can show that for
any given g, ( z~ f ) as a function of pumping A has only
one zero point, see Fig. 2. Therefore, the periodicity con-
dition (64) defines a function A=A(g).

Numerical solutions of Eq. (64} show that this function
is given by

2c (1+A)
2(1+A) —y[A —2+&A(A —8)]

C &U U+,
C

1 —y/3

lim U (A)=c, lim u+(A)= C

Q~oo A~oo 1

(69)

(70)

(71)
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(72)A+-

solution Eq.tn s
'
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3A+ &A(A —8)

can be written as
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limited by the requirement of stability, and that the self-
pulsing phenomena depend on how the RNGH instabili-
ty appears. If the RNGH unstable mode lies on the
upper boundary, the corresponding self-pulsing solution
is supercritical; if it lies on the lower boundary, the corre-
sponding self-pulsing solution is subcritical and the sys-
tem is bistable.

The RNGH instability can be described as follows.
Let us consider the linear stability of the stationary solu-
tion, i.e., the unit solution of the Maxwell-Bloch equa-
tions (6)—(8), against small perturbations. Under periodic
boundary condition, the perturbations can be expanded
into cavity modes exp(ia g/c), where the wave vector

(74)

a,„= ' +2A, , a,„= ' +2A
U+ U

(80)

Therefore, the self-pulsing solution Eq. (73) can be writ-
ten in the form

2+ f max

Qlny —lnI;„+I;„—y

a,„(A) if g=q
a;„(A) if q=q+ . (81)

comes unstable.
Now let us study the relation between the RNGH in-

stability and the self-pulsing solutions. Comparing Eq.
(75) to Eq. (73), we find that

Without loss of generality, we suppose m ~ 0 in the fol-
lowing discussions. As shown in Refs. 1 and 2, the
RNGH instability occurs if a cavity mode a falls in the
unstable region (a;„,a,„) for given A. In the limit
y~0, the upper and lower boundaries a,„and o. ;„of
this unstable region are given by

m ax
lim

Qlny —lnI;„+I,„—y
(82)

Now we show that each self-pulsing solution in the
limit I;„~l corresponds to an intersection shown in

Fig. 4. In fact, using a Taylor expansion, it is easy to cal-
culate

+max, min
3A+&A(A —8)

2

1/2
Therefore, in this limit, Eq. (81) becomes equivalent to

Eq. (77), which means that a self-pulsing solution ap-
proaches the stationary solution at the corresponding in-

X 1—
A —2+&A(A —8)

(75)
4 5

Obviously, the unstable region exists only for A greater
than the minimum second threshold

A~NoH ':4+3&+2&2( 1 +) )(2+& ) = 8 p 0
a»

The unstable mode touches the unstable boundary usual-
ly at a pump higher than A&NGH m;„. The exact second
threshold A~NGH and the wave vector of the unstable
mode n~NGH can be determined in the following way. '

For given T„ let us draw straight lines e =a for
different integers m, which intersect at the curvesa;„,„(A) and yield a set of points (A, a )

RNcH-------

a9

2.9
7.5

RHGH n„

a =a,„(A ), or a =a;„(A ),
see Fig. 4. Then, the second threshold is given by

A~NGH =min( A )

(77)

(78)

4.8

7a
=0.8, T,=10.0; N

and the corresponding mode is n&NGH. Define N~NGH as
the mode number, i.e., a6

+RNGH
T. (79)

For convenience, we shall call (a&N&H, A&N&H) the
RNGH intersection, and all the other ones the non-
RNGH intersections.

As shown in Figs. 4(a) and 4(b), the RNGH intersec-
tion may lie either on the upper boundary or on the lower
boundary of the unstable region, depending on the system
parameters T, and y. For A&AzNGH, the a&NGH mode
enters the unstable region and the stationary solution be-

aRNCH -------'~
I

3.0
7.5

AUGH
12.0

FIG. 4. RNGH unstable region for the stationary laser (Refs.
1 and 2) and the graphical solution for A~N«and n&N«. As
shown in (a) and (b), the RNGH intersection (A&NGH, +&NOH)

may either lie on the upper or the lower boundary of the unsta-
ble region.
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tersection, or, in other words, the self-pulsing arises when
a cavity mode touches the unstable region of the station-
ary solution. This relation suggests the following con-
clusions concerning the stability of the self-pulsing solu-
tions in the vicinity of the intersections.

(a) All the self-pulsing solutions corresponding to the
non-RNGH intersections, including q and g+ solu-
tions, are unstable.

For the self-pulsing solution corresponds to the
RNGH intersection, we have the following.

(b) If the RNGH intersection lies on the upper bound-
ary of the unstable region, the corresponding solution,
i.e.„ the g solution with N =NRN~z, is a stable super-
critical periodic solution, see Fig. 5(a).

(c) If the RNGH intersection lies on the lower bound-
ary of the unstable region, the corresponding solution,
i.e., the g+ solution with N =NNR~~, is a unstable sub-
critical solution; however, the g solution with
N =N~~zz is a stable subcritical periodic solution, pro-
vided that the amplitude L „at A=ARN~~ satisfies
I „&I,„„z,where L, „z is defined in Sec. VIA;

RNGH

and in this case, both the self-pulsing and the stationary
solution can be stable, see Fig. 5(b); if 1,„&I

RNGH

3- X=0.15,

0
8

RNCH

4- X=0.2, Tc

2-

FIG. 5. Appearance of self-pulsing depends on how the
RNGH instability occurs. (a) If (ARNGH, aRNGH) lies on the
upper boundary, the self-pulsing solution is supcritical; (b) if it
lies on the lower boundary, the self-pulsing solution is subcriti-
cal. The dot-dashed curve is the unphysical g+ solution. In
this case the system has bistability.

at A =ARNG~, there is no stable self-pulsing at all.
Let us first discuss conclusion (a). By the definition of

ARN«, the i~equality A & ARN«holds in the vicinity of
the non-RNGH intersections. Therefore, the self-pulsing
solutions approach the already unstable stationary solu-
tion at the intersections and must diverge with it. Such
kinds of instabilities are expected, because the corre-
sponding self-pulsing solutions do not contain the newly
excited (unstable) mode. In this sense, these instabilities
have the same origin as the RNGH instability of the sta-
tionary solution. Therefore, we call them RNGH-type
instabilities. It should be noted that the RNGH-type in-
stabilities refer to the self-pulsing solutions, while the
RNGH instability refers to the stationary solution.

Now we discuss conclusions (b) and (c). In the case of
(b), the self-pulsing solution arises just at the point where
the stationary solution loses its stability. Therefore, at
least in the vicinity of the RNGH intersection, this is a
stable supercritical solution, see Figs. 4(a) and 5(a).

In the case of (c), there is a pair of solutions with
One is the q+ self-pulsing solution, of

which the oscillating amplitude decreases when A in-
creases from Az„d to AR~~z and approaches the station-
ary solution at ARNG~. Since the stationary solution is
stable for A &A&NG&, the q+ self-pulsing solution must
be trapped by it and hence is unstable. The other is the

solution, which has the same amplitude as the g+
solution at A =A2„d, but then its amplitude increases with
A. According to the general bifurcation theory, we ex-
pect that this periodic solution is stable. However, there
exists another kind of instability which occurs forI,„&I„z,as we shall discuss in Sec. VIA.

