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Multiple-scattering expansion for (e, 2e) collisions in the presence of a laser field
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A multiple-scattering expansion is developed in this paper for the description of (e, 2e) collisions
in the presence of a laser field. The dressed states of the incident electron, the scattered electron,
the ejected electron, and the target atom due to the laser field are considered and then the scattering
matrix is expanded as a series of multiple-scattering terms based on the time-dependent multiple-
scattering theory, such as Sf; =SM"+S~'+ . In the present approach, the effects of S~' are al-

most equivalent to those of the first three orders of the Born expansion. Some aspects concerning
the practical calculations of SM" are also discussed at the end.

I. INTRODUCTION

(e, 2e) collisions in atoms and molecules in the absence
of the laser field have greatly been developed during the
last decade. ' Recently, (e, 2e) collisions in a laser field
have initially been discussed by Cavaliere et al. and
Joachain et al. ' These authors' results show that some
dramatic changes in the triply differential cross sections
may occur because of the dressing effects of the target
atom states due to the laser field.

The purpose of the present paper is to develop a
theoretical method which possesses a wider valid region
in both laser fields and energies of electron for the
description of (e, 2e) collisions. The dressed states of the
target atom are treated by an improved perturbation
theory of multiphoton transitions. The scattering matrix
is expanded as a series of multiple-scattering terms based
on the time-dependent multiple-scattering theory, such as

Sf] SM +S~ +
It is proved that the effects of SM" are almost equivalent
to those of the first three orders of the Born expansion.
Finally, some aspects concerning the practical calcula-
tions of SM are also discussed.

II. THEORY

As a illustration, we only consider (e, 2e) collisions of
atomic hydrogen in the present paper. In the present ap-
proach, the laser field is classically described and the
effects of nuclear mass and spin and the spin-dependent
electron-electron and electron-nucleus interactions are ig-
nored for simplicity.

A. Hamiltonian of the system and scattering matrix

The total Hamiltonian of the e-H system in a laser field
can be written as

H, and H, denote, respectively, the Hamiltonians of the
incident (scattered) electron and of the target atom in the
presence of the laser field and Vis the e-H interaction. In
detail, we have in atomic units and Coulomb gauge,

1H = —'V2+ —A.pe 2 1 1
(2.3)

1
H, = —

—,'Vz+ —A p2+ V, (r2), (2.4)

v= v, (r, )+ v, (r), (2.5)

where

(2.6)

(2.7)

(2.&)

(2.9)

(2.10)

In the above, A is the vector potential of the laser field
and the terms with A have been ignored.

We assume that the laser field is a monochromatic
plane wave, linearly polarized and the dipole approxima-
tion is valid. Thus the vector potential may be represent-
ed as

A =e A 0cos( tot )

or the electric vector is

8=e6'osin(cot),

(2.11)

(2.12)

where e is a unit polarization vector of the laser field and

(2.13)

H=Hp+ V,
where

Hp=H, +H, .

(2.1)

(2.2)

The initial and final states of the system, 4', ' and 4f ',

are determined by

(2.14)
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The complete wave function describing the collision
process is the solution of the following Schrodinger equa-
tion:

(2.15)

The scattering matrix from the initial state +,-
' to the

final state 4'f ' is yielded by the time-dependent scattering
theory,

In detail, we have

—i c.t i [q,. -r& —ao q. sin(~t) ]
(r, , t)=e ' e

I

where

q,
i

(2.18)

(2.19)

(2.20)

(2.16)

where (II( ' is the solution of Eq. (2.15) which possesses
the asymptotic conditions of a plane wave and ingoing
waves.

B. Laser-dressed state

(It'
, '(r„r2,t)=y (r, , t)(I);(rz, t), (2.17)

where g is the Volkov solution of the incident electron
I

in the laser field and satisfies the following equation:

Given the properties of Hp, the initial state 0", ' may be
separated into

2()
CKp= 6

CCO
(2.21)

I is the intensity of the laser field (in a.u. ).
(I), in (2.17) is the initial dressed state of the H atom

determined by

(2.22)

Clearly it is quite difficult to find the exact solutions of
(2.22). According to Joachain et al. 's approach, ' the
approximate expression of N, is obtained by the tradi-
tional first-order time-dependent perturbation theory. In
particular, the dressed ground-state wave function of
atomic hydrogen is expressed as

(I)o(r~, t) =e ' e ' $0(r~)+-
n

1 Cd1 e 1Cdt

E Ep+N E Ep co
M„og„(r~) (2.23)

where
I

where

1
a = t ocos(cot—)e .

