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Dynamics of processes with a trilinear boson Hamiltonian
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We consider a Hamiltonian trilinear in boson operators, which describes several physical process-
es, such as the interaction of N two-level atoms with a single-mode resonant radiation field, para-
metric amplification, Raman and Brillouin scattering, and frequency conversion. The dynamics of
systems obeying this trilinear Hamiltonian is analyzed and the equations of motion are solved exact-
ly. So the time development of the boson operators is described by means of Laplace transforms of
suitable functionals. The integration method is based on iteration techniques and makes use of the
Manley-Rowe relations. Finally, the results are applied to describe the time evolution of the boson
operators when one of the three modes is initially in a high state of excitation.

I. INTRODUCTION

where a, and a, are boson operators of the ith mode with
angular frequency co; and the frequencies obey the energy
conservation law

CO~
—Q)2+ C03 (2)

Modes 1, 2, and 3 of the Hamiltonian (1) are identified as
the pump, signal, and idler modes, respectively, in the
parametric amplification and as the idler, pump, and sig-
nal modes, respectively, in the frequency conversion. The
same Hamiltonian (1) describes the Raman and Brillouin
scattering if modes 1, 2, and 3 represent input, vibration-
al, and Stokes modes, respectively, for a Stokes process,
and anti-Stokes, input, and vibrational modes, respective-
ly, for an anti-Stokes process. Finally, the Hamiltonian
(1) is mathematically identical to the well-known Hamil-
tonian for the interaction of X identical two-level atoms
with a single-mode resonant radiation field at frequency
co3, which is read in Dicke's notations as

H 16603(J, +a 3a3 )+RE(a,J+ +a 3J )

where J+,J, are the collective angular momentum opera-
tors for the atoms and &3,& 3 are the boson operators for
the radiation-field mode. In fact, this Hamiltonian can be
put in the form of the Hamiltonian (1) by using the
Schwinger's representation of angular momentum opera-
tors in terms of boson operators:

+=a &az,

J =&

Several processes of quantum optics are investigated by
introducing Hamiltonians multilinear in boson operators.
For example, parametric amplification, frequency conver-
sion, Raman and Brillouin scattering, and the interaction
of two-level atoms with a single-mode resonant radiation
field are described by a trilinear Hamiltonian of the
form'

3

H=fi g co;d;d;+RA(d ~a283+a, & &8 3),

J, =
—,'(a, a, —a za2) .

So one identifies modes 1 and 2 of the Hamiltonian (1) as
the upper and lower atomic state, respectively, and mode
3 as the radiation field with co, = —~,= —,'~2, which is a
particular case of the general condition (2). '

In order to study all these processes it is important to
know the dynamics of the systems obeying the Hamil-
tonian (1). Actually it is impossible to obtain the exact
quantum solution to this problem. In fact, although the
eigenfunctions of the trilinear Hamiltonian have been ex-
actly determined analytically, the results are quite com-
plicated for studying the time evolution of particular sys-
tems. Consequently, a number of authors have analyzed
this problem using different kinds of approximations. In
most of these analyses one makes the parametric approxi-
mation ' ' in which the depletion of one of the modes is
assumed to be slight through the evolution of the system,
or the quasiclassical approximation ' in which, at least,
one of the three modes is assumed to be strongly popu-
lated so that some operators describing the process may
be decoupled. Other authors have attempted to over-
come calculation diSculties by using short-time solutions
or numerical solutions. ' But nearly all of these treat-
ments give results that are not valid for long times.

The aim of this paper is to give an exact solution of the
problem. Therefore we will describe a new method to
study the dynamics of processes obeying the trilinear bo-
son Hamiltonians. In order to investigate the time devel-
opment of the boson operators we apply the mathemati-
cal techniques that have recently been used for studying
other nonlinear processes. '

First, we write the equations of motion in a form for
which the boson operators appear separated. Then, we
look for a solution of these equations by applying itera-
tion methods. But solutions expressed as a power series
of time can be written only if a recursive operational rela-
tion among the terms of the power series is found and, at
the same time, the expansion factor [(n!) '] for the gen-
eric nth term of this series is taken into account. On
making use of the Manley-Rowe relations and of some in-

40 1848 1989 The American Physical Society



40 DYNAMICS OF PROCESSES WITH A TRII.INEAR BOSON. . . 1849

tegral operators we are able to overcome these diSculties
and to obtain forrnal solutions of the motion equations.
Finally, we condense the resultant power series in in-
tegrals of analytical functionals. So, the final expressions
appear in the shape of a Laplace transform and of a sub-
sequent inverse Laplace transform of suitable operator
functionals.