RNGH

The linear stability analysis presented in Secs. IV —VI
shows the following. (l) Conclusion (a) holds not only in
the vicinity of the interactions, where the amplitude of
the self-pulsing is small, but also for arbitrary pump; (2)
conclusion (b) holds for ARN&u & A & A~ c, where A~ c is
the so-called large-amplitude instability threshold to be
introduced in Secs. IV —VI; and (3) for conclusion (a), we
cannot show by the linear stability analysis that the g+
solution is unstable, because the Floquet exponent van-
ishes for the spatially homogeneous perturbation. A
definite answer to this question can only be given when
one goes to the nonlinear regime, which will not be dis-
cussed here. But, because of the unphysical properties of
the g+ solutions, we believe that this solution is unstable.

Now we sti11 need to discuss self-pulsing solutions
which do not correspond to any intersections of the
RNGH unstable region. These solutions generally have a
smaller pulse number N and larger oscillating amplitude,
as can be seen from Eq. (73). Therefore, most of them are
excluded by the large-amplitude instability. By using the
numerical procedure for linear stability analysis present-
ed in Secs. IV —VI, we could show that, in case (b), there
may (or may not) exist a stable g solution with
X =NRNog —I for A2„d & A & A~ c ( & ARNog); and in
case (c), the only stable solution is that described in con-
clusion (c).

It is worth pointing out that, though the relation Eq.
(81) is obtained in the limit y~O, it suggests that the
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IV. LINEAR STABILITY ANALYSIS
OF THE SELF-PULSING SOLUTION

This section is divided into four parts. In the first part,
Sec. IV A, the general approach based on the full set of
the Maxwell-Bloch equations is formulated in order to
analyze the linear stability of the space-time —dependent
self-pulsing solutions. The Floquet exponents which
characterize the linear stability of the self-pulsing solu-
tion are found to satisfy two independent sets of equa-
tions.

Then the five Floquet exponents for a given cavity
mode are discussed in the limits g~O and y~O. In the
second part, it is shown that three of the five Floquet ex-
ponents always have negative real parts, which in fact de-
scribes the stability of the linear response of a passive
medium to an external field.

One of the remaining two Floquet exponents is analyti-
cally solved in Sec. IV C and the real part is found to be
nonpositive. Therefore, for a given cavity mode, only one
Floquet exponent may have a positive real part. Pro-
cedures to calculate this Floquet exponent are presented
in Sec. IV C, which can only be handled numerically in
the general case.

A. The general formalism

Since the self-pulsing solutions up to the order of y de-
pend explicitly on the intensities Io and I

&
but not on the

phases of the fields E and P, we assume, without loss of
generality, the self-pulsing solution to be real quantities

E=E*, P=P* . (85)

In order to analyze the linear stability of the self-
pulsing solutions, we study the perturbations 5F, where F
may stand for E, E', P, P', and D. In the linear regime,
we obtain from the Maxwell-Bloch equations (6)—(8)

a5Z a5E
ar

'
ag

&y =D5E +E5D 5P, ——85P
B7

(87)

= —&y 5D + [E(5P +5P*)+P—(5E +5E*)] '

a7 2

(88)

self-pulsing solutions of Eqs. (11)—(13), where y may be
any finite number, have the form

~;. ..(A, )',x)=
T f(1;., r,x),2m%

(83)
S

where the function f(I;„,y, g) satisfies

lim f(I;„,y, y)=1 .
I ~1

min

If this is true, the task to find the general solution of Eqs.
(11)—(13) will become easier.

f (g+mT„~+nT)=f (g, r), (90)

where m and n are integers, T, describes the spatial
period of the ring cavity, and T the period of the self-
pulsing solution, see Eq. (39). f defined in Eq. (89) may
be any one of e, e„p,p„or d, corresponding to E, E *, P,
P*, or D. Inserting Eq. (89) into Eqs. (86)—(88), we ob-
tain

(3
&y A, + +c e =y(p —e),

dr c)g
(91)

v'y A, + p =De+Ed —p,a7
(92)

a
A, + d = —V) d+ [E(p—+p, )+P(e+e, )]

(93)

In order to solve the partial differential equations, it is
usual to expand the perturbations into cavity modes.
However, since the self-pulsing solution is a space-
dependent function, infinitely many cavity modes would
be involved in the resulting ordinary differential equa-
tions. This difficulty can be overcome by transforming
the coordinate system g, r into (g, g) because in the new
system the self-pulsing solution depends only on
g=r —g/U, as defined in Eq. (9), but not on g. Therefore,
the perturbations with a specific cavity mode form a
closed set of equations and the Floquet exponent can be
analyzed in the subspace.

By the definitions, Eq. (4), the derivatives in the two
coordinate systems have the following relations:

a7
a a a

ag ag ag . ag
(94)

Therefore, in the ( g, g ) system, Eqs. (91)—(93) take the
form

a
&y A+i)y +c e =y(p —e),

Bg Bg
(95)

a&y X+ p =De +Ed —p,a
(96)

~+ d = —&) d +—[E(p+p, )+P(e+e )]
A

(97)

ic boundary condition. According to the Floquet
theorem, ' ' the solution of Eqs. (86)—(88) generally has
the form

5F(g, r)=e 'f ((,r),
where A is the Floquet exponent characterizing the linear
stability and f (g, r) satisfies the spatial- and temporal-
periodicity condition

This is a linear differential system with periodic
coeKcients and is to be solved under the spatially period-

In accord with Eq. (90), the solutions of these equations
have to satisfy the following periodicity condition:
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f (g+mT„g+nT) =f (g, g) . (98) B. Floquet exponents which always have negative real parts

f(0 k)=e f(k» a (99)

where f (g) satisfies

Since the coefficients in Eqs. (95)—(97) do not depend on
g, we can assume that (e, e„p,p, , d) in the (g, g) system
have the form

Now, we show that, similar to the linear stability
analysis for the stationary solution, three Floquet ex-
ponents always have negative real parts. One of them
comes from Eqs. (105) and (106), the other two from Eqs.
(107)—(109).

To this end, we assume g~0 and e =0. Under this
assumption, Eq. (105) becomes an identity and Eq. (105)
takes the form

f (/+nT)= f (g) . (100)
dp

ko+ — p

Inserting Eq. (99) into Eqs. (95)—(97), we obtain for
each cavity mode the following ordinary differential
equations:

Redo= — —(0 .
1

y
(112)

Since p (g) is a periodic function, the Floquet exponent
has to satisfy

v'y k i a +—r)y e =X(p —e»

+y A+ p =De+Ed —p,

(101)

(102)

Now, let us consider Eqs. (107)—(109). Making use of
the assumption y~0 and e+ =0, we find that Eq. (107)
becomes an identity and Eqs. (108) and (109) take the
form

A
A, + d = —&y d+ [E(p+—p, )+P(e+e, )]

dg 2

(103)

y A, + p+ =2Ed —p+,

X+ d= —&y d+ p+

(113)

(114)

Now we show that these equations can be separated
into two independent sets of equations. In fact, introduc-
ing

In order to show that these two Floquet exponents have
negative real parts in the limit y~O, we expand ko with
respect to y

e+ =—e e„p+ =—p p, ,+ +

we find from Eqs. (101)—(103) that

(104) Xo
o= '— +Xo,o+Xo, i+y+=~r (115)