CO

(2.24)

(2.25)

(I)', '(r, t)=e '4, (r, t),
H' '=H'+aV.

Q a

(2.27)

(2.28)

In the above, P„is a target state with energy E„in the
absence of the laser field; co and Dp are, respectively, the
frequency and the electric amplitude of the laser field.

Let us now analyze the properties of (2.23). Because of
the limitation of the dipole selection rule, only p states
can be mixed into the dressed state if the initial state $0 is
an s state. It is true for a low-intensity laser. Otherwise,
for a high-intensity laser, multiphoton exchange becomes
quite important, thus more other states (s, d states and so
on) will also enter into the dressed state. Therefore it
seems that the traditional first-order time-dependent per-
turbation theory is not enough to describe the dressing of
the target atom due to a strong laser field.

In the following, we use an improved time-dependent
perturbation theory of multiphoton transitions" to get a
new expression of N;. The main points of this approach
are as follows.

We first apply the Kramers-Henneberger transforma-
tion to (2.22) and obtain the Schrodinger equation in the
Kramers picture,

In the above, H, is the Hamiltonian of the H atom
without lasers and

b, V= Vl(rz+a) —V, (r2),

a =aosin(cot) .

(2.29)

(2.30)

g V y ( I)( r )
—i lest (2.31)

The Fourier components can be written as'
~ I

U'"= — ds V, r2+~(p —~r r2

X TI(s)(1—s ) (2.32)

where T, (s) are Chebyshev polynomials. We also have

U
( I) ~ f g Veilcutyt

27T 't1 /Cd
(2.33)

In the present case, AV is a periodic function of t. We
Fourier analyze it,

q){K) H{K)g {K). a
1 C1 1

(2.26)
In the traditional perturbation theory of laser-atom in-

teractions, one considers H& =@ rz as a perturbation.
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(2.34)

where

q)12) —y ( 1 )e
'

y (r )
—iia&t

n, l

where

(2.35)

(2.36)

However, in some cases, we prefer to consider 6V as a
perturbation. " Thus, by the standard perturbation
method, we obtain

E and P are, respectively, the energies and the wave func-
tions of atomic hydrogen in the absence of the laser field.
The summation over n extends to all the discrete and
continuum states of the H atom, except n =i.

It is of interest to analyze the properties of (2.34)—(2.38)
and compare them with (2.23)—(2.25). On the one hand,
we can prove that the present dressed wave functions are
essentially in agreement with those obtained by the tradi-
tional first-order time-dependent perturbation theory un-
der the weak-field limit. For the weak laser, we may
make three approximations as follows.

U(!) (y lU(l)ly )

(2.37)

(2.38)
I

1. Approximation I

Only one-photon exchange is important. It means that
we may only keep the terms with 1 =+1 in (2.36), thus

(2.39)

2. Approximation 2

6 V can be expanded as a Taylor series up to the first
two terms,

Using the Virial theorem and the relation of matrix ele-
ments of r2 and p2, (2.43) becomes

(2.44)

EV=(a.V'2) V, (r2) =sin(cot)(a0 V2) V, (r2) . (2.40) where

Substituting (2.40) into (2.33) and performing the integra-
tion for t, we have

(E E0 )E1)

CO

(2.45)

lv' —' =+—(a0 V2)V)(r2)
2

For the H atom, Eo —E„-EO,and co-Eo for single-
photon exchange, hence, in magnitude,

Thus

= + —(iso'P2) Vl(r2) . (2.41) g-1 . (2.46)

(2.42) 3. Approximation 3

Since ($0l V, i/0) is the maximum among all the
I V1 i/0), we obtain, approximately,

We have

I CX Pp&~ ] (2.47)

(2.43) We sum up (2.44) and (2.47) and obtain

—iEot e 1 ctPE e l cot

%0=e ' it)0(r2)+ir) g M„0$„(r2) (2.48)

Obviously, (2.48) is essentially in agreement with (2.23)
because the factor exp( —ia r2) in (2.23) is no contribu-
tion to the S-matrix elements.