From these expressions one can directly analyze the
characteristic properties of the processes described by the
trilinear Hamiltonian without applying the usual calcula-
tion techniques. The utility of the present approach is il-
lustrated by studying the time evolution of the boson
operators in some simple cases. Hence, we assume that
initially one of the three modes is strong. The present
calculations require that the simplifying condition is
verified only at time t =0, whereas in all the previous ap-
proximate methods every simplifying condition must be
satisfied through the whole evolution of the system.

Section II is devoted to write the exact solutions of the
equations of motion for the boson operators. In Sec. III
these solutions are employed to study the time evolution
of the boson operators when one of the three modes is in
a quasiclassical state. The paper concludes with the Ap-
pendix where a particular functional necessary for our
analysis is studied.

from Eq. (1) we can readily verify that

and

[N, (t)+A'2(t) ]=0
dt

[N, (t)+N, (t)]=0 .
dt

Thus, we see that

W„=A', (t)+E,(t), u"„=lV', (t)+S,(t),
and, consequently,

8'23 = W]2+ W)3+1

W» = —W» =N, (t) —N, (t)

are constants of motion in the trilinear processes. '

These expressions, which are known in literature as
Manley-Rowe relations, require that during the evolution
of the system for every photon that is annihilated from
mode 1 one photon each is created in modes 2 and 3. In
the following we need to consider some other constants of
motion that are linear combinations of the Manley-Rowe
invariants. These constants are

II. EQUATIONS OF MOTION
AND THEIR SOLUTIONS

—= 2A'& (t)+N2(t)+ A'3(t)+ 1,
W ]3 W]2 + W23

—=N, ( t ) + 2N2( t ) —k3 ( t )

(7a)

(7b)

We will study the dynamics of the trilinear boson
Hamiltonians, so we consider the model Hamiltonian (1)
in which three modes of the field interact with each oth-
er. The boson operators of these modes, labeled by the
subscripts 1, 2, and 3, obey the commutation rules

[&;,& ]=5;
The coupling constant b is taken to be real and the ener-
gy conserving condition (2) is assumed to be satisfied.
This Harniltonian may be written as

and

W f2 W/3 + W32 =N, (t) —%2(t)+283(t) (7c)

a, (t) =exp(ice, t)a;(t) (8a)

Now, we derive the equations which describe the time
evolution of the boson operators a, in the trilinear pro-
cesses. We will write these equations in a form in which
we can apply a mathematical method previously used for
studying some other nonlinear processes. ' By using the
interaction picture we see that the operators

where

3
Ho=A' g co, a, &,

(3)
and

a, (t) =exp( its, t)d, (t)—
(4a) obey the equation of motion

and

I ~~(~ 1~2~3+~1~ 2~ 3)

i' a, (t) = [a, (t),H, ] .
di

(4b) So we have

with

[Ho, Ht]=0 .

The Heisenberg equation of motion for any operator 0,
which does not depend on time explicitly, is given by

and

[a,(t)a, (t) ]= —isa, (t)[N2(t)+ N', (t)+1]
dt

[a,(t)a, (t)]= —i ha2(t)[N, (t) —N', (t)] .
dt

(9a)

(9b)

i' O(t)= [O(t),H ] .
dt

If we denote the photon-number operators of the three
modes by

g, (t) =& ~(t)a, (t),
d2

, a, (t) =62a, (t) 0 "'(t) (10a)

If we introduce the constant of motion (7a) into Eq. (9a),
for the annihilation operator a& we find the following
equations of motion:



1850 SALVATORE CARUSOTTO

and

a, (t) = —isa, (t)a,(t),
dt '

where

(lob)

provided the function g does not depend on the variables
t, . Then, we introduce the operators 2 ' and J '

defined by the following relations:

,/ '+ '( g; g) g"=n!g" (16a)

0 "'(t)=2N, (t) —W'23 (10c)

d2
, a, ( t) = b, 'a, ( t) P( t)dt' ' (1 la)

Analogously, for the operator a2 we can write the equa-
tions of motion

5'- I(g;~)~"=(n!)-'g" . (16b)

These operators can be expressed in explicit form by us-
ing integral transforms. If

