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The properties of polymers in a disordered environment are studied with emphasis on the effect
of trapping due to fluctuations in the porosity of the environment. Results are obtained for Zy,
the number of self-avoiding walks of length NV starting at the origin, and D, the diffusion coef-

ficient for the center of mass of the polymer.

The two most important new results are that

{(InZy)= N —a N with a=2—dv and v the Flory exponent, and that the leading behavior of

the diffusion coefficient is D = exp(—a2N?).

In this Rapid Communication, I discuss the static and
dynamic properties of a polymer chain in a quenched ran-
dom environment. The question of whether the presence
of disorder qualitatively changes the static properties of
polymer chains has been controversial.! ~® Harris? pre-
sented a simple argument that the size R of a self-
avoiding walk (SAW) is unmodified by a random environ-
ment and this result is supported by recent numerical
work.® The situation is less clear for the number of
SAW’s of length N which start at the origin, Zy. In the
absence of disorder, Zy = VN7~ !. Derrida® has pointed
out that in the presence of a random medium, {Zy) and
(InZy) may exhibit different critical behavior. While
(Zx) is only trivially changed by disorder, there have been
suggestions* that (InZy) displays an essential singularity
so that y fails to exist. In the present work, we show that
this is the case and, for the first time, identify the ex-
ponent describing the essential singularity with the
“specific-heat” exponent, a =2 —dv.

de Gennes™® has shown that the dynamics of a polymer
in a random network is strongly affected by the entangle-
ment of the chain with the network so that the motion of
the chain is primarily along its own length with new re-
gions explored only by the ends of the chain. He termed
this motion “reptation” and showed that it leads to a
diffusion coefficient for the chain which behaves as N 2.
Recent numerical work,® however, indicates that the
diffusion coefficient for chains in a random environment
decreases more rapidly in NV than the reptation prediction.
In the present work we study the effect of fluctuations in
the environment on the diffusion coefficient. The most im-
portant and novel conclusion of this analysis is that the
diffusion coefficient diminishes as exp(— N?) for large N.

Static density fluctuations in the environment lead to
wide spatial variations in the local number of conforma-
tions available to the chain—regions with unusually small
numbers of scatterers support vastly more conformations
and behave as “entropic traps.” As a consequence of
these entropic traps, the equilibrium spatial distribution of
the polymer is strongly inhomogeneous and the asymptot-
ic behavior of the typical and average values of Zy differ.
Because of the long release times from deep entropic
traps, the approach to equilibrium is very slow and the
diffusion coefficient is exponentially smaller than the rep-
tation prediction. Simple calculations based on the distri-
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bution of entropic traps yield results for the statistics of
Zy and for both the short- and long-time diffusive motion
of the chain. Related notions of entropic trapping have
been discussed in Refs. 9-11.

The model studied here is a self-avoiding walk on a
site-diluted lattice. The polymer chain is described by a
connected sequence ¢ of N sites such that no site may be
visited more than once. Each site in an environment is
classified as “allowed” with probability p or “forbidden™
with probability 1 —p. Each configuration of the environ-
ment contains V sites and is described by a set ¢ of forbid-
den sites. The sites are uncorrelated and the probability
P(c) of a configuration is given by the binomial distribu-
tion. A chain ¢ in configuration c is allowed if ¢ and ¢ do
not intersect.

As first shown by Harris,? the statistics of the size of a
SAW is unaffected by site dilution. The argument is very
simple and we repeat it here. Consider, for example, the
root-mean-squared end-to-end distance Ry (c) of a chain
which is in equilibrium in a given random environment c,

[RN(C)]2=Zr¢2x(c,¢)/21(c,¢). )
] ¢

The sum over ¢ is over all SAW’s of fixed length V; r, is
the end-to-end vector of the chain, and y(c,¢) is an indi-
cator function, which is zero if ¢ and c intersect and one
otherwise. In the limit ¥— oo with N fixed, self-aver-
aging holds for the numerator and denominator on the
right-hand side of Eq. (1) so that the size Ry is indepen-
dent of ¢ and given by the ratio of configuration averages,

RA=ZriP()1(c,0) [ ZP@x(c,0) @
(X [ X

Since each SAW occupies /N sites, the sum over c is in-
dependent of ¢, and for ¥ — o one has

Y P()xlc,e)=p", 3)

which cancels out of the numerator and denominator.
Thus, the size of the chain is unaffected by the disorder
and Ry = AN’ with 4 independent of p and v=3/(d +2)
the usual Flory exponent.