On the other hand, for the strong laser, both dressed
wave functions expressed respectively by (2.23) and (2.34)
in the above are quite different from each other. We
would like to emphasize three points as follows.

Firstly, either 4&I" expressed by (2.35) or @,' ' expressed
by (2.36) already contains all the nonperturbation inter-
mediate state (not only p states) through one- and
multiple-photon exchange.

Secondly, the first and the second terms of (2.34) ex-
pressed respectively by (2.35) and (2.36) describe respec-
tively multiphoton transitions with or without multipho-
ton intermediate resonances.

Thirdly, for the absence of multiphoton intermediate
resonances, the second term is smaller than the first one
in (2.34). This fact leads to the simplicity of practical cal-
culations. Otherwise, we must carefully consider the
terms with intermediate resonances.

From the above analysis, it seems that the present
dressed wave functions are more general than those ob-
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tained by the traditional first-order time-dependent per-
turbation theory.

Similarly, we can get the final state of the system +f '

as follows:

where

G1 = i —H0 —V1+i e (2.63)

f gq (r„t)4f(rz,t) (2.49)

—is&t i[q& r( —ao.q&si (n~u )](
r), t =e e (2.50)

where g is the dressed state of the scattered electron
with momentum q~ due to the laser field and is deter-
mined by (2.18). We have, in detail,

G2 = i —H0 —V2+i e
a

(2.64)

The equivalent equations of g(( ' and (2(
' are in the fol-

lowing

where

(2.51)

t—g', '=(H, +V, +H. )g(-),

i g—~ ' = ( H, + V~ +H, )g(2
at 2

(2.65)

(2.66)

4f in (2.49) is the final dressed state of the target atom
and is determined by (2.22). Here we must note that the
final state of the target atom in (e, 2e) collisions of the H
atom is a continuum state, that is a Coulomb scattering
wave function. Similar to N;, we obtain (r, , t)@f(r2, t), (2.67)

with the corresponding asymptotic conditions.
Since (H, + V, ) and H, are respectively functions of r)

and rz, gI
' can be separated into

4f —Cf +Cf +
where

(2.52) where Csf has been defined by (2.52) and i](l ' is deter-
mined by

and

rx)(1) ' i) ' '&zy (r )f qB 2

@(2) ' )) ~ C(f)e ' 'i'z~ (r )
—i(at

n, l

c~ =q~/2,

(2.53)

(2.54)

(2.55)

i—g() ' = [H, + V(( r l ) ]ri((

with the corresponding asymptotic conditions.
For similar reasons, we also have

where gz
' is determined by

(2.68)

(2.69)

Pq (r2) =e I 1+
qg

EqB I~
e (2.70)

xF— , 1, —i(qzr& —qz. rz) (2.56)

In the above, the notations are the same with the case of

with the corresponding asymptotic conditions similar to
( —j
2

From (2.58) and (2.62), we have

(g( —
)I —(q)(0)l + (g(

—
)I v G

'I=&q'")I+&/' 'Iv G,

(2.57)

C. Time-dependent multiple-scattering theory

In this section, the time-independent multiple-
scattering theory proposed by Dewangan' is extended to
the time-dependent case. According to Dewangan, let us
define two distorted waves by

Since Gz V2GQ=G2 —Go, (2.71) becomes

&q'fo)l=&(2( 'I —&q' 'IVG +&q(

It is clear from (2.50) that we always have

(2.71)

(2.72)

= (g I

—(q(' 'I V2GD+ (qr' 'I V, G2 V260 .

where

G = i——H+iea
0 gt 0

Thus"

(2.59)

Iq~Xq~ Lq~ Yq~

Hence (g(( 'I can be written as

I=&nI 'x, „'x,„+fI
—( ~

—( ( —)qi(0)
Iq /1 f

(2.73)

(2.74)
&q(-)l=&qf(')I+&q' 'IvG,

)I+ & q, (

(2.60)

(2.61)
Substituting (2.74) and (2.72) into (2.61), and using the
iteration procedure, we obtain

—(g(
—)I+(q(( —

)I v G (2.62) ( q)( —
)

