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In recent work a Stern-Gerlach interferometer (SGI) was considered in which a polarized beam of
spin-% particles is split by a Stern-Gerlach apparatus into two partial beams, and then subsequent

Stern-Gerlach deflecting magnets are used to reconstitute these two beams into one. In these stud-
ies it was shown that when such a coherent polarized beam passed through a SGI, some spin coher-
ence is inevitably lost. In this regard, folk wisdom concerning irreversibility provides something of
a guide to the present problem, since we all know that when Humpty-Dumpty had his great fall no-
body could put him together again. In the present paper we consider the fate of our spin—%

Humpty-Dumpty when a detector is present that is sensitive to the passage of particles along one
trajectory, but not the other. It is not surprising that coherence is destroyed as soon as one is able
to tell along which path the atom traveled. However, there seems to be no general agreement about
the mechanism of coherence loss. Our conclusion is that the loss of coherence in measurements on
quantum systems can always be traced to the dynamics of correlations between the measuring ap-

paratus and the system being observed.

I. INTRODUCTION
A. Wigner’s Stern-Gerlach interferometer

In a seminal paper, Wigner! discussed the separation of
an x-polarized beam of spin-} atoms into two z-polarized
beams (spin 1 and |) by a Stern-Gerlach? apparatus
(SGA), and the spin state which would result if one subse-
quently merged the two beams, as in Fig. 1. We note that
this sequence of beam separation, propagation and
recombination is analogous to an optical interferometer.
Thus we will speak of the experimental arrangement of
Fig. 1 as a Stern-Gerlach interferometer (SGI).

The question put by Wigner is: Can the reconstituted
beam be in a coherent, x-polarized spin state or is the
coherence destroyed by the separation and recombina-
tion? To put the issue and problem in more operational
and physical terms, consider Fig. 2. There we have indi-
cated a final SGA oriented along the x axis. If the emerg-
ing beam is x polarized, i.e., if

edge , flat «edgay flat
S S ul N N
p
side view z
in — | y - N out
p .n=]2-(‘|00,) Pspi,f'%“‘ox)

N N down S S
flat I‘edge‘ flat ‘edg;‘
B,: >0 >0 : B;: <0 <0
2 2
58z > 0 <O 22 B, <0 >0

FIG. 1. Side view of the Stern-Gerlach interferometer.
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(o,)=1 (1)
or
Pspin=3(1+0,), ()

then all of the particles will be deflected in the +x direc-
tion. However, if the beam is unpolarized, i.e., if

1 . (3)

pspin
and
(g,7=0, (4)

then half of the atoms will be deflected in the +x and
half in the —x direction. In principle, then, the two pos-
sibilities can be distinguished.

One reason for our interest in the question is that
thoughtful physicists have given us different answers to
Wigner’s question. Some say: ‘“Yea, the output of the
SGI will be coherent since the different parts of the SGI
involve magnetic fields which are reversed in subsequent
sections of the apparatus, and this is equivalent to time
reversal.” Other say: “Nay, the output of the SGI will
be totally incoherent since the wave packets describing
the center-of-mass motion will be of finite extent, so that
the atom will probe different magnetic fields at different
points in the packet; thus there must be a ‘scrambling’ of
the phase of the spin-1 atom.”

Therefore, we have been stimulated to work out a de-
tailed analysis of the SGI, which is the subject of two re-
cent papers about spin coherence and Humpty-Dumpty.
We all know that after Humpty-Dumpty’s great fall (see
Ref. 3) no one could put him together again. In those pa-
pers we took up the more modest challenge of trying to
put the two partial beams of a SGA back together with
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FIG. 2. SGI with SGA for final o, measurements.

such precision that the original spin state was recovered.

In the first paper® about spin coherence in SGI’s (I), we
found that the spin coherence is largely recovered if the
magnetic fields are controlled to a sufficiently great accu-
racy. In this sense our “yea-say” friends are right, spin
coherence is (in principle) maintained. However, in
another paper* (II) in which we solved the quantum-
mechanical problem more completely (involving a quan-
tal treatment of the center-of-mass motion, and that re-
quires a realistic magnetic field), we found that some loss
of coherence is inevitable. In this sense our “nay-say”
friends may claim some support.

Although the reconstituted beam will, in principle,
show some loss of coherence (there will be some inevit-
able cracks left in Humpty-Dumpty’s shell), we can come
close enough to recovering spin coherence so that, for the
purposes of the present paper, we can and will pretend
that the original spin state is recovered.