&y k+ia +gy
d

e —=X(p- —e —» (105)
Inserting this expansion into Eqs. (113) and assuming

, WO, we find, in the lowest order of y, that

&y k+ p =De —p (106)
kp g+ =2Ed p+ Ap ]d =0

which yields d=O and A,o,= —1, i.e.,

1 + ~ ~ ~

0

(116)

(117)

d
&y A, +ia +ily e+ =y(p+ —e„), (107) In the case Xo, =0, we can show that Redo o

=0 and

ko, (0. To this end, we expand p+ and d into the y
series

&y k+ p+ =De+ —p+ +2Ed,
dg

(108)
p+ p+,o+p+, i+y+ ' ' ' (118)

Ak+ d = —&y d + (Ep +Pe )
—. (109)

dg + +
d =do+d, &y+

In the zeroth order, Eqs. (113)and (114) are

(119)

A, =X +k y+ (110)

These two sets of equations subject to the periodicity con-
dition (100) determine the Floquet exponents A. . The
self-pulsing solution is stable if Rek(0 for all a and it
is unstable if Rek & 0 for some a

The Floquet exponents A, are studied in the following
sections in the limits g~O and y~O. In this case, X can
be expanded into the g series

p+, o 2Eodo (120)

A.o o+ do=0 . (121)

Since do(g) is a T-periodic function, ko „must be equal to
A, o o=i2~n /T, where n is an integer. Thus the solutions
in the zeroth order are
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e
—i2nnj/T

p (g) 2~ (g)e
—i2nng/T (122) ~o=po . (130)

Since Rek,00=0, we need to calculate A.0 1. To this end,
it is sufficient to solve Eq. (114) in the first order. Insert-
ing Eq. (119) into Eq. (114) and making use of A.o o and
Eq. (122), we obtain

In the first order, Eqs. (127) and (128}are

d
i,o+i) eo =pi —e, , (131)

+ d, (g)r dg
—ia + po=Dieo —(pi —ei) . (132)

[g + 1+Al (g)]e i2nng/'I' (123)

1+ 1 +AI0 d =0 (124)

Since the average value of Io(g) is unitary, it follows from
Eq. (124) that ko, + 1 + A =0, i.e. ,

A,o= —(1+A)&y+

We have thus proved, in the lowest order of g and y,
that three Floquet exponents always have negative real
parts, see Eqs. (112), (117},and (125). The corresponding
perturbations are of the form (e, e„p,p„d) =(0,0,p,p„d).
Physically, since the Maxwell equation is not involved in
the above analysis, what we have proven is just the linear
stability of the response of a passive system upon an
external periodic electric field. Therefore, the conclusion
that three Floquet exponents always have negative real
parts may be true for finite g and y, as in the case of sta-
tionary solutions.

In the following sections, we shall discuss the other
two Floquet exponents corresponding to perturbations
(e, e, )W(0,0). In the limit y~O, we find from Eqs. (105)
and (107) that ho= —ia, where ko is defined in Eq.
(110). Thus, the Floquet exponents take the form

Thus, for d i (g) to be a T-periodic function, it is necessary
that d ip

( I+i)) =(ia —ki, o+Di )eo . (133)

The solution is

eo(g) =eo(0)exp

(134)

From Eqs. (21) and (25), it is easy to show that

I+q Io( }f D, (g)dg= ln (135)

is a T-periodic function. Therefore, from Eq. (134), that
eo(g) is a T-periodic function requires that

l CX k1 0

1+q
I 27Tn

T
(136)

By the definitions of T and a„, 2~n IT=2~nX/T, =o.'„z,
we obtain

Eliminating (pi —e, ) by adding Eq. (131) to Eq. (132) and
taking Eq. (130) into account, we obtain

k=ta +A, y+ .
m 1 (126)

Therefore, in order to study the linear stability in the
limit g~O, we need to calculate X, . This will be done in
Secs. IV A and IV B.

C. The Floquet exponent related to (e,p )

, o=t [a —. (1+rl)a„~] . (137)

Since Rek. , 0=0, we need to calculate A, , 1 to determine
the linear stability. To this end, let us consider Eqs. (127)
and (128) in the order of y,

Inserting Eq. (126) into Eqs. (105) and (106), and keep-
ing the lowest-order terms in g, we find

d
A, , o+ e, = —

A, »eo+p2 —ez, (138)

&} X+q

d
&y —a +

e =(p —e),

p =De —p,

(127)

(128)

d+ „pi=D2eo+Diei —(pp —e2) .

According to Eq. (133),pi (g) can be expressed by

(139)

where (e,p) stands for (e,p= ). In the limit y~O, A. ,
and e,p can be expanded into the &y series, see also Eqs.
(115), (118), and (119),

d
p1 ~1 0 90 d

~0+1 (140)

f =fo+fi&r+ (129)

In the zeroth order, we find from Eqs. (127) and (128)
that

Eliminating (pz —ez ) by adding Eq. (138) to Eq. (139) and
substituting Eq. (140) into Eqs. (138) and (139), we find
with some algebra that e, (g) satisfies the following inho-
mogeneous differential equation:
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de,
(I +i)) =(ia —A. i o+Di )ei

Since e „N =0 for rn =nX, the Floquet exponent A, » is
nonpositive only if

D1+ D, —X, , + 1+8
) (1+2))

i)(1 —
2) )

(150)

dz =( I+2)) =(ia A i p D] )z (142}

which yields the solution
T

gD,
X lcm —nN+ ep .1+g

(141)

Ai, is determined by the requirement that (e, , d2) are
periodic functions. Now we refer to the mathematical
theorems introduced in Appendix A. Note that the
homogeneous part of Eq. (141) is just Eq. (133) and the
corresponding adjoint system defined in Appendix A is

As we have mentioned in Sec. II D, the numerical in-
tegration shows that Eqs. (55) and (56) have T-periodic
solutions Ii(g) and D2(g) if and only if the equality in
Eq. (150) holds. Thus Eq. (149) becomes

2
~1, 1 +m —nN (151)

We have thus proven that the real part of this Floquet
exponent related to (e,p ) is nonpositive. It is interest-
ing to notice that Eq. (151) does not depend on the self-
pulsing solutions. The condition a „N =0 implies that
the corresponding perturbations are spatially homogene-
ous. In comparison to the case of stationary laser solu-
tion, the vanishing of this Floquet exponent at a „N =0
comes from the fact that the self-pulsing solution is in-
dependent of the phases of the fields. '

z(g) =exp (143)
D. The Floquet exponent related to ( e+,p +,d )

As indicated by Eqs. (134) and (143), z*(g)eo(g) =const.
Therefore, according to Theorem II in Appendix A, Eq.
(141) has a T-periodic solution if and only if

Now let us discuss the Floquet exponent Eq. (126)
determined by Eqs. (107)—(109). Similar to Eqs. (105) and
(106), we obtain the following equations:

T D1
2 ~1 1 +m —nN

0 1+9 d
&y k, +g

d
e+ =5+ —e+ (152)

gD1
X lA N+ 1+g (144) dV'y —a + p+ =De+ —p+ +2Ed,

dg
(153)

From Eq. (135) it is easy to see that

f D(g)d /=0 .