I ( q(( —
)

I
+ ( q(( —

)
I
+ (2.75)
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where & 0'~)'I and & /~2'I are defined as S B 1 t P3 V (2.89)

&q'~)'I=&xq„'n) 'k2 'I,

&~ -, l=&g,
—

I V, G, +&&,
—„,—

I&~,-)l v, G,

—&x
' ' 'l&q")IvG (2.77)

D. Multiple-scattering expansion of the scattering matrix

where

&q'31=[&(q'I(") ' ](&+I(')IV,G, )(&q'I("Iv G, ) . (2.90)

Therefore it is concluded that the contributions of SM'
are almost equivalent to the total one of the first three or-
ders of the Born expansion.

For practical calculations, & %3t)'I can also be de-
formed as

Substituting (2.76) and (2.77) in (2.16), we obtain the
multiple-scattering expansion of the scattering matrix,
such as

&q'M)'1=&x, „+InI 'n2 'I (2.91)

Sf; —SM +SM +
where

s' "= ( f—+
dt & 4(,)

I VI q ',
"&,

s("= i f—"dt&q,
I
VIq', "& .

(2.78)

(2.79)

(2.80)
'=yq (r), t)f, (r„t), (2.92)

K. Approximate solutions of the distorted-wave equation

The distorted wave rt()
' is determined by (2.68). It is

dificult to find its exact expression. Let us put

It is of interest to analyze the properties of (2.79) and
compare it with the Born expansion. From (2.60), we ob-
tain directly

where y has been defined by (2.50) and f, satisfies the

following equation with corresponding asymptotic condi-
tions:

S =S'"+S'"+S"'+. .
fi B B B

where

(2.81) i f, = —
—,'V, + V, (r, ) i q„—+ —A V, f, .

S"'= i f + —dt &(I('"I VI(I(';"&,

S"'=— dt %f" VG, V%'," (2.83)
Iq„I

» —A
1

(2.82)
Usually, as shown in Table I,

(2.93)

(2.94)

and

S"'=— dt %"' VG, VG, V P',"
=S( )'+S( )

B B (2.84)
Hence (2.93) is reduced to'

. a f(=[—,'V, iq—„V—, + V, (r, )]f, .
at

(2.95)

S~ '= i f dt &
—(pI 'I V( G() V, G() V,

+G, V, G, V) eI'," &, (2.85)

S~ = —i f +
dt&q(/'I V(G()V, G()V2

+G()V2Gov, )l+', '& . (2.86)

We can exactly solve (2.95) and obtain'

(r, , t)e "I 1+

lXF —,1, —i(q~r +(q„.r, ) (2.96)

On the other hand, SM' can be transformed as

S(1) f +
dt &

(q)(o)) —
1g(

—
)g(

—
)I Vl(I((o)

& (2.87)

The distorted wave g(2
' is determined by (2.70). Using

similar treatment, we have

Using (2.57) and (2.58), we show easily that

S(1)—S(1)+S(2)+(S(3)a+S(3)b)+ (2.88) XF,1, i (q„r+—q„r) (2.97)

where SI)", S~( ', and S~( ' have been defined by (2.82),
(2.83), and (2.85). The expression of S z ' is Substituting (2.96) and (2.97) into (2.91), we obtain

(rr/q „)
%~, '=C/(r2, t)yq (r), t) . F

sinh 1rlq„)
1 1

i(q~r)+q~ r)) F,1, i(q~r+q~'—r) (2.98)

It is clear from (2.98) that the approximate complete wave function of the system, (IIM()), contains the space correla-
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TABLE I. Comparisons of q; with (1/c) Ao in eV/c.

Scattered electron
c., (eV) q; (eV/c)

I
(W/cm ) 10 600

Wavelength of Laser (A)
3080 2430

10
40

100
200

3200
6400

10000
14000

1.3 x10'
1.3 x 10"
1.3 x 10"
1.3x 10"

5.57 x 10-'
5.57 x 10-'
5.57
5.57 x 10'

4.7x10 '
4.7x10 '
4.7 x 10-'
4.7

2.9X 10
2.9X 1Q

2.9X 10
2.9

lF,1, —i(q„r+qz r)

tions between the scattered and the ejected electrons. This may be one of the advantages of the present expression. I.et
us now examine some special cases. In the absence of the laser field, 4'~, ' becomes

O'M, '=[e Pq (rz))[e P (r, )] e I 1— (2.99)

where pq (r, ) and pq (r2) denote, respectively, the Coulomb scattering wave functions of the scattered and the ejectedq~ 1

electrons by the nucleus of the atomic hydrogen alone. The large square brackets describe the correlations between the
scattered and the ejected electrons in the coordinate space.