Another type of beam recombination has been accom-
plished in recent neutron interferometric experiments.’
In these experiments it was shown that two partial beams
(again spin T and |) can be combined to produce an x-
polarized beam. Suffice it to say that both theoretical and
experimental studies show that the reconstitution of two
partial beams can in principle (SGI) and in practice (neu-
tron interferometer) produce a coherent x-polarized spin
state.

The objective of the present paper is to understand
what happens to spin coherence when a “which path”
(German: welcher Weg) detector is put into one arm—
the upper path, say—of the SGI. Whereas it would gen-
erally be agreed that spin coherence is destroyed, as soon
as one is able to tell along which one of the two paths the
spin -4 atom traveled through the SGI, the question, how
this loss of coherence comes about, is answered in
different ways. Some insist that in the process of mea-
surement the system under observation is always affected
in a form analogous to the recoil acquired by the scatter-
ing of the photon in “Heisenberg’s® microscope,” that is,
the spatial properties of the observed system are changed
significantly. Others point to the large number of degrees
of freedom in the macroscopic measuring apparatus,
which implies—so they argue—an irreversible change
responsible for the loss of coherence.

These explanations may be relevant in particular ex-
perimental situations. More generally put, we support
the view that the loss of coherence in measurements on

quantum systems can always be traced to correlations be-
tween the (relevant) degrees of freedom of the measuring
apparatus and the system being observed. The correla-
tions are built up in the course of the measurement, and
their temporal evolution is correctly described by quan-
tum mechanics. In particular, one need not resort to in-
voking the notions of “state reduction” or the “collapse
of the wave function” as dei ex machina, whose dynami-
cal properties -are allegedly outside the framework of
quantum mechanics.

B. Adding a recoil welcher Weg detector

Let us begin our survey of possible welcher Weg detec-
tors by a brief discussion of one of the simplest. A detec-
tor particle is put into the upper beam path; it scatters the
spin-3 atom when they encounter each other, and the re-
sulting observed momentum change of the particle
signifies that the atom went along the upper path. This is
a detector of the Heisenberg-microscope type. For it to
work, the momentum Ap, transferred to the particle dur-
ing the collision, must be significantly larger than the
spread of momentum &p of the particle before the col-
lision; otherwise we cannot tell whether a collision hap-
pened at all. Since the spread in position 8z of the parti-
cle and the atom are of the same size before the collision
(this is the meaning of “putting the particle into the
upper beam path”), the corresponding momentum
spreads are comparable as well. Momentum conserva-
tion implies that the change of momentum of the atom
equals —Ap, so that its momentum is also changed
significantly. Now recall that the magnetic fields in the
SGI are set such that, in the absence of the detector par-
ticle, the two partial beams are well focused and spin
coherence (largely) regained. According to I, this re-
quires that the net momentum transfer by the SGI to the
atom (after recombination) is negligible compared to the
momentum spread 8p. In contrast, when the particle has
suffered a detectable momentum change, then the atomic
momentum is also changed significantly and I tells us
that spin coherence is lost. On the other hand, an
insignificant recoil of the detector particle implies an
equally negligible momentum transfer to the atom, under
which condition spin coherence is not lost. Here we are
unable to tell along which path the atom went. In other
words, if we count only those atoms for which the detec-
tor particle is scattered out of the beam path, we will find
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the final spin density operator to be py;,;, = 3; if we select,
however, those atoms for which the momentum transfer
to the particle is not noticeable, the outcome is
Pspin=+(1+0,), ideally.

C. Adding a toy (two-level atom) welcher Weg detector

In a previous extension’ of Wigner’s SGI study a
welcher Weg detector was added to the problem such that
it was sensitive to atoms passing in its locale, see Fig. 3.
This early work, co-authored by one of us, involved a toy
detector simplified to the point that it was taken as a
two-level atom with states a (excited) and b (ground).

The system-detector wave function is then a four-
component object,

P,1(r,t)
Y, (r,t)
Yp1(r, 1)
Py (r,t)
detector excited and spin up
detector excited and spin down

detector not excited and spin up
detector not excited and spin down

Y(r,t)=

()

The detector was designed so as to respond to the proba-
bility that the atom is found at r,, the detector’s position,
and their interaction was written as

V=gd(r—ry)(la){b|+|b){a)|t){tI+|1){L] .
(6)

Evidently there will be recoil effects produced by the
S-function potential in addition to changes of the internal
detector state. However, in that early study, it was no-
ticed that spin coherence was destroyed owing to correla-
tions between the detector and the spin-1 atom, indepen-
dent of scattering effects on the center-of-mass part of
wave function. The notion that observation produces
correlation, which in turn leads to incoherence, was re-
garded as the main point rather than the particular effect
of recoil. This is not satisfactory for several reasons.