&(ri;g)f(g)= J dgexp( —gg)f(g)—=q(ri)

and

a,(t) = —ib, a, (t)a,(t),
dt

(1 lb)

is the Laplace transform of the function f (g) and

'(g;g)y(rt)=(27ri) ' f dgexp(r)g)y(g)
Q

—
1 OG

where

'(t)= W' ' —2A'2(t) . (1 lc)

f(g)—
is the inverse Laplace transform of the function cp(g), we
have

Here W I3' is the constant of motion defined in Eq. (7b).
The integrals of the equations of motion must satisfy the
initial conditions

a, (t =0)=a,
and

X(g;g)g"=n!g

r -'(g;~)~-"-'=(n!)-'g" .

and

a, (t =0)=a, .

Consequently, for the operators (16) we can write

(17a)

I(t;t, ) = J dt, ,
0

for which we put
Il 1'

I "(t;t„)=f dt, y di I dt„.
Clearly, we have

I "(t;t„)(t„)'=k![(k+n)!] 't" +"

(13)

(14)

(1Sa)

and, in particular,

I "(t)g =I "(t;t„)g=(n!) 'gt", (15b)

For the particular symmetry of the Hamiltonian Hl the
equations of motion of the operator a3 can be directly ob-
tained from the equations of motion of the operator a2.
To this end we must exchange the subscripts 2 and 3 in
Eqs. (11). Finally, we note that

[a, (t), Q '(t)]=0. (12)

In the following study of trilinear processes we will use
some integral operators. Therefore we consider the
operator

and

(17b)

Now, in order to study the time evolution of the boson
operators a, in the trilinear processes, we begin by solv-
ing the equations of motion (11) for the operator a2. For
the integration we will use the mathematical method,
previously applied to other problems, which is very con-
venient for studying nonlinear equations. First we give
the solution of the equation of motion as a power series in
t and then we study the analytical function to which the
series converges. In order to express the solution of the
equation as a power series we must find a recursive opera-
tional relation among the terms of the series and, at the
same time, take into account the expansion factor
[(n!) '] for the generic nth term of the series. For this
purpose we use the integral operators previously intro-
duced, since they allow us to deal with these difficulties in
different phases of the calculations. A formal solution of
Eqs. (11) can be easily obtained by iteration techniques.
With straightforward argumentations we see that the
solution is given by the following expression:

a,(t)= A, (t)+I'(t)G "'jA, (t)+I'(t)C I"
[ A, (t)+I'(t)C I"

j
.

I ] I,
where the functional A ~(t) and 0 ' '(

A 2) are written as

A2(t) =a~ id I(t)a, a3—
and

(19)
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'(A )=b A (W' ' —2A A ) (20)

respectively, and the operator I(t) has been defined in Eq. (13). It is trivial to verify that Eq. (18) is solution of the equa-
tions of motion (11),since the derivatives of Eq. (18}give

a2(t)= i—bd, C i+I(t)C ' 'I Az(t)+I (t)G ' 'I A2(t)+I (t)G I 'j

and

2

a,(t) =G '"t A, (r)+I '(r)C "'I A, (r)+I '(r)C "'t .

[A ,'A„W",,']=0 . (21)

From Eq. (12) we see that the functional 0 ' '(Az) can
also be written in the form

G ' '(A )=6 (IV' ' —2A 232)A~ .

Moreover, since

[A2, WIi'] —2A~,

the operators ( A 2 A 2 ) and vV, 3 commute,xr (p)

we compare the operators F 2
' and a2 which have been

defined by Eqs. (22) and (18), respectively. We see that az
can easily be obtained from the expression of F 2

'. To
this end it is sufficient, in Eq. (22), to replace (5 } with
(5 I), A with A2(t), k with WI3', and to assume ~=t.
Since we will use Eqs. (25) and (26) to express F 2 ', we
can take into account the above substitutions by replac-
ing (b, ) with (b, rj), k with W P3', and A with
(82 i b, q'd, d—3) in Eq. (25). So, for a2, we obtain the fol-
lowing expression:

Now we must find the analytical function to which the
series (18) converges. For this purpose we consider the
simpler series

F 2 '(r;A }=A+I(r)CIA+I(r)C IA+I(r)C [

(22)

where A is an annihilation boson operator. Then, we
define, in a similar way to Eqs. (20) and (21), the function-
al C(A) as

a2(t) =exp[I(t)D(il)] J '+'(g;r')F2(il;r'),

where we have put

F2(il;r)= A~(il)( —,'W'i3')' exp(b, ill&, 3')