If we neglect the interaction between the scattered and the ejected electrons, that is, put Vz =0, the space correlations
will be absent, and (2.99) becomes

'
Pq, (r2))[e ' 4,„(ri)1. (2.100)

This is just a usual form of the distorted-wave Born approximation.
If we further ignore the interaction of electron-nucleus, (2.100) is simplified as the plane-wave Born approximation,

qp(
—) —

(
8 qB 2)( A qA 1) (2.101)

F. Collision cross section

Since momentum operators appear in (2.35), (2.36), (2.53), and (2.54), a convenient treatment is as follows. Let us
rewrite,

ls l 1

n 1, 11

4&&"=e f dq2e ' '
P (qz)~qz),

where

n 2, 12
"2'2 2

lq) =(2~)-'"e' "
P;(q), P„(q),and Pq (q) are, respectively, the momentum representations of P, (r~), P„(rz),and Pq (rz).7 7 I 7 n ) q

Let us now rewrite,

Mi'=@/(r»t)Xq (ri &)f(ri rz»

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

where

(~/q~ )f(r, , r~)= F
sinh(vr/q„)

l l
, 1, i(q„r,+—q„r&)F,1, —i(qzr+qz r) (2.108)

Substituting (2.107) into (2.16), we have

SI; =S~ +S2+S3+S4, (2.109)
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where

S, = i—f dt(y @f"f(r„r2)~V~yq @';"&,

S,= i—f + "dt
& yq nfl"f( r „rz)~ V~g~ @I"&,

S3= i f— dt(pq @f"f(r„rz)~V~&

S,= i—f dt(y, CTf 'f (r„r,)~V~y, CT,'"& .

(2.110)

(2.111)

(2.112)

(2.113)

After some manipulation, we obtain

Sl = 2n—i g 5(s, +E, —e„—Eii Nto—) Tl (N),
N

S2 = 2ni—g 5(e;+E;—e„—sti Nco)—T2(N),
N

S3 = 2@i —g 5(e;+E;—e„es N—o3)—T3(N),
N

S„= 2ni—g5(.s;+E;—e„—es Nco) T—4(N),

(2.114)

(2.115)

(2.116)

(2.117)

where

T, (N) = fdq, dq2[4 „(q2)0;(qi)g(q»q2)JN(tro'(q~ q +q~ ql »]

g(q„q2)= (2m. ) ( e ' ' 'f (r„rz)~ V~ e

Tz(N)= g C„,i, fdq, dq2[p„' (q2)p, (qi)g(qi q2)JN —i, ~('oq(~ q +qz ql))]
n2, 12

T3(N) = g Cl'i f dqldq2[itT q (q2)4' ('ql )g('ql q2)JN+I (~o (qA q;+q~ q»)]
1' 1

T4(N)= g Q C„"(C„',"f dq, dq2[4„' (q2)4„(qi)g(qi q2)JN+i —i, (a o( qa q;+qz —ql»]
n1, 11 n2, 12

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)

In the above, Ji(x) is a Bessel function of the first kind.
So that, we have

Sf; = 2~i g—5(e;+E;—e„—eii No3)T(N), —
N

where

4
T(N)= g T;(N) .

(2.123)

(2.124)

The individual triply differential cross sections, that is,
the cross sections for (e, 2e) collisions of the H atom
while N photons are absorbed (N &0) or emitted (N &0)
are

l

tions of the time-dependent multiple-scattering theory
and the improved perturbation theory of multiphoton
transitions.

The space correlations between the scattered and the
ejected electrons have been taken into account in the
present formalism. In particular, the contributions of the
first-order multiple-scattering expansion are almost
equivalent to the total one of the first three orders of the
Born expansion. It means that the present method
possesses high accuracy.