Therefore, we obtain from Eq. (144) that

(145)

2A 1

1+2) A

The integration of Eq. (147) within a period yields

(147)

„~+—f D2 —
2

1g . (146)
(I+i))

From Eqs. (50) and (51), we can show by straightforward
but lengthy calculations that

r

d'D2 d 2D1D2 ~(1 n)A dIp-+ D
d(2 dg 1+2) 2(1+i)) dg

2g D1+
3(1+2t)

d — A—a + d = —&y d+ (Ep +Pe ) —. (154)
l71 2

In order to solve for A, i, we expand (e+,p+, d) into &y
series, see Eq. (129). In the zeroth order, we find

ep =pp) dp =0 .

In the first order, Eqs. (152)—(154) have the form

d
p+2) ep=P& —ei

(155)

(156)

dia + —pp=D&ep+2Epd, (pi —
e& ), (157)

d+ „d1=—Wsoeo

Eliminating (p&
—e, ) by adding Eq. (156) to Eq. (157) and

taking Eq. (155) into account, we obtain

D2 d = +
2

D
1 d ~ 148

o A (1+2))2 o

dep
(1+g) =(ia —

A& o+Dl )ep+2Epd|
dg

(159)

~1 1 m —nN+2

Substituting this expression into Eq. (146), we obtain

1 21(1 —g) 1 f T

A ( /+i) }2 T o
(149) dEpeo

( I+i)) ('a ~i,o+2Di )Eoeo+2Iod,
dg

(160)

Multiplying on both sides by Ep and making use of Eq.
(19), we may change Eq. (159) into the form
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y, =Eoe0 y,:d
&
l&(1+tl )A,

~m+'~i p &m

2&(1+t))A

(161)

(162)

This equation and Eq. (158) form a closed set of equa-
tions for Eoeo(g) and d, (g). In general, this set of
differential equations can only be solved numerically. In
doing so, we find it simpler to introduce the following no-
tations:

Q, =
[ &A(1+q)D2 —A[4co2, +2icu2, (1 g—)D,

+g(1+D, —3IO)]]y,

+[v'A(1+g)I, 4A—IO(ice~, +re, )]y~,
I)

Q2= —A icuz, +qD, + y&
2+AIO

—(1+ri+ riAIo )yz,

(168)

(169)

—1/2 & co& y2

In terms of g and D, defined in Eqs. (52) and (53) re-
spectively, Eqs. (160) and (158) can be written in the form

y, i coi+D i Ip
(163)

dg y2

where co~,
—= co&

—co, , and (y, ,y2) is the periodic solution
of Eq. (165).

Our purpose is to find k. .. under the condition that
Eq. (167) has a periodic solution. Since the correspond-
ing homogeneous equation, i.e. , Eq. (165), has a periodic
solution, according to Theorem II(a) in Appendix A, the
adjoint system

Defining dz
z

d
(170)

i co)+D ) Ip

—1/2 icu2

Eq. (163) may be simply written as

(164) also has a periodic solution. Let z be the periodic solu-
tion; then, according to Theorem II(b), we find with some
algebra that the inhomogeneous equation (167) has a
periodic solution if and only if

&Z~Q& —~i 1&zl~yl) =o (171)
dy
d

(165)

d2
x& =Epe], x2 =—

~ A(1+g)
(166)

By lengthy calculations, which will not be presented
here, we obtain the following inhomogeneous equations:

where y
—= (

'
), and A is a functional of I;„and co& z, be-

cause I;„uniquely fixes the functions Ip and D.
In comparison with Eqs. (158) and (160), Eq. (163) or

(165) has the advantage that it does not contain A, g, and
T, explicitly. Therefore, it can be numerically solved for
given parameters I;„(orI,„) and co, z. For given I;„
and co2, Eq. (165) has a T-periodic solution only for some
cu&. In other words, co&, or A. ] p, is a function of I;„and
co2. This function will be discussed both analytically and
numerically in Secs. V and VI, respectively. The results
show that k] p may be a purely imaginary number or a
complex number with a nonvanishing real part, depend-
ing on the values of I;„and co2.

If A.
& p is purely imaginary, we have to calculate A.» in

order to determine the linear stability and the self-pulsing
solution. To this end, we study Eqs. (152)—(154) in the
order of y. Similar to Eq. (161), it is convenient to intro-
duce

where the operation (
~

) is defined in Appendix A.
Thus, we obtain

&.Iq)
1, 1 ( i )

(172)

V. ANALYTICAL ANALYSIS OF THE FLOQUET
EXPONENT A, i 0 IN THE SMALL-AMPLITUDE

LIMIT I
In the small-amplitude limit,

6—:1 —I;„&(1. (173)

Equation (163) can be solved by 6 expansion. As we shall
show in this section, A, , p may have a positive real part in
the order 6 if A or T, exceed some critical value. This
reveals a new kind of instabilities for the self-pulsing solu-
tions. Our approach is basically a second-order perturba-
tion theory in the degenerate case.

In the following sections, we shall solve Eqs. (163) and
(172). A, , 0 will be analytically calculated in the small-
amplitude limit in Sec. V and both A.

& p and k& ] will be
numerically computed in Sec. VI for the self-pulsing solu-
tions. The results will show that, in addition to the
RNGH-type instability discussed in Sec. III, another
kind of instability may occur for the self-pulsing solutions
when the oscillating amplitude becomes too large.

dx 1= Ax+
2&A

Qi ~»yi
(167)

where A is defined in Eq. (164), Q &
and Q2 are given by

A. Transforming a T-periodic solution into a
2m.-periodic solution

For small 5, Io(g) can be written in the form

Io = 1+u (6)5, (174)
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where u (5)=0 (1). Using a Taylor expansion, it is easy
to show that

lnI0 —lnI;„+I;„—Io

6V2D = —5 1+—sinO1

6 26 6
2 '+3+2 u (6—4u5+3u 5 )

6+46+ 36

6 62
dg= &2 1 ——cosO+ cosO(3 cosO —4) dO .

3 36

In terms of 0, Eq. (163) takes the form

Defining

u (6—4u5+3u 5 )

6+46+36' (176)

under the condition lim& ~ = lim& ou, a straightfor-
ward but lengthy calculation yields, to the order 6,

i CO]+D1
X —1/2

Io

l 602

dy 5 62=v 2 1 ——cosO+ cosO(3 cosH —4)d8 3 36

(184)

62I0=1+s5+ s(1+s),

V2D) =+5 1+—(I —s )'
3

(177)

(178)

Defining

3'1

v2

P2:—+2('02

(185)

(186)

and

dI0dg=+
I0+lnI0 —lnI; „+I;„I0—

=+ 1 ——s+ s(3s —4)
5 5 &2ds
3 36 (1 s2))/2 (179)

62
B —= 1 ——cosO+ cosO(3 cosO —4)

3 36

iP, +&2D) I()

Equation (184) takes the form

(187)

As is apparent from Eq. (178), to the order 5, that
I0 varying in [I;„,I,„] corresponds to s varying in

[—1, 1]. Further on, introducing 0 by

cosO—=s, sinO:—+- (1—s )' (180)

the T-periodic functions I0(g) and D)(g) become 27r

periodic functions of 8

dY
d|9

%'e shall solve this equation to the order 6 and calcu-
late the Floquet exponent k, 0. To this end, we expand
Y, p, and p2, and B into a power series with respect to 5,

F(5)=F' )+p())5+F(
62

I0 = 1+5cosO+ cosO( 1+cosO), (181) where F may represent Y, f3„, or B. Inserting Eq. (189)
for B into Eq. (187), we obtain

B(0)

B(1)

B(2)

'ip(0)

(.p(0)
2

0

—1

'( p(1)
1 2

iP2—
24 i(P' '+24P' ') ~ 18

((3~—P", ))

ip(1) X
a=+1

i(P') )+24P, 2)

i(P(o)+3P( ))

(190)

(191)

i( ',
"—4e)

exp2ieO
48 —1 i p',"— (192)

Equations (191) and (192) can be considered as the
Fourier expansions of 8 and B,respectively, i.e.,(1) (2)

~
( )The explicit expressions of the Fourier coefficients B "'

can be easily obtained from Eqs. (191)and (192).

