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Feshbach-type projection method for multiply excited resonances
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A procedure for the Feshbach projection is presented. Although projection operators are not ex-

plicitly used within this procedure, it is completely equivalent to an explicit use of idempotent pro-
jectors, provided that both the target-state wave functions and the trial function of the entire system
are of the configuration-interaction type. The Feshbach-projection-operator method is extended to
the case of triply excited resonances (i.e., to an infinite number of open channels). Projectors are
given explicitly for three-electron systems and for ¹lectron systems with the double-ionization
threshold described by the (X —2)-electron one-determinant function. For configuration-
interaction wave functions a procedure similar to that for doubly excited states is proposed.

I. INTRODUCTION

The projection-operator method for closed-channel res-
onances was introduced by Feshbach' in 1962. Since
then it has been intensively applied in atomic physics.
However, until recently, the rigorous implementation had
been confined to two-electron systems (i.e., to one-
electron targets) due to the following reasons. On the one
hand, the original formulation of the method is not spin
and symmetry adapted although all spin and spatial coor-
dinates are implicitly included. On the other hand, it had
seemed to be impossible to include in the projector al1
terms coming from exchange between incoming and or-
bital electrons. Therefore, a technique based on
nonidempotent quasi-projection-operators, that do not
include the exchange, was developed ' and successfully
applied to three-electron systems. ' Finally, Temkin and
Bhatia ' proposed a symmetry-adapted idempotent pro-
jector method for both elastic and inelastic scattering re-
gions. So far, this method has been applied to the lowest
resonant state of He . An application of this method to
the inelastic domain seems to be still complicated and has
not yet been done. Even in the opinion of the authors of
the method idempotent projectors are not yet likely to
provide a useful calculational tool for the immediate fu-
ture.

In Sec. II of this work a new practical procedure for
realization of the Feshbach projection is proposed. This
method does not involve target natural orbitals, in terms
of which the projectors were expressed in both the Fesh-
bach original formulation' and that of Temkin and Bha-
tia. Instead of making use of the projectors in explicit
forms, the projection of a given function is to be found by
solving a set of linear algebraic equations. Nevertheless,
the procedure is equivalent to an explicit employment of
idempotent operators, provided both the target-state
wave functions and the trial function of the entire system
are in configuration-expansion forms.

All the above-mentioned formulations of the projection
method deal with a finite number of open channels. Each
open channel is treated explicitly. This is impossible in a
case of an infinite number of open channels, e.g. , in a case

of triply excited resonances. In Sec. III a method for tri-
ply excited resonances is proposed. It consists in
Feshbach-type projection onto the space of open channels
all of which are assumed to be connected with the ground
state of the doubly ionized system. Explicit forms of P
and Q projectors are derived for the three-electron system
and for the N-electron system with double-ionization
threshold described by one-determinant wave function.
For a general case a procedure similar to that for doubly
excited states is proposed. Some di6'erences in the inter-
pretation of the present formulation and the previous
ones are discussed in Sec. IV.

II. FESHBACH PROJECTION
FOR DOUBLY EXCITED RESONANCES

We are interested in resonant states of an ¹ lectron
system lying above the Mth state of the (N —l)-electron
target. Let the lowest M energetically accessible target
states be described by approximate wave functions P;,
i=1, . . . , M. Following Temkin and Bhatia ' we define
open-channel wave functions in which those target states
are coupled to the spin and orbital angular momentum of
the Nth electron to form the considered total spin and or-
bital angular momentum of the entire system:

g,(r' ') = g (L, iM, mI ~LML )(S;—,'M, m, ~SM, )

rnl, m

where, aside from the obvious notations for Clebsch-
Gordan coefficients, Y(Q&) and y(N) denote, respective-
ly, the angular and spin functions of the ¹helectron,
x' ' indicates the absence of the totality of the coordi-
nates describing the Nth electron, and r' ' denotes the
absence of the radial coordinate of the Nth electron. The
compound index v consists of i and l. In general, there
may be several values of l which can couple to form the
considered L for a given i. On the other hand, it may
also happen that it is impossible to form L and S for some
values of i. Let I denote a set of indices v=(i, l) such
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that i ~ M and the considered L and S can be formed for i
and t'.