The present description may be applied to other
precesses, for examples, electron scattering by the H
atom in a laser field,

e +H(1s)+Nco~e +H(nl )

(2.125)
and laser-assisted charge exchange,

0
dQ„dQ~dc~

d cT(N)

dQ g d A+dc+
(2.126)

III. DISCUSSION

A general description for (e, 2e) collisions of the H
atom in a laser field has been obtained by the combina-

The total triply differential cross sections may be writ-
ten as

H++D+Nco~H+D

and laser-assisted antihydrogen-atom formation in col-
lisions of antiprotons with positronium,

p+ Ps+Nco~H+e

In the following, let us discuss, in principle, some as-
pects concerning the practical calculations of SM .

Firstly, we must know the momentum representations
of the wave functions of the H atom including discrete
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and continuum states. As is well known, for the bound
states of the H atom, the momentum representations can
analytically be expressed. As to the continuum states,
the momentum representations can also be written as

Hence

(y
2

y, (q) = y R, (q) Y«((), ),
1

(3.1) , f dq df},,J,(ao.q)&&, le
2~2

(3.3)

where {} is the angle between q~ and q, and RI(q) may
be expressed by an analytical formula. '

Secondly, we must also know how to calculate U„',".
Generally, v'" may be written as

Usually, &P„le 'lP, ) may be reduced to one-
dimensional integrals.

Thirdly, g ( q „q2) in (2.119) only is a function of
q= q, —

q2 and may be expressed by

Io dq dn Ji(ao'q)e
i q.r2

2K
(3.2)

g(qi q2)=g(q)=I, I—
where

(3.4)

I,=, fdr, [e 'e 'F'( iy, 1, —i(q„—r, +q„.r, ))](2'} sinh(cry) fdr —e 'q'F (iy, l, —i(qzr+qz r))

(3.5)

7Ty i q.r1 i g.r
1Ib= dr, e e F*( iy,—1, —i (q„r,+q„r,})

(2n) sinh(vry) P'] fdr[e ' t'F*(iy, 1, —i (qzr+qz r))]

(3.6)

y=l~q~ Q=q; —q~ .

Using some expansions, such as

e'q'=4m pij '&(q„)Y&* (q) Yi (r)
l, m

F{iy,1, i(q„r+—q„r))=QRI(y, r)Yi* (q„)Y~~(r),
I, m

(3.7)

(3.8)

(3.9)

Rl(y, r) can analytically be expressed as a function of r. Hence I, and I& are reduced to some one-dimensional in-
tegrals, such as

f dri[rj& (qri )jr (Qri )R i*( —y, ri )] Y&* (q) Y& (q) f dr[rji (qr)R i*(y, r)]
1' 2' 3' 4

ml, m4

(3.10)

(3.1 1)

reduced to
n which P„

1

and P„arecontinuum states. Therefore the mtegrals ap-"2
pearing in the expressions of T4 can be reduced to what
we can perform nowadays although the specific computa-
tions are heavy. As to T, , Tz and T3, they are much
simpler than T4.

Finally, the summation over n in (2.120, (2.121), and
(2.122) can approximately be treated by the truncated
summation or by the closure approximation. As to the
summation over I, they may also be carried out by the
truncated summation.

Therefore we may practically calculate the triply
differential cross sections for (e, 2e) collisions of the H
atom according to the above formulas which possess
quite high accuracy.

T4(X)~ f d q g (q)J~ (ao.(Q+ q) )g (q), (3.12)

where

g(q) = fdqi4. , (qi)4.",(qi —q} . (3.13}

Because P„(q)and P„(q)are, respectively, the Fourier
1 "2

transformations of P„(r) and P„(r), (3.13) is
1 "2

transformed as, based on the Fourier convolution
theorem,

g(q)=&&„,(r)le "'lp„(r)). (3.14)

f dri[riji (qri )j& (Qri )R
&

( —y r )] YI* (q)YI (q) f dr[r j& (qr)R I (y r)]
l' 2' 3' 4
ml, m4

I

These one-dimensional integrals can efficiently be per- As the explanation in the above, (3.14) can be
formed by the techniques of analytical continuation. ' ' one-dimensional integrals, even for the case i

Hence T-matrix elements are further reduced, such as
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