B(1) B(1) + ~ B(1) i&B
0

@=+1

B(2)+B + ~ B(2) ieB+ ~ B(2) 2ieB
2, O 2, e

a=+1 @=+1

(193)

(194)

In the zeroth order of 5, Eq. (188) is

y(0) '
ip(0) 1

' y(0)
d 1

d 0 y(0) 1 ip(0) y(0) (195)

B. The zeroth-order approximation and the degenerate points
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The general solution of Y', '(8) has the form

Y' ' =c&e ' +c2e
im 0 im 0

? 1 (196)

where c, and c2 are arbitrary constants. Substituting this
expression into Eq. (195), we find

(/3', ' —m, )(/32
' —m )=1 (v=1,2), (197)

from which it is easy to obtain the following relations:

) IP(0)+P(0)+[(P(0) P(0))2+4]1/2) ( 1 2)

P o= —,
' [m) +m2+[(m) —mz) —4]' I (v=1,2),

m, +m, =p()o)+/3(, o) .

In accord with Eq. (196), Y'2 ' is of the form

(198)

(199)

(200)

(201)

and Yp is thus given by

Y' '(8)=c e
1

1 im20

1(m —/3")) i(m —
/3I ')

(202)

For Yo(8) to be 2nperiodic. , it is necessary that at least
one m is an integer, and c =0 if m is not an integer.
For convenience, we suppose m, to be an integer. From
Eq. (197), a given integer m( corresponds to a hyperbola

CO

0.0 .
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FIG. 6. Graphically illustrated is the net made up of the mul-
tivalued function P, vs P2, which contains the degenerate points,
i.e., the tangent points and other intersections. For the linear
stability analysis it is suKcient to consider /3) and Pz on the two
solid curves.

in the (P') ),Pz ') plane. Since m) may be an integer, there
is an infinity of hyperbolas, each point of which corre-
sponds to a 2~-periodic solution Yp. As shown in Fig. 6,
these hyperbolas form a net which contains tangent
points and intersections. Since at these special points
both m& and mz are integers, and hence both c, and cz
may be different from zero, we call them degenerate
points, which can be specified by a pair of integers
(m), m2). Other points in the net are nondegenerate
points.

As is apparent from Eq. (197), /3()
' is always a real

number for real P(2 ). This means that k) o is purely imag-
inary in the zeroth order of 6. Therefore, in order to ana-
lyze the linear stability, we need to calculate the higher-
order contributions /3()") (n ~ 1).

For small 5, we can show that the (P„P2) relation has
only a small quantitative deviation from Eq. (197) at the
nondegenerate points, but it may qualitatively differ from
Eq. (197) at the degenerate points. Here, by qualitative
difference we mean that /3) has an imaginary part. There-
fore, we shall focus our attention on the degenerate
points.

It is easy to show that all the tangent points in Fig. 6
correspond to

~ m, —m 2 ~

=2, and all the intersecting
points correspond to ~m) —m2~ ~ 3. On the other hand,
we can show that the largest Fourier index of the evolu-
tion operator B'"' is n, see Eqs. (191) and (192). There-
fore, in order to investigate a degenerate point (m, , mz),
we need to perform the perturbation theory up to
5 ' '. This also means that the (/3I ', /3z

' relation may
m, —m, I

be qualitatively distorted in the order of 6 ' ' of a de-
generate point ( m, , m 2 ). Thus the largest distortion
occurs at the tangent points.

Though the net of parabolas shown in Fig. 6 presents a
clear picture of the degenerate points, it contains multi-
plicity. In what follows, we shall show that, in analyzing
the linear stability of the self-pulsing solution, all of the
pairs of these curves that have different opening direc-
tions, including those corresponding to different m &, are
equivalent to each other. In other words, it is sufficient
for us to calculate the Floquet exponents for just one pair
of the curves in the (P()"',Pz ).

In fact, by the definitions of P and Y, see Eqs. (89), (99),
(161), and (185), the perturbation Eoeo in the physical
coordinate (g, ~) is related to 0 in the following way:

Epep =exp A~+i n
C

y(0)(g)

(203)

In the limit 5~0, it follows from Eqs. (9), (52), and (183)
that

g'=2+A r —~ =&20 .
U

(204)

Substituting this equation for 6) into Eq. (203) and taking
Eqs. (162) and (186) into account, we can show that
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. U . ~v v
Eoeo=exp r A+i —a N +i ' —p2

—m)
C C

Y(1)
1

Le6=+1

0
~ ~(1) i e6
I I@1 e

3
+

6 lE

(205)

This shows that the relevant quantity for the spatial dis-
tribution of the perturbation is (p'( ' —m, ), but not p')

Therefore, the physical quantity, i.e., the mode parame-
ter, for the stability analysis is (pI —m)). Obviously,
each of the hyperbolas opening upwards satisfies
(p'1 ' —m) ) )0 and contains all the positive Fourier
indexes (cavity modes) and in contrast, each of the hyper-
bolas opening downwards satisfies (pI ) —m, ) & 0 and
contains all the negative Fourier indexes.

Therefore, without loss of generality, we may choose a
special pair of the hyperbolas corresponding to f7l1:+1
to describe all the cavity modes, see the solid curves in

Fig. 6. What is more, since the negative and the positive
cavity modes are symmetric, we could consider only one
of the solid curves.

In what follows we shall only deal with the tangent
point (PI ', P'2 ') =(0,0), i.e., (m), m2) =( —1,1) by using
the degenerate perturbation theory up to order 6 .

dY' '

B (0)Y{2) +B(1)Y(1)+B(2)Y(0)
dO

(214)

According to Theorem II in Appendix A, for Eq. (2.14)
to have a periodic solution, it is necessary that, for
v=+1,
(Y( ')*(B"Y("+B"'Y"'+B"Y"'

e 0 0 2c

+B(2)Y(0)+B(2)Y(o) )0 e 2E (215)

Making use of Eqs. (192) and (211), and taking
(p', ', p2 ') =(0,0) and m, =e into account, we find from
Eq. (215) the following two equations:

(213)

To this order, the two zero-order solutions, Y', ' have not
been coupled by the perturbations and P) remains purely
imaginary, just like the case of nondegenerate perturba-
tions.

In the second order, Eq. (188) is

C. Degenerate perturbation theory at the tangent point C+p(2)+p(2)+ + + (p(1))2 0
12 12c

p(2)+p(2) +(p(1))2 ()
C

12 12c+
Y(0)(g) ~ ice ~ Y(0) IE9c, , e ~, e

@=+1 (..=+1
(206)

which yields

In this case, the zeroth-order solution Eq. (202) takes
the form

(216)

(217)

where we have used c+1 instead of c1 2 as the arbitrary
constants.