(a) Since the 8-function interaction is so highly local-
ized, the neglect of scattering is unphysical.

(b) While it is true that the atom-detector correlation
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destroys spin coherence, recoil effects will “do the job”
anyway. So one might wonder whether in all realistic ex-
periments the ever-present recoil effects would suffice to
destroy coherence. This raises the question of whether
correlations referring to internal degrees of freedom are
only of secondary interest.

(c) Over-idealized models are not good guides to sug-
gesting experiments.

It is a purpose of the present paper to reexamine the
previous arguments and to propose and analyze a micro-
maser welcher Weg detector which does not scatter the
spin-; atoms to a significant extent. An essential
difference between the previous toy detector and the
more realistic new one is that we now use a much less lo-
calized interaction.

D. Adding a micromaser welcher Weg detector

Here we present the idea of the micromaser welcher
Weg detector; the detailed analysis is given in Sec. II.
Let us begin by recalling that the SGI of Fig. 1 pretends
that the emerging atoms have spin properties identical
with those of the entering ones. In other words, the spin
operator o(t,) at the final time ¢,, safely after the atom
has left the SGI, equals the initial o (¢;), where the initial
time ¢; is safely before the atom entered the SGI:

olt)=0l(t,) . )

This is equivalent to saying that the unitary evolution
operator Ugg(¢;,t,) affects only the spatial operators
describing the center-of-mass motion, and , since the SGI
ideally does neither displace the atom nor transfer
momentum, we have

i [p(z)]?
Usci(t;,t,)= exp —é—z—';;—(tf—z,.) : 8)
which says that after the partial beams have been recom-
bined, the wave function does not differ from that result-
ing from the free motion of the atom.

Now we add two micromaser cavities to the upper
beam flight path as depicted in Fig. 4. The single-mode
maser fields are prepared such that the probability that a
spin-up atom entering cavity 1 is spin down between the
cavities and spin up again after leaving cavity 2 is practi-
cally equal to unity. Since only the upper partial beam
runs through the cavities, the evolution operator describ-
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FIG. 3. SGI with two-level atom welcher Weg detector.
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FIG. 4. SGI with micromaser welcher Weg detector.
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ing the SGI with the cavities has the structure
1+o,(t;)

Ul(t;,t,)=Usgi(t;,t7) 5 Ul(t;,t,)
1—0o,(t;)
+——52—‘-—Ug§3(t,.,zf) ,

9)

where U'!) refers (essentially) to the free evolution of the
cavity fields, whereas U (c;f accounts also for the interac-
tion of the upper-beam atoms with the cavities.

As always, we take the entering atoms to be in the
o, (t;)=1 state. Since a net Larmor precession may
render the emerging beam polarized in any direction in
the x,y plane, the magnitude of the expectation value
(ax(tf)) alone is not a good measure of spin coherence.
As in II, we use the number

C=[{o,(t;))+(o,(1,))*]'?

=o, (t))+io, (1)), (10)
instead. As shown in Sec. II below, one finds
C=U 1) o, (t)+io,(¢)]U (1;,t,)) |
=|(a,(t;)){alt)) IV NN, , (11)

where a; (a}) are the standard annihilation (creation)
operators of the photons in the jth cavity, and

=(af ;=
N;=(a](t;)a;(t;)), j=1,2 (12)

are the average photon numbers in the cavities, initially.
The setup of Fig. 4 works in the desired way if theN,’s
are certain (very) large numbers and the uncertainties

8N, ={([a(t))a;(t)—N;, 1)}V, j=1,2 (13)
are small compared to the average values,
8N, <<N;, j=12. (14)

Under these conditions, the result given in (11) is a very
good approximation.

Now consider two extreme situations: (a) the cavities
are prepared in eigenstates of a,(¢;) and a,(¢;); (b) they
are prepared in eigenstates of aI(l, Ja,(¢;) and
ag(ti Ja,(t;). For (a), we have so-called coherent states of
the maser fields which, because N, and N, are large num-
bers, are classical states of the electromagnetic field. Fur-
ther, here

Ny=(a]u))a;(t;)) = a;(t) P, j=1,2 A9
so that (11) gives
C=1. (16)

In contrast, the so-called number states of (b) have the
i

7%([1\71,1\72, Litp)e®?— N, +1,N,—1,1,1,)e ~*?)e
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property
(a;(t;))=(a](1;))=0, (17)
which used in (11) produces
C=0. (18)

Thus, classical coherent maser states preserve spin coher-
ence, but number states destroy it.