X pW I, 3' —A i(q) A2(i})

X [1—exp(2b. ilrWI3')]I

(27)

0(A ) =b. A ( W —2A ~ ) (23) (28)

with the operator 8'that obeys the commutation rule

[A tA, W]=0 . (24)

with

Az(il)=&2 —ihilaia 3, A z(il)=a z+ihila &a3 (29)

In the Appendix we see that, on making use of the condi-
tion (24), the auxiliary functional P ~2

' can be written as

F 2 '(~ A ) = A( —'W')' exp(b, rW)

X I
i W —A A[1 —exp(26 ~W)]I

(25)

For our purposes it useful to express the ~ dependence of
the functional Fi2 ' by means of the operator I(~). So,
with the help of the operator 2'+', we write the follow-
ing identity:

F 2 '(~;A ) = exp[I(v )8(g)]J '+'(il;~')

XF' (~=r',&)l, , (26)

where

D(q)=
dn

The ~0 notation means that the functional on the right-
hand side of Eq. (26) must be evaluated for ii=0. Then

(30)

When this result is introduced in Eq. (8a) we find that

a~(t)=exp( —icoit) J ' '(t;g) J '+ (il;w)F2(il;r) . (31)

Thus we have obtained the desired expression that de-
scribes the time evolution of the operator 82 in the trilin-
ear processes.

The solution of Eqs. (10) which describe the time evo-
lution of the operator a, can be easily obtained from Eq.
(30). To this purpose we must suitably exchange the sub-
scripts and replace the parameter (b ) by ( —6 ) in Eqs.
(28)—(30). So, for the operator a, we find the expression

a, (t)=J ' '(t;i})J '+ (q;r)F, (il;~), (32)

where it is

Now, on making use of the operator 2' I, we free Eq.
(27) from the operator I( t ) So we s.ee from the
definitions (15b) and (16b) that az can be expressed in the
compact form

a,(r)=2' '(t; )il'J+( 3;il)Fr, ( i~1) .
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F, (ri;r)= 31(ri)( —,
' 8'z3')' exp( —b, Tire 23 ) I —,

' &23 —3 I(rl) A1(ri)[1 —exp( —2A rirkz3')]] (33)

with

~1(ri) 01 /~T10203 ~ 1(TJ) 0 1+l~riQ 20 3 (34)

Consequently, the expression that describes the time evo-
lution of the operator a

&
is given by

0, (t) =exp( —i', t)J (t;Tl) 21+'(rl;r)F, (ri;r) . (35)

The time evolution operator a3 also can be obtained from
Eq. (31). We must exchange the subscripts 2 and 3 in Eq.
(28), as we have previously noted.

For the sake of completeness we rewrite Eqs. (31) and
(35) by expressing the integral operators 2' ' and 21+1
in explicit form. If we use the Laplace transform and the
inverse Laplace transform, from Eqs. (17) we see that the
operators a, and a& are given by

0, (t)= exp( —ice, t)X '(t;y ')X(y ', r)

it is generally large compared with the other signals of
the process. We point out that, in the present calcula-
tion, all simplifying conditions must be satisfied only at
time t =0, as we use the exact expressions for the time
evolution of the boson operators.

In the following we will indicate the mean value of an
operator 0 as

(o )'„&'=—(~Io I~)'~',

where the label j indicates the pump mode.
First, we will analyze the time evolution of the boson

operators when the pump mode is represented by mode 2,
so it is Ia2I )) l. In this case we can identify the process
described by the trilinear Hamiltonian with the frequency
conversion where modes I and 3 are the idler and signal,
respectively. In order to simplify the following calcula-
tions the amplitudes a, and a3 are assumed such that

XF, (ri=y ', r) (36a) (37)

and

02(t)= exp( icu2t)X —'(t;y ')X(y ';T)

We begin by considering the mean value of the boson
operator &&,

XF2(ri=y ';T) . (36b)
(0, (t))' '=exp( —i 0')(a, (t))' 1. (38)

We point out that the integral expressions (36) contain
a Laplace transform and an inverse Laplace transform
only. Therefore these expressions can be used to study
the properties of trilinear processes or to calculate handy
approximate values of the quantities which describe other
particular multilinear boson systems.