In the first order of 5, we obtain from Eq. (188) that

(1)
B (0)Y(1)+B (1)Y(o)

de

where Bo" and B',"are given by

(207)

B(1)
0

iP"'1

3E

1,e

0
~ n(1)

2

0

(208)

(209)

Equation (207) is an inhomogeneous solution for Y(''.
According to Theorem II in Appendix A, it is easy to
show that Eq. (207) has a periodic solution if and only if,
for @=+1,

p(2)+p(2) +p(1)[(p(1))2 ) ]1/2 (218)

C+ 1+ 12(p(1))2+ [(p(1))2 ) ]1/2
6c

(219)

X) ()
=i +2AP2"6 [21+( I + 2) )6[(P() )

) ——']'
]

Obviously, k, 0 may have a positive real part if

(220)

Equation (218) shows that pI
' is imaginary if

0& ~p2''~ & I/&6. Equation (219) shows that, to make
Y' ' a periodic solution, the c, must be related to each
other. This relation is useful for calculating k, 1

at the
tangent point, which will not be discussed in this paper.
p, versus p2 in the cases of 6=0 and 6%0 is illustrated in

Fig. 7.
Since p(2') is a free parameter, we may put p2 '=0.

Then, from the definitions, Eqs. (162) and (186), we ob-
tain in the vicinity of (P(),P2 ') =(0,0)

( Y(0) ) sB (1)Y(0)—0E' 0 e

which yields

p(1) +p(1) —()

Thus B0
' takes the form

1 0B(1) . (1)
0 I~1 0

(210)

(211)

(212)

(221)

which in terms of the physical quantities can be expressed
as

(222)

Substituting Eqs. (206), (209), and (212) into Eq. (207), we
obtain

where n is the cavity mode index. Obviously, the first un-
stable mode index is n=1. Therefore, in the case of Eq.
(173), the self-pulsing solution is unstable if
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2
j)

5)0

responsible for the so-called large-amplitude instabil-
ity, while k» describes the RNGH-type instability.
Obviously, the characteristic time scale for the
large-amplitude instability is (+y~~y~), and for the
RNGH-type instability it is (Qyly~y }

O.
p =6 62.C

0Pa-c---

A. Results about A,
& 0 and the large-amplitude instability

The general behavior of A. , o as a function of the cavity
mode co is similar to that in the small-amplitude case, see
Sec. V and Figs. 6—8.

In order to find the instability threshold, we first take
m2 as a continuous parameter. Numerical calculations
show that there exists a critical value ~, for given I,„.

1.25

-3-3

FIG. 7. For 5 & 0, P, is real only if ~P2~ & Pi c.

(223} 0.00 = Im Pig

This unstable region is shown in Fig. 8. In the limit
T, —= Qy~~yiL/c~ ~, this inequality always holds and
hence the self-pulsing solution is unstable. For finite T„
Eq. (223) may be satisfied for sufficiently large pump A.
However, in the latter case, 5 will become finite and
hence the 5 expansion will break down. Nevertheless,
Eq. (223) suggests that the unstable region becomes larger
with A, i.e., the self-pulsing will become unstable if its
amplitude is too large. This idea is supported by the nu-
merical calculations presented in Sec. VI.

—1.25—1.25 0.00 1.25

VI. NUMERICAL CALCULATIONS
OF THK FLOQUKT KXPONKNT

(b)

We have shown, in the limits g, y~0, that among the
five Floquet exponents only one of them may possess a
real part. This Floquet exponent has the form

«+ ~1 OX+ ~»X~+ (224) 0- ~ Im Ptg-

In Sec. V, concerning the small-amplitude limit, we
have analytically calculated A. , o, and the results reveal a
new kind of instability, which may occur if the cavity is
su%ciently long or the pump is sufFiciently large. Though
A, , has not been calculated, the relation between the
RNGH instability and the self-pulsing solutions found in
Sec. III provides a description of A, , in the small-
amplitude limit.

In this section, A, , o and A.» will be numerically corn-
puted for arbitrary oscillating amplitudes. Similar to the
small-amplitude case, we can show that, though cubi is a
multivalued function of co2, in order to analyze the linear
stability it is su%cient to consider one branch of this
function, and we shall discuss the same branch illustrated
by the solid curves in Fig. 6. As we shall see, A. , o is

FIG. 8. For 0 & ~Pz, ~
& I /&6, there are two purely imaginary

solutions for P, 2 and one of them leads to Rek, 0&0. (a) If no
cavity modes are located in the unstable region marked by the
dotted line, the instability will not occur; (b) if some cavity
modes fall into the unstable region, the self-pulsing solution is
unstable.
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If ~co~~ )co„ then cu& is a real number and hence Xt 0 is
purely imaginary; if 0 & ~co&~ & co„ then there are a pair of
mutually complex conjugate solutions ~&, one of which
leads to a positive real part of A,

~ o, just like the relations
between f3& and /32, as shown in Fig. 8.

Since only I,„orI,„ is involved in Eq. (163), co, is a
function of I,„orI;„.This function can be numerical-
ly computed and the result is shown in Fig. 9. We see
that co,(I,„)first increases with I,„and then decreases
with it. The physical meaning of this behavior will be
discussed later.

For a laser with finite cavity length, only discrete
values of cuz are allowed. Therefore, k, o has a positive
real part if the least nonzero co& satisfies ~A@2 & co, .

In order to find the corresponding instability threshold,
let us introduce

sponds to o.
&

—2~/T„&.e.,

jj
~2, min

T,~A
(226)

7r ) 6)

In terms of S, this condition can be written as

Sco, (S) &
1

&2'
5,

(227)

(228)

4

Therefore, for a self-pulsing solution to be stable it is
necessary that

(225)

where the second equality comes from Eq. (41). Since
there exists a one-to-one correspondence between S and
I co is a function of S, i.e., co, =co, (S), where S ~ 1min~ c
according to Eq. (82).

By means of Eq. (162), the least nonzero
~ mz ~

corre-
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FIG. 9. ~, & as a function of I,„and I

0.8 1.0 FIG. 10. N& as a function of S, I,„, and I;„, and the
definitions of S&, I,„&, and I;„z. An N-pulse self-pulsing
solution is stable only if one of the following inequalities holds,
namely, S & S,&, Im, , & Im» ~, or Im;„& I~;».



ANALYTIC SELF-PULSING SOLUTIONS AND THEIR. . . 1887

Numerical calculations show that, by increasing S, the
left-hand side will exceed the right-hand side at some
critical value provided N 2, see Fig. 10. To describe
this critical value we introduce Sz, A~~—= 2

2
mNS~

(232)

Having found Sv, we can solve Eq. (232) and obtain
the threshold of the large-amplitude instability

S~co,(S~)= —,N ~2,1

v 2N
(229)

which yields the critical pump A~ &,

which depends only on N and is a system-independent
quantity. Thus, the stability condition Eq. (227) reads

(S~, N)2.
T, A

(230)

ofThe system-independent threshold values
S2 ~ ~ ~ Spo and the corresponding amplitudes of I
and I,„are listed in Table I. For a given N-pulse self-
pulsing, the instability occurs if S & S~, I,„&I;„~,orI,„)I,„~. Since this instability occurs when the os-
cillating amplitude of the self-pulsing solution is
sufficiently large, we call it large-amplitude instability, in
contrast to the RNGH-type instability discussed in Sec.
III.