How can that be? Have we not merely flipped the
spins in the upper beam from up to down to up in both
cases with no apparent net effect on the spin properties of
the upper beam atoms? Yes, but there is more to it.
Since the partial beams are characterized by the value of
o.(t;)==1, the interaction with the cavity photons
correlates the spin degree of freedom to the photon de-
grees of freedom. Thus the outcome of final spin mea-
surements depends on the prepared cavity states, as ex-
pressed in Eq. (11), and vice versa: the results of measur-
ing the values of photon operators at or after time ¢, de-
pends on the initial spin state of the atom. Consequently,
which-path information is potentially available, provided
the properties of the maser fields are changed in a
discernible fashion by the interaction. It is here that the
distinction between coherent states and number states
enters. This is shown in two different ways in the follow-
ing two paragraphs.

Consider, for instance, the count of photons in cavity 1

after the atom has traversed the apparatus. Quoting
from Sec. II below we have
(al(tp)a,(t;)) =N, +L=1N,+ LN, +1) (19)

for atoms with initially o (¢;)=1. The latter decomposi-
tion exhibits the probabilities of 1 for finding spin down
or spin up, for which the photon number is unchanged or
increased by 1, respectively. Now, in the coherent state
one has 8N, =V'N,, 8N,/N,=1/1'N,<<1, so that
when measuring aJ{(t,- )a,(t;) the various integers between

(roughly) N, —1/N, and N, +1/N, are found. Because
this range consists of (very) many possible outcomes, a
change in photon number by 1 cannot be detected; this is
analogous to insufficient momentum transfer to the recoil
detector of Sec. IB. In contrast, the number state has
8N, =0, and (19) tells us that at time ¢, we will either find

exactly N, photons or exactly N, + 1 photons, signifying
spin down or spin up, respectively. Here we indeed have
which-path information, and spin coherence is lost. This
situation is analogous to a detectable momentum change
of the recoiled particle.

The welcher Weg nature of these two extreme situa-
tions (number versus coherent-state preparation) is also
clearly displayed upon expressing the state of the spin-
photon system in terms of states referring to measure-
ments at the final time 7,. As shown in Sec. II below, for

initial number states [(a;raj ))=N; at t =t;], we have

—i(N,+N,)B (20)

where the photon quantum numbers are (a ]Ta ;)" at t =t,, and ¢,B are presently irrelevant phases. The spin-up and
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spin-down components are physically distinguished here, inasmuch as there is a one-to-one correspondence between
spin down and final photon counts N,,N,, as well as spin up and N, +1,N, —1. This signifies the correlations estab-
lished by the interaction. In short, number-state preparation provides us with a good welcher Weg detector. In con-

trast to Eq. (20), cavities prepared in classical coherent states [a/(t;)=c; =y Fjeioj ] yield

V2

1 i i i _; —; iy —i(m+6,—6,)/2
—(la;e "B,a,e 'B,l,tf)e"”/2+|a1e B aye ’B,T,tf>e i9/2), TN

—i(m+0,—6,)/2

=lae "B ae (0, cosypto, sing) =1,1,)e , 1

where the photon quantum numbers are a Jf(t ). Here the
photon and spin degrees of freedom are evidently un-
correlated, and therefore we do not have a functioning
welcher Weg detector. The net effect on the spin of the
atom is a coherence preserving Larmor precession
through the angle y=n+¢+6,—0,. Incidentally, we re-
mark that the relative phase 8,—60, between the two
coherent states must be well controlled, which can be
achieved by feeding both cavities from one external
source.

Readers interested in a density operator treatment are
referred to Sec. I1 C.

Naturally, there are situations intermediate between
the two extremes of coherent states and number states.
For example, if the cavities are prepared in eigenstates of
the operators

a;coshA;+a]sinhd;, j=1,2 (22)

with (real) parameters A, , (these are so-called squeezed
states), then one has

(a;){a])=|(a;)|*=(a)a;) — sinh?,
=N, — sinh’}, , (23)
and Eq. (11) gives
Ny N,

172

C= , (24)

thus 0 < C <1 here, so that spin coherence is only partial-
ly lost.