Though the size of the chain is unaffected by the ran-
dom environment, the equilibrium spatial distribution of
the chain is strongly correlated with the disorder for
d <4. The chain is effectively trapped in regions where
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the density of allowed sites or “local porosity” is signifi-
cantly above average. To understand this phenomena
quantitatively, coarse grain the system into cells of volume
Q =aN*“ with a order one so that the chain more or less
occupies a single cell at any given time. Divide the set of
cells into classes according to the local porosity,
m=M/Q, where M is the number of allowed sites in the
cell. Consider each class of cells to be a subsystem and
compute the relative number of conformations per cell of
the polymer within each class. To do this, choose a single
conformation of the polymer and count the number of
cells with porosity m which are compatible with that con-
formation. This number is independent of the conforma-
tion, thus the probability y(m) that a SAW is compatible
with a cell of porosity m is

M!(0—N)!
w(m)=1 Q' (M—N)!’ M=N, @
0, M<N.

In the appropriate limit for a SAW, Q = M > N> 1, this
reduces to
N 1-m

Iny(m) =N lnm 50 + . (5)
In equilibrium the chain spends a time-proportional y(m)
per cell in the subsystem with porosity m and, for large NV,
the chain strongly prefers to reside in the cells with larger
than average porosity. On the other hand, cells which de-
viate significantly from the expected porosity p are ex-
tremely rare for large Q. The probability density p(m)
for m is well approximated by the Gaussian,
1/2

Q _ a(m—p)?
plm) { 2zp(1—p) exp 2p(1—p) |’ ©)

The product of p and v is sharply peaked for large NV and
the chain spends almost all its time in the class of cells
with the porosity my, which maximizes p(m)y(m),

my =p+l%ENl_dV. N

The fraction of space in which the chain spends most of
the time is given by

p(mN)zexp[——ILEN”] , (8
2pa
where

a=2—dv. ()

Using the Flory result for v we have a== (4 —d)/(d +2).
For d <4, the chain spends almost all the time in a very
small fraction of space. Henceforth, our results will apply
to the case d <4. It should also be noted that extremely
large systems are needed to fully observe this effect. The
requirement is that at least one cell of class my is likely to
be found in a system of size V so that Vp(my)/Q must be
order one and the minimum size V ;, is

(10)

min ==

InV ,in = 1—_RN".
2pa

For smaller systems we expect the chain to be localized in
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the cell with the maximum porosity.

Let Zy(c) be the number of SAW’s of length N which
start at the origin of configuration ¢ [Zx(c) =0 if the ori-
gin of c is forbidden]. In an undiluted system, c =@, the
two leading terms in an asymptotic expansion of InZy (&)
are

(11)

The exponent ¥ is universal while the connective constant
4 is not.

There are two averages to consider, the quenched aver-
age, {InZx), and the annealed average, In(Zy). The an-
nealed average is easily evaluated by multiplying Eq. (3)
by Zn (@) and taking the logarithm,

In{(Zy) =InZy(2)+ Nlnp
=Nlnpu+(y—1)InN+ --- .

InZy(@) = Nlnu+(y—1)InN.

12)

For the annealed average the only effect of the disorder is
to modify the connective constant.*

To estimate the quenched average note that chains at-
tached to the origin explore a region of size Ry around the
origin and approximate Zy (c) by w(mo)Zy{(@) where mg
is the porosity in the cell containing the origin,

InZy)=InzZx(@)+ [ ' dm p(m)Iny (m)

= Nlnpu — l—EN .
2pa
The quenched average measures the typical value of Zy
which is much smaller than the average value because the
origin is not typically found in a region of unusually high
porosity.