We define an open-channel space as the space of func-
tions

&P„(r' ')u(r ) (1 P—)%&=0, pEI .

Moreover, since u is arbitrary, Eq. (9) is equivalent to

&P„(r ')l(1 P)'—P&=0, p&I,

(9)

@=A g g (r' ')u, (r ), (2)
vEI

where u is an arbitrary one-electron radial function. We
assume that in the open-channel space we can find ap-
proximate wave functions of all the truly bound, reso-
nant, and scattering states lying below the considered en-
ergy region as well as scattering states and shape reso-
nances lying in the investigated domain. On the con-
trary, the approximate wave functions of Feshbach reso-
nances are to be found in a closed-channel space, which is
the orthogonal complement of the open-channel space to
the X-electron antisymmetric-function space of a given
symmetry.

The projection operators P and Q, projecting onto the
open-channel and the closed-channel space, respectively,
should satisfy the following conditions:

P%=A g g (r' ')u, (r~),
vEI

P+Q=l,
P =P,

(3)

(4)

(sa)

(Sb)

PQ =0,
P =P,

(5c)

(6a)

(6b)

Equation (3) follows directly from the definition of the
open-channel space, Eq. (2), and has a physical sense. All
the remaining conditions are formal. The completeness
condition, Eq. (4), determines that the idempotency, Eqs.
(5a) and (5b), and orthogonality, Eq. (5c), conditions are
dependent on one another. Similarly Eqs. (6) are mutual-
ly dependent. Thus, we have four independent condi-
tions. The orthogonality (or idempotency) condition, Eq.
(5c), means that, in our space of antisymmetrized wave
functions for any + and 4', we have

&e'lPQ+&=o.

We use Eqs. (6a) and (4) in Eq. (7) to obtain

&P+'ill —P)e&=o .

Keeping in mind that + is arbitrary, we see that the
latter is equivalent to

which is a set of integral equations for functions u, that
are necessary for determination of P% for a given O', Eq.
(3).

A general expression for the operator P was obtained
from Eqs. (3) and (11) by Temkin and Bhatia in a way
analogous to that originally introduced by Feshbach. '

This forrnal solution, although general and elegant, is
difficult in practical application and usually demands
some further approximations.

The other practical way for projection is to solve Eq.
(11) for each given %. The unknown functions u, can be
found numerically for arbitrary forms of P; and 'P. How-

ever, numerically solving Eq. (11) would be very expen-
sive and therefore impractical. On the other hand, in a
general case analytical solutions would be only approxi-
mate. However, if the wave functions P, (i =1, . . . , M)
and trial function 4 are of configuration-interaction type
then exact analytical solutions for u can be found. Now
we direct our attention to this case.

Considering in Eq. (11) particular permutations, in-
cluded in A, it is easy to notice that all unknown func-
tions u can be strictly expressed in terms of the radial
orbitals which occur in target functions P, and in the
function + that is being projected. Therefore, we expect
a solution as

u„(rN ) = g U„y (r~),
jEJ

(12)

where y are radial parts of orbitals used in
i =1, . . . , M, and +. As a matter of fact the summation
is only over orbitals having the same angular symmetry
as that connected with u„. This is emphasized by the
subscript p at J„,denoting a set of indices. By substitut-
ing expansion (12) into Eq. (11),multiplying them by each
specific yk(r~), and integrating over r~ we have

where the integration is over all the coordinates except
rz', we are assuming throughout the convention that in-
tegration is performed over all coordinates appearing in
bra parts of expressions. Inserting Eq. (3) into Eq. (10)
gives

&g„(
' ')l+&=g &g„( '")l~p, (

' ')u, ( )&,

I

& Qp(» )+k(r+)I+ &
= y g & q„(r "')v k(»N)l~g. (r' ')q'&(»N ) & U j

vEI jEJ
(13)

for all pairs (p, k) except those for which Af„yk =0.
Equation (13) forms a set of linear algebraic equations for
the coefficients U which is easy to solve by means of
any standard algorithm. When these coefficients are
found the P% and QV projections are determined, ac-
cording to Eqs. (3) and (4), and they can be used in calcu-
lations of QHQ and/or the optical potential.