III. APPLICATIONS

From Eq. (32) we see that

(a, (t))12'=2' '(t;Tl)J' '(Tl;r)(F, (q;r))121. (39)

When we expand the functional F, as a power series,
from Eqs. (21) and (33) we obtain

oo

F, ( l; T)=rg g c„1A, (rl)[A, (q)A, (ri)]"
n =01=0

We will show the utility of the present approach to the
analysis of the trilinear processes by applying the results
to some simple cases. In these calculations we assume
that, at time t =0, the three boson modes are described
by a coherent state

x( w,",')-"

X exp[ —(21+ 1)W 12316, Tir]

with

c„,=( —1)'(2n)![2"n!(n —l)!l!]

(40)

(41)

with

CX = CX (, 0!2,CX3

D, Ia)=a, Ia) .

Moreover, we assume that the amplitude a of one of the
modes is such that Ia I

)) l. Experimentally, this condi-
tion is verified when the mode j represents the pump. In
fact, the pump is always in a high state of excitation and

(F, (rt;r))' '=2', '(Ti;r;@=1), (42)

where

In order to give a handy form to the mean value (F1 )' '

we introduce some approximations. Since the conditions
(37) allow us to neglect the terms of superior order with
respect to Ia&I Ia2I

' and Ia3I Ia2I ', we see that the
mean value ( F, )1 ' can be written as

('g, T, 1 ) g c 1 [(cx I i a2a3b Tt) —n (a1 a2a3 —a1a2 a3 )a2a3( I cr2 I 'I
3 I

') ' ]
n, l

X(Ia3I b, Tl )"exp[ —(2l + 1)Ia2I yb, Tlr] . (43)

The utility of the parameter y in Eq. (43) will appear clear in the following. Now it is useful to introduce a property of
the operator 2' '. Iff (Tl ) is an arbitrary function, from the definition (16b) we have
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'(t;il)[il "f(rl)] =D '(t)[J ' I(t;rj)j (i))] .

Consequently, from Eq. (39) we find that the mean value of the operator a, is given by

(a,(t))' '=[1 +i(Aa 2u 3) 'a, B(t)—i(b la2I ) '(a,*a2a3 —a, aza3 )8(la3I )8(t)]VI ', (t;a;;y= 1),
where the function 9', ,

' is defined as

9", I(t;~;;y)= —ioi~32~ ~(t;il) g c.tl~31 (Ail) ' g [—(2l+1)la, l'yA'il']" .

(44)

(45)
n, l A=0

By a straightforward calculation we see that the function 2', I can be expressed as

&i', i(t;~;;y)= —i~2~3& c.tl~3I'"I ( —1)"[(2I+1)'"1~2ly'"] '" '»n[(2i+1)'"I~2ly'"~t]
n, l

+[(2tt —1}i] '(2/+1) l~ I

' '(gt) "

Then, after a little algebra, we obtain the more compact expression

9', ,'(t;a;;y)= —ia2a3 g ( —1)'(I!) '[(2l+1)'~ la&I]
1=0

XD'(8)I [1+29(2l+1) 'Ia, l'Io. , l
'y ']

xsin[(»+1)'"I~2ly'"«]+y '&(", , '(t; l~, l;~)] li,
where 6P is a real parameter, the function Yl' &' is defined as

&I'i'(t; 1~31;~)=(»)' "1~31[(2i+1)'"1~~l] 'B
i [(2~)'"I~31~t],

and Bz is the modified Bessel function

(47)

Bh(y)= g [u!(u +It)!] '( —,'y)"+ ".
u=0

Here and in the following by the I, notation we mean that the function on the right-hand side of the equations must be
evaluated for 8=1. When we introduce the result given by Eq. (46) into Eq. (44), from Eq. (38) we see that the mean
value of the operator Q, can be written as

(a, (t))' '=exp( —iso, t)[P, ,'(t;a, ;y= 1)+2', z(t;a, ;y=1)+2, 3(t;a;;y= 1)],
where we have put

7,'2(t;a, ;y)=a, g (
—1)'(i!) 'D'(e)I [1+28(2I+1) 'la, l'la, l

'y ']

and

Xcos[(21 +1)'"1~2ly'"«]+y '&tI~'«; I~3I;6)) I li

2] 3( t;a;; y )= a&a&(u, a2 a3 —a*, a2a3)la2I

x & (
—1)'(i') 'D'(&)I —&[(2&+1)l~,l'y] '[1+2@»+1) '1~31'1~21 'y '] '"

1=0

Xcos[(2l+1)' laqly' &t]+y '&&",'(t; l~&l;&)] Ii

(49a)

(49b)

with

and

y't'~2'(t; fa3f;g) = [(21+1)la21 ] '8I~3f IBO[(2+)' la3 f~t]+B2[(2~)'

y&'23'(t; la31;g) =[(21+1)lail ] '8I (28)' la3lbtB, [(28)' la3ILt]+Bo[(2L9)' la3l~t]] .