II. MICROMASER WELCHER WEG DETECTOR

A. Effective treatment of the atom-cavity interaction

In the context of the SGI it is natural to consider mag-
netic dipole interactions between the atoms and the maser
fields.® The interaction energy of the atom with magnetic
moment u=po coupled to the quantized electromagnetic
field of one mode in one of the cavities is

—pu-B=—po(t)-{VXcV2rfi/o] Alr)a(t)
+ A*(r)aT(t)]} ,
(25)

where 7iw is the energy per photon, A(r) is the spatial
mode function, and a,a ' are the photon annihilation and
creation operators of the respective modes. The mode
function is normalized according to

f
[ Wdr)A*r)-Ar)=1, (26)

where the range of integration covers the volume of the
cavity. The coupling (25) is very weak; for illustration,
consider an atom with a magnetic moment equal to one
Bohr magneton and a cavity of linear dimensions
L ~c¢ /w, for which

1/2 172
pe |27 yx A|~A || s
m,c |o
2
~ ) 27)
m,c

where m, and e are the mass and charge of the electron,
and a=e2/ﬁc=1—;7 is the fine-structure constant. In a
maser we have, typically, fio ~ 1073 eV, which, combined
with mec2=5x 10° eV, gives about 10716 eV for the cou-
pling strength.

We shall now take for granted that only one mode in
the cavity is highly excited, so that only this mode pro-
duces dynamical effects. Further, to achieve a substantial
computational simplification, we assume that the corre-
sponding A(r) is such that the magnetic field is circularly
polarized in the x,y plane,

i 1/2 1
c % VX A(r)=1b(r) |i |, (28)
0

with real b(r). Then (25) reads

—pB=—1lub(r)ao,+a'o_), (29)
where we  encounter the
or=(o,*io,).

Even with very many photons present, the interaction
energy (29) will be negligible compared with the kinetic
energy of the atom. As a consequence, the interaction
with the maser field does not produce a significant change
of the center-of-mass motion of the atom. (There is a re-
sidual displacement along the trajectory which is, howev-
er, small compared to the spread of the wave function.
This and other presently irrelevant details are planned to
be discussed in a separate publication.)’ There is also no
substantial scattering of the atom by the rim of the holes
through which it enters and leaves the cavities. For, ow-
ing to the macroscopic beam splitting achieved in the ini-
tial stage of the SGI, these holes can be made large com-
pared with the beam width. On the other hand, the
spread of the atomic spatial wave function is small on the
scale set by the dimensions of the cavities, and therefore

spin-flip  operators
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the atom probes, at a given time, only a small portion of
b(r). Analogous to the treatment in I, which is justified
in II, we shall therefore replace the spatial (operator)
function b(r) by its expectation value at time ¢,
(b(r(2))), which involves the spatial properties of the
atom; more precisely, this function of time refers to the
center-of-mass part of the wave function of the upper
beam. We have now arrived at

—p-B——ig(t)Nao , +a'o_) (30)

as the effective description of the coupling to the selected
cavity mode. The numerical function g(¢) is nonzero
only while the atom is inside the cavity. As pointed out
in Ref. 9, further details of g(¢) do not matter in the
present context, so that we can take it to be constant for
a total duration T, starting at t =7:

g forr<t<7+T,

gl= 0 otherwise . 31
A large effect can only accumulate if the operator
y=%(aa++afa‘) , (32)

appearing in the interaction energy (30), does not itself
oscillate rapidly in time. Therefore, one needs an addi-
tional homogeneous, constant external magnetic field
B,=Be, in the region between the Stern-Gerlach mag-
nets, the strength of which is chosen such that the energy
difference 2uB, between the spin-up and -down states
equals the energy per photon of the mode. This way, the
coupling is resonant and much more effective in produc-
ing spin flip.

SCULLY, ENGLERT, AND SCHWINGER 40

Our Hamilton operator describing, in effect, the in-
teraction occurring in the upper partial beam with the
cavity modes now referring to both cavities, is then

Heﬂr=ﬁa>(a4{a1 +a;az +10,)—1%g(t)la,0 4 +alo_)
— L#ig,(t)ay0 . +alo_), (33)

where, as in (31), the time-dependent coupling constants
81,2(2) are nonzero only for 7; <t <7;+7;. In the se-
quel, we consider three instants: t; is before the atom
enters the first cavity, ¢, is after it has left the first and be-
fore it enters the second, and t; is after it has left the
second. That is, ¢, , ; refer to the spatial regions I, II, III
in Fig. 4, respectively. Thus we have the sequence

L<T<T+T <t <7y<71,+T,<t;. (34)

Upon introducing y; and ¥, analogous to (32) and ob-
serving the identity

7/12»=a;aj+%(1+02) , (35)
we can present H .z more compactly,
Hge=t%olyl+ala,—1)—#g,(0)y,—#g,(0)y,

=fiolala, +vi— 1) —7ig,(t)y,—#ig,(Dy, (36)

of which the first version is particularly useful when
g,()=0, that is, for ¢, <t <t,, and the second one when
g,(¢)=0, that is, for t, <t <t;.