III. METHOD FOR TRIPLY EXCITED RESONANCES

In the case of triply excited resonances, lying above the
double-ionization threshold, the number of open channels
is infinite. Thus, the method described above is not ap-
plicable to this case. In the method proposed in this sec-
tion all the open channels are handled at once.
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Let the ground state of doubly ionized system (double-
ionization threshold) be described by the wave function
P(x' ' '). Let us assume that all the (X —1)-electron
thresholds lying below are associated with singly excited
states of (% —1)-electron system, i.e. , the (N —2)-
electron core is in the P state. Now we can define an
open-channel space as the space of antisymmetric ¹

electron functions of a given symmetry with the (X —2)-
electron part described by P. Thus, each function belong-
ing to this space can be written as

(14)

for an arbitrary antisymmetrized ¹ lectron function 0,
and

P+Q=1, PQ=O, P =P . (16)

These conditions are sufficient to find PO for a given +.

where w„(x,v &, xz) is an arbitrary two-electron function
and A stands for all the operations connected with the
LS coupling. In general, there is a number of ways in
which the required total symmetry can be obtained
within the LS coupling. Therefore, the sum over v ap-
pears in Eq. (14).

The projection operators P and Q, projecting, respec-
tively, onto the open-channel space and its orthogonal
complement, must fulfil the following conditions:

(15)

In some cases even explicit P and Q operators can be de-
rived from them.

A. Three-electron system

Explicit and rigorous forms for P and Q can be derived
for a three-electron system. In this case Eq. (15) becomes

PC=A/(r, )u(xz, x3, 1), (17)

where P(r, ) is the radial part of the one-electron function
describing the double-ionization threshold (one-electron
core) and u(xz, x~, 1 ) is a function of two remaining elec-
trons coupled to the spin and angular part of the core.
The spin and angular coordinates of the core electron are
denoted by 1. For convenience we assume u(xz, x3, 1)
antisymmetric in xz and x3, and the three-electron an-
tisymmetrizer A normalized by factor 1/2!. From Eqs.
(16) and (17), in the same way as in Sec. II, we obtain

($(r, ) ~'P) = (P(r, ) ~A(h(r, )u(xz, x„1 ) ), (18)

—~P(r, ))(P(r, )~u(xz, x, , 3)) . (19)

Multiplying the latter by P(rz ) and integrating over rz we
have

from which u can be found for a given 4'.
Now we shall use this equation together with Eq. (17)

for finding an explicit form of P. Equation (18) is
equivalent to

(P(r, ) 4) = ~u(xz, x3, 1) ) —~P(rz ) ) (P(r, ) ~u(x, , x3, 2) )

(P(r& )P(rz)~%') =(P(rz)~u(xz, x3, 1))—(P(r& )~u(x, , x3,2)) —~P(r3))($(r, )P(r )z~u( x,z&x3)) . (20)

Similarly the analogous expressions for (P(r& )P(r )3~4) and (P(r )Pz(r )~3+) can be obtained. Further, premultiplying
Eq. (20) by P(r3) and integrating over r3 we have

(P(r& )P(rz)P(r3)~%') = (P(rz)P(r3)~u(xz, x3, 1) ) —(P(r~ )P(r3)~u(x&, x3, 2) ) —(P(r& )P(rz)~u(xz, x, , 3) ) .

We insert u from Eq. (19) into Eq. (17) to obtain

P'P =%[~/(r, ) )(P(r& ) ~'P) + ~P(r, )P(rz) ) (P(r& )~u(x, , x3, 2) )+ ~P(r, )P(r3) )(P(r~ )~u(xz, x&, 3) )] .

(21)

(22)

P%=(P, +Pz+P, P,Pz—
P, P3 PzP3+P—, PzP3 )—+, (23)

where

(24)

Thus we have

P =Pl +P2+P3 —PlP2 —P, P3 —P~P3+PlP2P3

and

3

Q=1 —P=+ (1 P;) . —

(25)

(26)

After performing antisymmetrization in Eq. (22) we use
Eqs. (20) and (21) to obtain

One can see that these projectors are analogous to the
Feshbach projectors for elastic-scattering domain of
two-electron system.