(50a)

(50b)

Now, we study the mean value of the operator 83,

(&3(t))' '=exp( —icoit)J ' '(t; )re +I'( ;il)r(P (3g; )r)' ',
where, from Eq. (28), we have
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F3 ( g; &)= g c„I& 3 ( g )[ 3 q( g ) A 3 ( g ) ]"[W' )2'] "exp[(21+ 1 ) W I2'62gr] .
n, l

On the present conditions we can approximate the mean value (F3 )' by writing

(F3(g;r)) '=7~ '(q;r;y=l) (51)

with

73 (g;r;y)= pc„I[(a3—i a, azbg) n(—a&aza,*—a*, a2a3)a, az(la&I Ia, l ) ']
n, 1

X(la, l
b, g )"exp[ —(21+1)la~I yb, r)r] . (52)

From Eqs. (44) and (52) we directly infer that the mean value of the operator a3 can be expressed as

(a3(t))' '=[1+i (ha&a& ) 'a3D(t) —i(A Ia2I ) '(a&a&a3 —a& aza3)D(la& )8(t)]7& I(t;a;;y =1),
where the function 2& I is given by

oo

9& I(t; ay)= —ia, a22' '(t;g) pc„tla&l "(hq) "+' g [ —(2l+1)la&I yb, g ]
n, l

From this result we conclude that the mean value of the operator a3 can be written as

(a3(t) )' =exp( icu3t)—[P& I(t; ay =1)+g& 2(t;a, ;y =1)+733(t;a;;y= 1)] .

Hence, on the analogy of Eqs. (46) and (49), we have

(53)

(54)

(55)

9'& I(t; a, ; y)= —ia2a3 g (
—1)'(1!) '[(21+1)' Ia2I]

1=0

XD '(0)I [1+20(21+1) 'lail lail ']

Xsin[(21+1)' la2ly' bt]+y 'Y,', '(t; la, l;0)}I, , (56a)

and

9& (2t; a, ; y)= a& g (
—1)'(l!) 'D '(0)[ [1+20(2&+1) 'la&l lail y ']

1=0

X cos[(2l + 1 )
'"

I a, I y
' "at]+ y

'
Y,",'( t; I a, I; 0) } I, ,

V3 3(t;a, ;y) = a&a~(a& a&a3 —a&a2a3 )Ia2I

(56b)

X g (
—1) (1!) 'D '(0)[ —0[(21+1)la2I y] '[1+20(21+1) 'Ia&l Ia2I y ']

1=0

Xcos[(»+1)'"la,ly'"&t]+y 'Y,",'(t; la, l;0)}I, . (56c)

Finally, we study the mean value of the operator az. For the sake of simplicity we consider only times I, for which we
have

lao I
» lailla3l~t

So, from Eq. (28) we can write that

(F2(g;r))' '=az —ia&a3bg+ia2(a~ a2a3 —a&a2a3 )(2lazl ) 'by[exp( —4lazl b, gr) —1] .

Since

(~,(t))I.'I=2' I(t:g)J I+'(q;r)(F, (q;r))'.",
after a little algebra we obtain that

& &2(t) &"'=exp( —i~~t) [a2 —ia~a3 ~t+ia2(a~ a~a3 —a~a2a3 )(2la~l') '[(2la21) '»n(2la2l~t) —~t] } .

(57)

(58)

Thus we have obtained the expressions that describe the time evolution of the three boson operators when the pump
mode is mode 2. We point out that the resulting mean values are presented as a superposition of circular and modified
Bessel functions. The solutions, therefore, are not periodic as the Bessel functions cause a drift in the time evolution.