The overall evolution operator of Eq. (9) can now be
computed. Details are presented in the Appendix, from
which we quote the result

|
Ult;,t,)=Usgt;,t,) exp{ —io(t, —t)[a](t)a, (t;) +al(t,)ay ()]} exp —éq&oz(ti) J
1+o,(¢;) ) ) 1—o,(t;)
— explig, T,v,(t;) ] explig, T v, (¢;)]+ — |’ (37

with ¢ =w(t;—1).

Since the cavities are to be prepared in states with
well-defined large photon numbers N; and N, [see Egs.
(12)-(14)], we have as a consequence of (35)

vi)=N;, j=12. (38)
It is therefore useful to decompose the exponentials in-
volving ¥ ;(t;) into their even and odd parts
explig; T,y ;)= cos[g,; T;(y3)'"?]
sin[ngj(yjz)l/Z]

1y (72172
j

= cos(ngj\/X’;)+i \}/_]1\7 sin(ngj\/J_V;) .
J
(39)

In order to arrange for double spin flip, we require

sin(g; T;V'N,)=1 or g;T;V/'N;= -, (40)

[
which allows us to write

~ explig,T,y,) explig, T y,)= > : ‘/Ni ‘/YN_I
2 1

1+o, ayal
2 VNN,
41)

The spin-photon part of U = Ugg, U, , is then given by

Ug,oltistp)=exp {—-i(o(tf—t,- )(a{al +a;az)

i
- '2‘¢Uz

aza;r l1—0o,

1+o,
2 \/NlNz 2

(42)
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where all operators are at time ¢;, or all at time ¢ Iz

This U, ,(t;,t;) is, of course, only to be used in con-
nection with appropriately prepared cavity states. In
particular, the atoms leaving the second cavity must be in
spin-up states; otherwise, some fraction of them will be
deflected in the wrong direction by the intended recom-
bining stage of the SGI. More generally put, the expecta-
tion value of o, at the final time ¢, must equal that at the
initial time ¢; or
(§[1+oz(t,-)])=(i[1+az(t,)])

=(U,

st ) 1+0,()]U, 4 (;,1,))

=N1N2 (ajali(140,)a,a]) , 43)

and we note that in the last expression all operators are at
time ¢;, when the various degrees of freedom o,a,,a, are
not correlated. Thus

(a1a1 )(azaz)( (1+0,))

4

L =
(H1+0,(0)]) NN2

=(i[1+0o,)]), (44)
as desired and required.

It is essential to appreciate that N, , are really very
large numbers. In connection with (27) we found that
#ig /Aiw~10"11, typically. Next, T =oL/v~c/v;
atoms driving masers move at a speed of about v ~10*
cm/s, so that T ~ 10°. Thus, to realize (45), one needs
J

1+0,(1
2

1—o,(t;) N+ 1+o,(t
=S

which is the basis of Eq. (19).

The state of the spin-photon system, characterized by a
set of quantum numbers (symbolized by {g'}) at the ini-
tial time ¢;, is expressed in terms of states referring to
measurements at the final time ¢, by means of

l{g'},t:)=U, (t;,tp)l{q'},t,) (48)

where it is now useful to take the operators in (42) at time

(aI(zf)al(tf))=<

ty.  For number-state preparation, we have {q'}
={(ala,r,(ala,),0".}={N|,N,,1}. In conjunction
with
o =D ="=(ol=D)+lot=—1)=—=(1+]1)),
V2
(49)

Eq. (48) then yields (20) with B=w(t;—1;). Likewise,
when classical coherent states are prepared, that is

{g'}={a},a3,0; \/N1e ]7\/729”92,1} ,

)>Fll—([al(t,-)a1 ]2>—-(az(t Ja,( t))+<

)
>(N1+1),

2
~(10'"'x107%)2=10° (45)

@
g

1
oT
photons.

It is appropriate to mention here that we are appealing
to the micromaser techniques'® by which one can prepare
the cavities in desired states, and the ability to choose ini-
tial number or coherent states is essential for the welcher
Weg detector. Of course, we do not seriously suggest pre-
paring a number state with 10'° photons. This is far
beyond the experimentally achievable. Therefore, what
we describe here is a gedanken experiment. Realistic ex-
periments in the same spirit will be discussed elsewhere.!!