The operator Q has two interesting features. One is
that due to the completely symmetric form Q commutes
with the antisymmetrizer. The other is that the one-
electron operators 1 —P, are the same as the hole projec-
tors used by Chung within his hole-projection technique.
Thus in, the case of the three-electron system the projec-
tors used by both methods are formally the same, al-
though the Chung's derivation of his method was based
on quite a different approach. The practical difference
concerns the optimization of the P(r) function. In the
Feshbach-type projection method, proposed here, P is the
ground-state wave function of the hydrogenic ion while
in Chung's method P is the hole function optimized so to
maximize the resonance energy. This notice completes
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considerations in Ref. 10, where the projection-operator
method and hole-projection technique are compared.

B. One-determinant double-ionization threshold

Now we turn to the case of N ) 3. Operators P and Q
can be easily found for the ground state of doubly ionized
system described by a one-determinant wave function
$(x ( ' '). Such an approximation is possible for a
closed-shell (N —2)-electron ground state. For simplicity
we confine our consideration to this case, although it is
not the only one. Equation (15) takes the form

where u(XN (,XN} is an arbitrary but antisymmetric
two-electron function of a proper symmetry; due to the
'S symmetry of P the total spin and angular momentum
are the same as those of u. For convenience we assume
that the ¹lectron antisymmetrizer A is normalized by
factor I /I 2!(N —2)!).

From Eqs. (16) and (27) we obtain

(y( (N —1,N))iqg)

=(y(x(N ' N') Ay(x„. . . , XN 2)u(XN, ,XN)& .

(28)

pq =Ay(x(N ' N) )u(XN „xN ), (27)
By considering all the permutations in the right-hand
side of Eq. (28) we have

u(xN (,XN ) = (y(x(N-' N)
}

~
e &— 0(xN —1x»Nx»3»»XN —2) (x l»X2) &

+(N —2)((P(x ' ')~P(xN, X2, . . . , xN 2)u(XN „x,))
+(N —2)((It(x' ' ') $(xN l, x2, . . . , xN 2)u(x»xN)) . (29)

Inserting the latter into Eq. (27) gives

p@ ~ ~y(x(N
—1,N)) ) (y(x(N —1,N))~ql )

Thus the operator P is

(30)

p is infinite. However, in practice this sum can be trun-
cated without a loss of strictness as can be seen later.

In the same way as before, we obtain a set of integral
equations for v„:

p —~ ~y(
(N —1,N)) ) (y( (N —1,N))~ (31) (@ (

(N —),N))~q()

which is completely analogous to that for one-
determinant target state in the case of doubly excited res-
onances in the elastic-scattering domain. '

C. Configuration-interaction-type wave-functions case

If the form of the threshold function is more sophisti-
cated, then an explicit form for P seems to be impossible
to find. Therefore, a procedure analogous to that
presented in Sec. II is proposed.

Let us assume that both the trial function 0 and the
ground-state wave function of the doubly ionized system
are of the configuration-interaction type. Since it is im-
possible to separate the angular part from w in Eq. (15),
we expand w in products of orbitals and then we

separate the spin and angular parts. Thus, we can rewrite
the Eq. (15) as

P%=A g it)„(r' ' ')U„(rN „rN },
where

(r(N —I,N))

=A„P(x' ' ') Y„(QN, )Y„(QN)y„(N —1,N) (33)

and v„ is a product of two arbitrary one-electron radial
functions. Because of the above-mentioned expansion of
w the index p is quite diA'erent from v and the sum over

(1/I (r(N ),N))~~g (r—(N —1, N)) ( ))

U„(rN —1 rN ) = & V„,e, (rN —» rN )

jEJ
(35)

into Eqs. (19), premultiplying by each specific pk, and in-
tegrating over r& &

and r& gives

( &.e(, l!
'p &

=X g ( p„ek I!~p„~, & V„J (36}

for all pairs (v, k) for which Ag„pk&0. This is again a
finite set of linear algebraic equations for the coefficients
V„. If these coefficients are solved for, the P+ and Q)II

projections are definitely determined and the QHQ calcu-
lations can be carried out.