The values listed in Table I show that

A~ c =
—,'[3A~ c —1 —(1 —6A~ c+A~ c)'~ ] . (233)

A multipulse self-pulsing solution is stable only if
A&A~~. When A) A~~, the perturbation with the
mode exp(i2vrg/T, ) will grow and the self-pulsing solu-
tion will become unstable.

For the single-pulse self-pulsing solution, the large-
amplitude instability appears in a different way. In this
case, the above-mentioned unstable modes a+, are just
the self-pulsing solution itself which has already grown
up. In other words, the perturbation of such modes will
not grow. This is reflected by the fact that co,, decreases
with I,„ for large I,„so that the inequality Eq. (228)
always holds for N=1. Therefore, the instability must be
caused by other cavity modes, which will not be discussed
in this paper.

NS~ &N+1 . (231)
8. Results about A, , I and the RNGH-type instability

TABLE I. System-independent threshold values of S&,
N =2—20, and the corresponding amplitudes of I;„and I,.„.

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

SN

1.197415
1.041 128
1.019 303
1.011 428
1.007 618
1.005 463
1.004 120
1.003 222
1.002 592
1.002 131
1.001 785
1.001 517
1.001 306
1.001 136
1.000 998
1.000 884
1.000 788
1.000 708
1.000 639

min, 1V

0.074 647 2
0.306 495 5
0.465 209 8

0.564 072 1

0.631 543 6
0.680 639 9
0.718 028 9
0.747 490 9
0.771 325 1

0.791 013 9
0.807 559 2
0.821 662 1

0.833 829 0
0.844 434 4
0.853 762 2
0.862 030 7
0.869 411 4
0.876 040 3
0.882 027 0

lmax, N

4.913 885
2.338 600
1.840 531
1.617 571
1.489 720
1.406 383
1.347 598
1.303 831
1.269 940
1.242 905
1.220 825
1.202 446
1.186 905
1.173 590
1.162 053
1 ~ 151 959
1.143 053
1.135 136
1.128 051

This results means that the large-amplitude stability
occurs before a second mode entering the RNGH-
instability domain shown in Fig. 4. It is easy to show (the
proof will not be given here) that the self-pulsing solution
that we have found consists of one basic frequency com-
ponent, which corresponds to the mode aR~&~ and its
harmonics. Therefore, such a self-pulsing solution must
become unstable when another mode with different basic
frequency is excited at higher pump parameters.

Though the numerical calculation of A. » involves com-
plicated procedures, the final results are just an extension
of the conclusions that we have arrived at in Sec. III, i.e.,
the instability described by k, , belongs to the RNGH-
type instability. In fact, in all of our calculations con-
cerning various parameters, we find that the sign of the
real part of A, , does not depend on the amplitude of the
self-pulsing solution.

It is worth pointing out that k» cannot be determined
by Eq. (172) at the point (cubi, co&) =(0,0), because Eq. (171)
becomes an identity for any k». At this point, k» can
only be determined by the higher-order approximations
with respect to y. However, according to the general
theory about the stability of periodic solutions, there
must be a zero Floquet exponent which corresponds to
the perturbation moving along the same direction as the
periodic solution in the phase space. Therefore, in addi-
tion to the zero exponent discussed in Sec. IV C, which
results from the indetermination of the phase of the elec-
tric field, there must be another zero Floquet exponent.
Since the three exponents discussed in Sec. IV B difter
from zero, the remaining zero Floquet exponent must
identify itself with this X». Some examples of k» versus
the discrete cavity mode number m are shown in Fig. 11.

It is worth pointing out the reason why we cannot
show in the linear stability analysis that the subcritical
g+ solution, as illustrated in Fig. 5(b), is unstable. In
fact, since this instability should be caused by the attrac-
tion of the stationary solution, it corresponds to a pertur-
bation mode m =N, where N is the pulse number of the
self-pulsing. According to Eq. (205), this mode corre-
sponds to co2=0, which always leads to a vanishing Flo-
quet exponent ~
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3-
T,=10.0, y —&0;

RNGH

~RNCH
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O X P„—=—,b=—y, r:—1+4 .
1

(234)

VII. RELATIONS BETWEEN THE SELF-PULSING
SOLUTIONS AND THE LORENZ MODEL

By means of the transformation

0-

Graham showed that Eqs. (11)—(13) are equivalent to the
Lorenz equation, '

X= P„(X——Y), Y = —XZ +rX —Y, Z =XY bZ—,

XI3 (235)

-2.

-4
-30 -20 —10

X 0

10

where X, Y, Z corresponds to E,P, D, respectively, and the
dots indicate differentiation with respect to the local time

Therefore, the self-pulsing solutions presented in the
preceding sections are also solutions of the Lorenz model
in the small-b limit. In addition, the function q+(A) as
given by Eq. (66) turns out to be the critical boundary of
the Lorenz instability

P„(P„+b+3)
T =T

P —b —1I"

(236)

4-

2.

0-

-2.

T,=5.5, )(
—&0;

RNGH

RNGH

Q X

m
il

~ ~
~ ~

in the limit b ~0. Figure 12 shows this critical boundary
for given b in the (P„,r) plane. The left-hand side of the
boundary is given by g =q+, which corresponds to unsta-
ble or unphysical self-pulsing solutions; the right-hand
side is given by g=g, which corresponds to the stable
self-pulsing solutions under certain conditions.

Since the self-pulsing solutions are always confined
within this boundary, we conclude that the traveling-
wave self-pulsing solution occurring in a multimode laser
system does not correspond to the subcritical solutions of
the Lorenz model, as suggested in Ref. 10.

Though our discussions are based on the limit
b =y~0, the conclusion that the periodic self-pulsing
solutions of Eqs. (11)—(13) are confined in the unstable
boundary equation (236) may be generalized to arbitrary
b =y. This postulate is equivalent to that expressed by
Eq. (83), which describes the relation between the RNGH

—3—100 -80 —60 —40
E

-20 20
15

FIG. 11. (a) A, l 1 vs mode index m for self-pulsing solutions
corresponding to the RNGH intersection (crosses) and to non-
RNGH intersection (squares) in the case where the RNGH in-
tersection lies in the upper boundary of the RNGH unstable re-
gion. The N =NRN« =6 solution is stable for ARN~H
& A & A& & as described by the crosses, which is calculated at a
particular value A=8.72. The self-pulsing solution correspond-
ing to the non-RNGH intersection with N=7 is unstable, as de-
scribed by the squares, which is calculated at A=11.0. (b) k& l

vs mode index m for the self-pulsing solutions corresponding to
(crosses) and to g= q+ (squares), in the case where the

RNGH intersection lies in the lower boundary of the RNGH
unstable region, and N =NRN&H =3 and A=8.05. In the linear
analysis, we cannot prove that the q+ solution is unstable; for
details see text.

13-

region II';

9-

7
0

region III

4 p 10

FIG. 12. Threshold condition of the Lorenz instability in the
(P„,r) plane, see Ref. 10. A stable self-pulsing solution may ap-
pear for parameters belonging to the right-hand side of the
boundary as illustrated by the solid curve.
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instability and the self-pulsing solutions. If this is true,
then Eq. (66) is just a special case of Eq. (236), which
yields the solution

—2 —y+ A+ [A —
( 8+ 6y )A+ y2]'i

2(1+y)(1+4) (237)

Therefore, the difficulties of finding the self-pulsing solu-
tions which have space- and time-independent phase ve-
locity for general system equations (11) and (12) will be
reduced. For example, as mentioned in Sec. II C, g, , as
defined in Eq. (14), cannot be determined by the perturba-
tion theory up to the order y, but according to Eq. (237),
we find easily that g, =0.