B. Final spin and photon measurements

As a first application of the effective evolution operator
(42), needed in Eq. (10), consider (o ,.(t;)). Itis given by

(o (1)) =(U i (t;,t0)0 (1)U, ,(t;,t0))

- 1 i$ T

=—————¢"%a,(t,)al(t;)o (1))
\/N1N2 1 2 (S

2 (e al)) o)
V/N\N,

(46)

where the last equality expresses the absence of correla-
tions at time t;. Applied to a o, (¢;)=1 state, when
(o (t;))=1, this produces Eq. (11).

Similarly, we find

1—o,(¢;)

5 >(a1 Da ()

[
one obtains (21).

C. Density-operator analysis

The density operator for the spin degree of freedom is,
at any time, given by

Ppinl)=1[1+(a (1)) 0], (50)

which, presented as a 2X2 matrix referring to measure-
ments of o,, reads

1+(o,(2)) (o_(1))

=1
Poin=3 | (o, (1)) 1—(0,(1) 5D
In particular, for our experimental setup, we find
11
Pspinl?; )——(1+0 )= 11 (52)

and, as implied by Egs. (44) and (46),
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1 —e " ¥(al(1;)){(ay(t,)) /V/'N,N,

_1 S
Papin )= 3 | et (a, (1)) al(1,)) /V/ NN,

If classical coherent states are prepared initially, this says

1 e’“‘”

pspin(tf): eiw 1

I

[N S

(1+o0, cosy+o,siny) , (54)

where ¢ is the angle of the net Larmor presession in Eq.
(21). On the other hand, cavities prepared in number
states lead to

1

[
For 3 an even multiple of m, the different physical con-
tents of (54) and (595) are illustrated in Fig. 5.

In order to see here how this loss of coherence results
from correlations between the spin and photon degrees of
freedom, consider the density operator of the joint spin-
photon system. At the initial time ¢;, these degrees of
freedom are uncorrelated, so that the joint density opera-
tor is a product:

— t t
Pspin-photon 1i ) = Pspin( 02,0 1,0 _Ipy(ay,ay)pylaz,a;y) .

(56)
10 . .
pspin(,f)—_-% 0 1 :% . (55) The unitary evolution operator U, , of (42) turns this
into
il
pspin-photon(tf):pspin(gz’ —e —id’a11-a20-+/\/N1N2’ _eid’ala;av/\/NlNZ )pl(eiﬁalye —iBa;T )Pz(eiﬁazae AiBaT ), (57)

where B=w(t,—1;) as in (20) [see after (49)]. For p,, of (52), the spin-matrix version of (57) is

1 —e%ala,/\/N N,

pspin-photon( tf):% i¢ t N N
—e'%a,ay /vV/ NN, 1

where tracing over the photon variables yields the final
pspin Of (53).

If now p, and p, in (56) project to classical coherent
states, (58) is equivalent to

R
pspin-photon(tf):? eV 1 pile’Pa e a;)
sz(e"ﬁaz,ef’ﬂa;) . (59)

This is a product analogous to the one in (56), telling us
that the spin and photon degrees of freedom are again
uncorrelated at the final time. In contrast, such a factori-
zation is not possible if p,; and p, in (56) project to num-
ber states, indicating the correlations established by the
interaction. .

In general terms, this discussion teaches us that the ad-
dition of a detector requires broadening the quantum
description of the system of interest (here, the spin degree

piePa e "Bal)p,(ePaye Pal) (58)

[
of freedom) to include the detector (here, the photon de-
grees of freedom), with the consequence that system-
detector correlations are dynamically established. Then
projecting onto the system subspace (achieved by tracing
over the detector variables) will result in a loss of quantal
coherence, provided the detector is properly functioning
(here, number states are prepared initially). It is worth
pointing out that the detector need not have a large num-
ber of (relevant) degrees of freedom.

D. Neutron interferometer spin-flip measurements

In a series of experiments® Rauch et al. have set up a
neutron interferometer along the lines of an optical
Twyman-Green interferometer. In these experiments
they have observed the interference behavior associated
with the neutron waves.

They then proceed to introduce radiation fields into the
various arms of the interferometer so as to flip the neu-

100% for maser in
coherent state

50% for maser in
number state

FIG. 5. SGI with micromasers and SGA for final o, measurements, comparing classical coherent states and number states.
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tron spins. Concerning these experiments they say, “It is
shown that under the given circumstances of neutron
self-interference coherence is preserved,... .”” The im-
portant point, consistent with the present discussion, is
that the spin flip interaction with the coherent state radia-
tion field does not destroy spin coherence.