We may endow the chain with dynamics and, above the
percolation threshold for the allowed sites, study the mac-
roscopic diffusive motion of the center of mass of the
chain. The precise nature of the dynamics is not impor-
tant, so long as there is a time scale 7 for the chain to
completely change its conformation. The dynamics must
be local so that the new conformation is chosen from
among those conformations which are within Ry of the
original conformation. Finally, the chain distribution
must approach the correct equilibrium distribution, that
is, each allowed conformation is visited with equal proba-
bility. A physically plausible dynamics which simulates
the effect of entanglement present in any real random
medium is “reptation dynamics;”'2 here, the chain moves
along its own contour and randomly explores new posi-
tions at its ends. In this case 7 is the renewal time for the
tube and scales as V>,

On large scales, the motion of the center of mass of the
polymer is a random walk among the coarse-graining cells
described by the master equation,

dc; @)
dt

where ¢; (1) is the occupation probability for cell i at time
t, W;; is the transition rate from cell j to cell i, and the
sum is over the nearest neighbors of site i. An estimate
for the transition rates can be obtained by making the as-
sumption that after time r the chain attempts to enter one
of the 2d neighboring cells, and also that the attempt is

(13)

-EVVUCJ"‘WJ','C,' ) (14)
J
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successful in proportion to the ratio of the number of con-
formations available in the two cells,

y/(m,-)

e - ¥mi)
Wi = (dr) vy )

(15)
Note that this form for the transition rates leads to the
correct equilibrium occupation probabilities,

ali— ) =y(m) [ T wlm). (16)
J

What is the nature of the random walk described by
Egs. (14) and (15)? The variance o? of m scales like
N ~4", so the typical cell-to-cell fluctuations in Iny scale
like N*2. For d < 4 and large N, neighboring values of y
vary widely and the transition rates can be approximated
by
l, m; > m;,

er,,z{ an

y/(mi)/v/(mj), m; > m,.

Thus, local maxima of the porosity serve as trapping
centers. These traps are separated by a distance of several
times Ry and have waiting times which can be estimated
as ty(m;)/w(p), where m; is the value of the porosity at
the trap. The important disorder in the system is the wide
distribution of waiting times in the trap and we ignore
other kinds of disorder such as the random positions of the
traps, the anisotropy in leaving the traps, and the random
heights of the barriers between traps. The result is a ran-
dom walk in an environment with random traps having a
distribution of waiting times. The diffusion coefficient D
for this model is given by the ratio of the square of the dis-
tance between traps and the average waiting time 7 (Ref.
13),

D=bR?T, (18)

where b is a constant of order one and
i
T
= — . (19)
T () J; dmp(m)y(m)

Using Egs. (9) and (10) the integral is easily evaluated by
steepest descents with the result

2 -
D.--:bf expl—l—ﬂN"]. (20)

2pa

We see that the diffusion coefficient is exponentially
suppressed for d < 4, due to entropic trapping.
The equilibration time scales as exp(V?) and is astro-

nomical for long chains. It is thus of interest to find the
intermediate time behavior of a polymer introduced at
random in the medium. Let L () be the size of the region
explored by the chain up to time ¢. The time scale for es-
caping this region is set by the deepest trap in the region,

t=zy(m)/y(p), 1)

where m is the porosity of the deepest trap. The depth of
this trap can be estimated from

LY)p(m)=1. (22)
Eliminating m from Egs. (21) and (22) yields
=~ GE —ayn2
InL 220 —p) N "%In%(t/ 7). (23)

This behavior holds over length scales from several times
Ry up to V4. The growth law of Eq. (23) mimics anom-
alous diffusion, L == %, with & slowly increasing to 1.

In summary, we have seen that the most important
effect of a random environment on the static and dynamic
properties of a polymer chain is to create entropic traps in
which the polymer resides in equilibrium. The effects of
these traps appears as an essential singularity in the NV
dependence of both the typical number of chains starting
at the origin and the chain diffusion coefficient. Within
the ma%netic phase transition language for describing
SAW’s,® the exponent «a is identified via hyperscaling with
the specific-heat exponent. It is noteworthy that the
Harris criterion holds in the sense that the disorder leads
to a relevant essential singularity when a > 0. The pres-
ence of the essential singularity explains the nonexistence
of a perturbative fixed point in a field-theoretic formula-
tion of the problem. '

Although our results are derived for a simple model of a
self-avoiding walk on a lattice, they should remain valid
for more general situations where there are short-range
correlations in the environment. For example, the envi-
ronment may consist of a random network. The crucial
feature is that porosity fluctuations should be Gaussian on
length scales longer than the size of the polymer. Similar-
ly, it is not necessary for the polymer to be strictly self-
avoiding as long as the self-repulsion is sufficient to
prevent the collapse of the chain in the random environ-
ment. The conditions for this are discussed in Refs. 5 and
11.
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