VIII. SUMMARY AND CONCLUSIONS

The basic goal of this paper has been to present the
analytical self-pulsing solutions arising from the RNGH
instability, to establish the correspondence between the
self-pulsing and the RNGH instability, and to investigate
the instabilities of the self-pulsing solutions. The analyti-
cal self-pulsing solutions are presented in Sec. II C in an
implicit form.

By linear stability analysis based on the full set of
Maxwell-Bloch equations, we have found that two kinds
of instabilities may occur for the self-pulsing solutions,
namely, the RNGH-type instabilities and the large-
amplitude instabilities. The physical origin of the
RNGH-type instability lies in that the corresponding
self-pulsing solution does not contain the cavity mode
which has been excited above the second threshold
ARMAGH. The large-amplitude instability occurs when
more than one mode of different basic frequencies are ex-
cited. In this case, no stable traveling-wave self-pulsing
solution exists and the phase velocity must become space
and time dependent. For the moment, we do not know
whether and how the large-amplitude instability would
lead to the breathing phenomena or the other complicat-
ed phenomena, which have been revealed numerically in
Refs. 11, 24, and 25.

Considering the two kinds of instabilities, we have
shown the following results.

(1) If the RNGH unstable mode lies on the upper
boundary of the RNGH-instability region, the NR~GH
self-pulsing solution is supercritical and is stable for
ARNGH A AN c and the NRzGH

—1 solution can
RNGH'

also be stable in the region A2„d&A &AN, c if
RNGH

2nd NRNGH 1, C '

(2) For the unstable mode in the lower boundary, if
I „&I ax N at A A2nd then the subcritical

RNGH

NRzGH self-pulsing arises for A2nd & A & AN C and
RNGH'

the system is bistable; if I „)I,„N at A=A2„d,
RNGH

there is no stable traveling-wave self-pulsing solution at
all.

Since there have been no definite experimental results
for the RNGH instabilities and the corresponding self-
pulsings up to now, ' this simple rule provides new signa-
tures of the self-pulsing phenomena and will be helpful to
experimental identification of the self-pulsing arising

from the RNGH instability.
Though our work is based on the limit y~0, it sheds

some light on the general case where y may be any finite
positive number and provides insight into the self-pulsing
phenomena. It is worth pointing out that the linear sta-
bility analysis does not provide information about the sta-
bility when the Floquet exponent is equal to zero, as we
encountered in calculating the two relevant Floquet ex-
ponents for the spatially homogeneous perturbations. In
this case, one has to go to the nonlinear regime of pertur-
bations.
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APPENDIX A: TWO THEOREMS ABOUT
THE LINEAR DIFFERENTIAL EQUATIONS

WITH PERIODIC COEFFICIENTS

In our discussions, the following two theorerns con-
cerning a linear differential equation with periodic
coefficients are useful, see. Ref. 41.

Let us first consider a homogeneous differential equa-
tion

dt

where 3 is a T-periodic matrix

A(t+T)= A(t) .

(Al)

(A2)

Define the matrix Y(t) to describe the solutions of Eq.
(Al) by

=AY, Y(0)=I .
dt

(A3)

det[ Y(T) I]=0, — (A4)

and when Eq. (A4) is satisfied, the initial value of the T
periodic solution y(t) satisfies

Y(T)y(0)=y(0) . (A5)

Now let us consider an inhomogeneous linear
differential system

dx = Ax+ f,
dt

where A(t) satisfies Eq. (A2) and f(t) satisfies

f(t+T)=f(t) .

(A6)

(A7)

where I is the unit matrix. For this system, we have the
following.

Theorem I. Equation (Al) has T-periodic solutions if
and only if
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In our discussions, only the case that the corresponding
homogeneous system x(0)= (z2l f ) /z*,

const (A16)

dt
(A8)

has d (d ) 1) linearly independent T-periodic solutions is
concerned.

Define the adjoint system of Eq. (A8) by

where const is an arbitrary constant, resulting from the
fact that a T-periodic solution of the inhomogeneous sys-
tern plus a T-periodic solution of the corresponding
homogeneous system is also a T-periodic solution of the
original inhomogeneous system.

dz = —A*z .
dt

(A9) APPENDIX 8: RESULTS AND EXPRESSIONS
FOR gr+0

Then, we have the following.
Theorem II. (a) The adjoint system Eq. (A9) also has d

T-periodic solutions z, , z2, . . . , zd which satisfy the ini-
tial condition

Y*(T)zk(0)=zq(0) (k =1,2, . . . , d) . (A 10)

(b) The inhomogeneous equation, Eq. (A6), has T-

periodic solutions if and only if

(z„ f) =0 (k =1,2, . . . , d), (A 1 1)

where, for n-dimension vectors z and f, ( zl f ) means

(zl f )—:—f g f,*(t)z,(t) dt .
T 0 1=1

(A12)

Numerically, in order to find the T-periodic solution of
Eq. (A6) satisfying Eq. (All), we still need to know the
initial values of the periodic solution. In what follows,
we only discuss a special two-dimensional case which is
encountered in solving I, (g) and D2(g).

Assuming that z, ( t) is a T-periodic function of the ad-

joint system Eq. (A9) satisfying Eq. (A 1 1) and the initial
condition

Listed below are the resulting equations containing the
parameter g„which has been put to zero in the main
text. In accord with Eq. (55), the complete differential
equation for the first-order intensity I, is

Io(D t+I —Io)—
1 + 7fp 1 + 'gp

dI1 :D1I1+IpD2
dg

(B1)

Equation (56) remains unchanged.
Based on this equation and Eq. (56), we can show that

the periodicity condition, Eq. (65), does not change.
Therefore, go as a function of A is still given by Eq. (66).
The zeroth-order Floquet exponents A, , 0 as discussed in
Sec. IV are independent of p1 p. The first-order term k, ,

given by Eq. (151) in the case of g|WO becomes

2
1, 1 71+m —Nn +m —nN

Obviously, the real part is not changed.
In order to calculate the relevant Floquet exponent A.»

as discussed in Sec. IV 0, we need to solve Ip, I„D,, D2,
y, and z and then find Qt and Qz. For rit&0, I, should
satisfy Eq. (Bl) and Qt is given by

1

z, (0)= (A13)

z, (0)=
0

z~( T) = (A14)

Assume zz(t) is another solution of Eq. (A9) satisfying

Q, =
t [A(1+rio)]' D2 A[4to2, +—2ico~, (1 —rto)D,

+no(1+D i
—3Io)] Iyi

+ [[A(1+~Jo)]' I, 4AIo(ito2, +—rtoD, ) Jy2

2+Ay, (D,y t
—+Ioy 2 ), (B3)

[zq( T) —zq(0)]*x(0)= (zeal f ) (A15)

or

where zz&WO, i.e., zz is not a T-periodic solution. Then,
according to Ref. 41, the T-periodic solution x(t) of Eq.
(A6) satisfies the initial condition

and the other quantities are determined by the same
equations given in the main text. Numerical calculations
show that g1 does not contribute to the real part of the
Floquet exponent A, t t determined by Eq. (172). There-
fore, we conclude that, up to the order y, g, is irrelevant
to the self-pulsing solutions and their linear stability.
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