(34)

Since P and %' are expressed in configuration-expansion
forms then it follows from Eqs. (19) that v„are strictly
expressible in pairs of radial orbitals appearing in + and

Let p, jH J„,denote such pairs. The subscript p in-
dicates that each v„ is expressed in pairs of only those or-
bitals which correspond to the angular parts determined
by )M. Only for a few values of )(2 we have J„WZ. For the
remaining ones there is no pair of orbitals of the required
symmetry among those occurring in P and 1I(. Inserting
the expansion
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IV. DISCUSSION

The basic property of the operator P, which has been
required by Feshbach' and then by Temkin and Bhatia,
is that P should preserve the asymptotic form of the exact
resonant wave function; in other words, P should select
out of the wave function the open-channel part. The pro-
jection procedure described above does have this proper-
ty, although the asymptotic boundary condition for u was
not postulated. When omitting the asymptotic require-
ment the actual interpretation of P is easily noticed: the
projector P projects an arbitrary antisymmetric function
onto the space of the lower-lying truly bound and reso-
nance states as well as scattering states. This interpreta-
tion is especially important in the context of preventing a
variational collapse in a QHQ calculation.

The interpretation of Eq. (11) is also found to be more
general than in the previous papers. ' Equation (11) has
been shown to follow from Eqs. (3)—(6) and to be
equivalent to the requirement of idempotency of opera-
tors P and Q in the space of antisymmetric functions.
Thus, once projection is performed according to Eq. (11),
there is no need to worry about its idempotency. In the
original Feshbach's paper' the equation corresponding to
Eq. (11)was postulated as a condition sufficient for break-
ing up the wave function into two mutually orthogonal
parts, one of which had the desired form (3). Moreover,
in the paper of Temkin and Bhatia this equation was
written for the exact resonance wave function only. That
is why the property P +=P% seemed to be obviously
true only for the exact tII and a proof for an arbitrary an-
tisymmetric function seemed to be necessary. ' Howev-
er, one should realize that the form of P is influenced nei-
ther by the fact of satisfaction of the Schrodinger equa-
tion by + nor by the asymptotic behavior of the u func-
tions. Hence, Eq. (2.9), or rather (B4) of Ref. 6, is in fact
equivalent to our Eq. (11) and thus guarantees the idem-
potency of P and Q.

The projection procedure proposed in Sec. II is strictly
equivalent to the use of the explicit projectors only for
the configuration-interaction-type wave functions of both
the doubly ionized and the entire system states. In prac-
tice this is not a very important limitation since for
many-electron systems a configuration expansion is the
mostly used ansatz for the wave function. Moreover, in

the case of wave functions explicitly including interelec-
tronic distances the procedure can be applied as an ap-
proximate method. The quality of this approximation
will depend on the quality of the basis used in Eq. (12).
As an example, let us consider a Hylleraas-type wave
function for the two-electron target, which is the most
advanced case in the approach of Temkin and Bhatia.
Natural orbitals, in terms of which the projector P is con-
structed, are analytically approximated in a basis set. If
we include this basis into expansion (12) and if we express
the open-channel wave functions P„ in Eqs. (13) in terms
of given Hylleraas expansions then we obtain the approx-
imation at least as good as in the explicit-projector ap-
proach.

It should be emphasized that although the projection
procedure proposed here is less elegant it provides a sim-
ple computational algorithm that is essentially the same
for resonances lying in the elastic scattering region as for
those lying in the inelastic domain, and also for triply ex-
cited ones. Thus, all these states can be calculated by the
same program. The method has been applied' to the
case of the 1s2s2p P resonance of He within the gen-
eralized saddle-point method. This was the first applica-
tion of the idempotent projection to the inelastic domain.

The projection method for triply excited resonances
presented in Sec. III has never been formulated before.
However, in the case of three-electron system the form of
the projector Q has turned out to be the same as that
used by Chung within his hole-projection technique.
The same situation occurs in the case of doubly excited
resonances in two-electron systems. Although the hole-
projection technique, containing the mini-max idea for
optimizing the energy of the autoionizing state, is not
completely equivalent to the projection method, the re-
sults obtained by them for two-electron atoms are very
close to each other. " I believe that the successful appli-
cation of the hole-projection technique to triply excited
resonances' in He, Li, and Be+ justifies the reliability
of the present approach.
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