Then, we will study the time evolution of the boson operators when the pump mode is r-presented by mode 1. In this
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case the process described by the trilinear Hamiltonian can be identified with the parametric amplification where modes
2 and 3 are the idler and signal modes. So, we assume the amplitudes a, such as

Ia, l ))1,

and

We start by considering the mean values of the operators Q2 and a3. On the present conditions we can write the mean
values (Pz)"' and (P3 )'" as

(Pz(rl &) )'"= g c t[(a2 iaia3 ~q) n (aiaz a3 ai aza3)aia3(la~I la3l') ']
n, l

X(la3I b, g )"exp[(21+1)la, l
b, qr] (59a)

(P3(rl; r) )"'= g c„t[(a3—ia, a2 br)) —n (a,a2a3 —a*, aza3)a, az ( Ia, l Ia2I ) ']
n, l

X(lazl b, vy )"exp[(21+1)la, l
b, sir] . (59b)

If we compare these expressions with Eq. (52), we immediately note that the mean values ( P2 )"' and ( F3 ) ' " are very
similar to the mean value (P3)' '. Consequently, (Fz)"' and (F3)'" can be obtained by (F, ) ', provided we ex-
change the indices suitably and we put y = —1 in the expressions which give (F3 ) ' '. So we see that the mean values of
the boson operators &2 and &3 can be written in the known form

and

(az(t) )'"=exp( —icv2t)[Pz'I(t;a; )+ Pz'z(t;a; )+Tz'3'(t;a; )]

(a3(t) )"'=exp( itv3t)[P—~'I(t;a, )+2~'z(t;a;)+2&'3(t;a; )] .

(60a)

(60b)

The different functions of Eqs. (60) are defined through the following expressions:

T„'I(t;a, )=ia,a,* g (
—1)'(1!) '[(2l +1)' Ia, l] 'D '(8)

1=0

X I[1—20(21+ 1) 'Ia,
l Ia, l ] ' sinh[(21+1)' a, lbt] YI", (t; la—, ;8) I I, , (61a)

and

X I[1—28(21+1) 'la„l Ia&l ] ' cosh[(21+1)' Ia&lbt) —YIz'(t;la, l;0)) I&, (61b)

3(t a' ) a/a„(a] a2a3 afapa3 )la, I

Xcosh[(21+1)' la, lht] —YI'3 (t; la„l, @) I I) . (61c)

In fact, the functions Pz'I, Pz'z, and 2'2'3' are obtained from Eqs. (61) by letting u =2 and v =3 and the functions 7&', ,

P3 2 and 2& 3 by letting u =3 and v =2.
In order to study the mean value (a, )'" we write the mean value of the operator F, . If we consider times t for

which it is

from Eq. (33) we find

(P&(g;7'))"'=a, ia,a3lhl71+—la](afapa3 a] a2u3)(2la, l ) 'b, rlexp(4la, l bgr) .

Consequently, for the operator 8, we can write the mean value
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(ct&(t)) ''=exp( —ice&t)[a& i—aza3bt+ia&(a&aza3 —a&aza3)(4~a&~ ) 'sinh(2~a&lbt)] . (62)

ta3azlazI '»n( Iaz~kt)]

(a3(t) )' o= exp( icu3t)—

X [ a&cos(
~ az ~

b, t)

—ia&az ~az( 'sin(~az(bt)],

(63a)

(63b)

and

(az(t) )' o=exp( icozt)az .— (63c)

Then, if we assume ~az~ ~a, ~

'~0 and ~a3~ ~a, ~

'~0,
we obtain, from Eqs. (61) and (62), that the mean values
of the boson operators in the parametric amplification are
given by

To conclude, we have obtained the desired expressions
that give the time evolution of the boson operators when
the pump mode is represented by mode 1. The resulting
expressions are presented as a superposition of hyperbolic
and modified Bessel functions. The Bessel functions help
the solutions to get the correct convergence at long times.

It may be of some interest to deduce from the previous
results the well-known expressions that describe the bo-
son operators for the frequency conversion and paramet-
ric amplification in the quasiclassical approximation. If
we assume ~a, ~ ~az~ '~0 and ~a, ~ ~az~ '~0, from Eqs.
(48), (55), and (58) we find the following mean values for
the boson operators in the frequency conversion:

(a~(t))' 0= exp( ice, t—)

X [ a, cos( ~az~bt)

properties of the boson operators after the trilinear pro-
cesses by using the above method, which turns out to be
very useful to study the time evolution of the operators in
these processes.