III. DISCUSSION

A. Summary

We have seen that the act of correlating our spin-1
atom with the detector can destroy the coherence in our
spin system. But, how can this be? The atoms are really
undergoing an up-down-up spin flip upon interaction
with the microwave field. Superficially, one might think
that this results in no net change to the spin system.
Indeed, for classical coherent states of the maser fields,
this is so. However, when number-state maser fields are
used, spin coherence is destroyed—Humpty-Dumpty is
broken for good.

The destruction of spin coherence in the micromaser
fields does not arise because of recoil effects, as in the ex-
ample of Sec. I B, rather it comes from the photon-spin
correlations that have been established. We could count
the number of photons in cavities 1 and 2 and tell wheth-
er a spin-up or a spin-down atom has passed through the
SGI.

As an example of an experiment in which the results
are influenced by the presence of the detection system
consider the setup of Fig. 5, where a final SGA is present
with a magnetic field along the x direction. When the
cavity fields are prepared in coherent states [and the Lar-
mor angle 1 appearing in (21) equals an even multiple of
7] the entire beam will ideally be deflected in the+x
direction. If, however, the cavity fields are initially in
number states, then only half of the atoms will be

deflected in the +x direction. Whatever recoil effects are
J
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there, they are essentially the same in both situations, so
that the destruction of coherence in the second situation
cannot be attributed to momentum transfer.

B. Number-state preparation

It should be emphasized that the present analysis de-
pends crucially on the preparation of a number state in
(one of) the microwave cavities. But, one might argue, it
is not feasible to produce a number state of the radiation
field and so the above experiment can be nothing more
than a gedanken experiment. However, several recent pa-
pers!2~ 1% have presented schemes and experiments aimed
at number-state generation. Of special interest to us is a
recent paper showing that a number state can be
prepared when the radiation builds up in a microwave
cavity having an extremely high Q value.!3 Such cavities
are actually now available.

Specifically, we can envision producing pure number
states as follows. Atoms in their excited state are injected
into the cavity; after they leave the cavity, they are
probed by a static electric field which ionizes all atoms in
their upper level. The atoms that are not ionized have
emitted a photon in the cavity; when these atoms are
counted (via electron detection), the total number of pho-
tons in the maser field can be inferred. For further dis-
cussion concerning this point we refer the reader to Refs.
13 and 14.
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APPENDIX

The evolution operator U (t’,t) corresponding to the effective Hamilton operator (36) obeys the differential equation

ihgag Uelt', ) =Hg()Ug(t',1) ,

(A1)

subject to the initial condition U(¢',t")=1. For ¢, <t <t,, both ¥, and aZaz are constants of the motion. So we find

immediately

Uealty,t5)=exp{ —io(t,—t [yt +al(t)ay (1)) — 11} explig, Tyy ()] .

Likewise we have

(A2)

Uelty, t3)=exp{ —iw(ty—1;)[a](ty)a, (1) +73(1;)— 11} explig, Toy,(1,)]

=Ug'(t),t;) exp{ —io(ty—t;)[a](t))a, () +y3, )= 31} explig, Trv2(11)]Ug(t,,25) .

These are combined into

(A3)

Uelt),83)=Uglty,1,)Ug(ty, 1) =exp[ —iw(t;—t,)ala, +y3—]explig,T,7,)

X exp[ —iw(t,—t)(y}+ala, —

or

U.g(t),t;)=exp[—iw(t;—t,Nala, +a;a2+%oz)]exp(ingzyz)exp(inglyl) )

)] explig, T v,)
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where all operators are taken at time ¢, before the interaction.

This is the effective evolution operator to be used for the upper beam, the one for which o,(¢;)=1. The correspond-
ing U4 for the lower beam with o (¢;)= —1 is obtained by setting g, =g, =0 in (A5) since this partial beam does not
interact with the cavity modes. After identifying 7, and ¢; with the instants when the atom enters and leaves the addi-

tional magnetic field By, we find the overall evolution operator of Eq. (9) to be given by [¢=cw(t;—1,)]

Ut;,t)=Usg(t;,t,) exp{ —io(t,—t)[a](t)a,(1;)+a](1;)ay (1)1} exp ——édmz(ti)]
1+o,(¢) ) 1—o,(¢;)
X —2‘_“‘exp[lngzyz(ti)]eXP[i&T17’1(ti)]+““5‘—‘ . (A6)
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