IV. CONCLUSIONS

We have studied the time evolution of the boson opera-
tors in the processes described by a trilinear boson Ham-
iltonian. The equations of motion have been solved by
using iteration methods and the solutions have been
presented as a Laplace transform and a subsequent in-
verse Laplace transform of suitable functionals of the bo-
son operators. The solutions written in this form allow to
analyze the properties of the processes obeying the trilin-
ear Hamiltonian and to write handy approximate values
of quantities describing these processes. In fact, the in-
verse Laplace transform, as well as the Laplace trans-
form, can be evaluated by using the convolution law or
one of the many approximate methods of calculation re-
ported in literature. So, the operators obeying the trilin-
ear Hamiltonian can be expressed in forms which facili-
tate the study of particular processes without applying
the usual approximation techniques.

In order to verify the feasibility of the present method
we have analyzed the time evolution of the boson opera-
tors when one of the modes is initially in a quasiclassical
state and for this particular case we have written the re-
sulting functionals in analytical form.
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APPENDIX: AUXILIARY FUNCTIONAL

X [ a3cosh( ~a, ~&t)

—iaz a, )a, j
'sinh( (a, [b t)], (64b)

and

(a, (t) )"o=exp( ice, t)a, . — (64c)

Thus, we have found the expressions that describe the
mean values of the boson operators for the frequency
conversion and parametric amplification in the quasiclas-
sical approximation. Finally, we note that Eqs. (63) and
(64) can be directly obtained from Eq. (18) provided the
functionals G ' ' and 0 ' ' ' are expressed as

In this appendix we study the functional F z
' defined in

Eq. (22) as

F zI '(7;A)=A+I(7. )C [ A+I(7)G
X [A+I(7)C [

.
j j j, (Al)

where A is an annihilation boson operator, the integral
operator I(7) is given by Eq. (13) and the functional G' is
expressed as

G(A)=A A(R —2A A) .

Moreover, for the operators (A tA ) and IV we assume
that

[A A, W]=0 . (A2)

and We note that the series (Al) is the solution of the equa-
tion

In a subsequent paper we will analyze the statistical F z '(7;A ) = G [F z (7;A )] (A3)
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with the initial condition

Since we will use a method previously applied for study-
ing similar problems, ' we consider the function

F(r; g) =/+I(~)G I g+l(r)G [g+l(~)G [
.

p=(2b, w) 'in[a ( —,'w —
g ) '] .

We, therefore, have

g=( —,
' w)' exp(b, wp)[1+exp(25 wp)]

and, when we express F' I(r; () in terms of p, we find

F' '(~;g) =exp[rD(p)]{ ( —,'w)' exp(b, wp)

(A6)

where g and r are independent c-number variables and
the function 6 is expressed as

X[1+exp(2b wp)] '
l

On performing the derivatives we obtain, from Eq. (A6),
that

We assume that m is a real parameter, as it is b, . We be-
gin by writing the function (A4) in a more useful form.
Since this function obeys the equation

F' '(r;g)= g( —,
'w)'r exp(b, wr)

X I —,'w —
g [1—exp(2b~w~)]I (A7)

d F(r;g)=G [F(v-, g)]d7.

with the initial condition F(r =0;g) =(, we find that

Since the parameters 6 and m which define the functions
G' ' and G are real, we can obtain the expression of the
function F from Eq. (A7) directly. So we find that

F(r;g) = g( —,'w)' exp(h wi. )

F(~;g) =exp[~6(g)8(g)]g,
where

X Pw —
1(1 [1—exp(2b, wi. )]I (A8)

In order to evaluate the function (A5) we start by assum-
ing that g is real. In this case we have

F'"'(~;g) =exp[~6' '(g)B(g)]g

If we compare Eqs. (Al) and (A4) we see that the func-
tional F z

' can be easily obtained from the expression of
the function F. To this end it is sufficient~in Eq. (A8), to
replace g, 1(1, and w by the operators A, (A A ), and
8', respectively. This operation does not present order-
ing problems as the commutation rule (A2) must be
satisfied. So, we can write that

with

G'"'(g)=b, g(w —2g ) .
F ~~ '(~;A ) = A( —,

' W)' exp(b, ~W)

X PW' —A A[1 —exp(2b, i W)]I
If we put

D(p)=G' '(g)~(g),
the variable p, can be written as function of g in the form

This is the desired expression of the analytical function to
which the series (Al) converges. This result can be easily
verified by using the equation of motion (A3).
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