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Universality classes for diffusion in the presence of correlated spatial disorder
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We study the moments of displacement of a diff'using particle in one dimension in the presence
of correlated random fields. We find that even for short-range algebraic correlations there exists
a critical moment q, such that for q (q, the moments of displacement depend logarithmically on

time, whereas for q &q, the moments of displacement are a power law of time. This result is

surprising since short-range correlations do not usually change the scaling properties.

(
~
l )q)- (lnt) v (uncorrelated) . (2)

Here, we discuss the more general case where the ran-
dom fields are correlated. We present an exact proof that
there exists a critical value q q, above which (

~
I (e) be-

comes a power law of t. We find that even for short-range
algebraic correlations, Eq. (2) does not hold for all mo-
ments.

Consider a random walker on a given site jof the chain.
The probabilities to proceed to the right and to the left are

Recent years have witnessed increasing interest in
diff'usion in random media. ' Some of the interesting
structures over which diff'usion takes place are topologi-
cally one dimensional. One example is diffusion on a poly-
mer in a uniform external field, which generates a random
field along the chain due to the random spatial structure
of the polymer. A second example is random impurities
which produce local random fields that favor a given
direction for the diffusing particle.

For the ideal case in which we may neglect the spatial
correlations in the random fields, Sinai solved exactly for
the asymptotic time dependence of the mean-square dis-
placement (l ) along the chain,

&l') -ln't .

The probability density P(l, t) is, asymptotically, a nor-
malized (with respect to l) function of the variable
u = l/ln t. Nauenberg (heuristically) and Kesten (rig-
orously) have found that P(l, t) is of the form
(lnt) exp( —C

~
u ( ). Therefore, for the uncorrelated

case, all positive moments scale identically; i.e., for q & 0,

W~, I+& and Wj. I- &, respectively. Since their sum is one,
we may write W~ J ~

&
(1+'EJ)/2. We choose EI

~
E

~ rI, where r~ + l. If the rI are correlated random
variables, the random bias fields are correlated. This
correlation in the rj is described by the correlation func-
tion of the Fourier components ~q,

(k (( I ) .1 (3)

P(rtt) -m (sa)

(analogous to "Levy flight"). Here, P & 1 (due to the nor-
malization condition). One finds that A, depends on P,
with'

1, P~2,
'3 —P, 2~P~3,
0, P~3.

(5b)

Note that all correlations defined by P ~ 3 are algebraic
decaying but short range. One might expect that for such
short-range correlations, the Sinai result (2) for the un-
correlated limit would hold. This is not true, as we shall
now prove.

We choose to average' lnt for fixed l and find

&int) -i""'I'
One way to generate a correlated configuration of rj is

to choose segments or "strings" within which the sign is
uniform (that uniform sign chosen randomly). The
probability to choose a string of length rn is
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The average ( ) I ~~& is actually a double average:
20—

where & )„denotes the average over all possible walks, and
( ), denotes the average over all configurations. Thus, we
average first over all possible walks for a given con-
figuration of the random fields, and then we average over
the configurations themselves.

The proof proceeds as follows. First we consider a
configuration in which, from the initial site of the walker,
there is a string of length m to its right in which z~ +1,
where j indexes the sites on the segment. A lower bound
on the (

~
I ~'i) for this configuration is given by

IO

0
5 IO l5

(Int)

20 25

&[I[ ). (Iil &„t.i,
where w' represents an average over walks in a system
with a trap at the end of the segment such that a walk
which reaches the end of the segment is frozen there. We
observe that

FIG. 1. Linear plot of & ~1~~1'~ as a function of (lnr) ' with

P 2.5 (k 3 —P —, ), for q &q, = —, . The values of q are 0.25
(0), 0.5 (A), and 1 (x ).

ability for such a configuration is

& I I I'&.(.)— tq, t~m
mq, t)m (8) P, (t) -g P(l)-(P —1)r (12)

(II I )=« II I & ) ~ XP(m)(l I I & '1 (9a)

The behavior for t ~ m follows from the fact that the
average displacement in the presence of a uniform field is
proportional to time, while the behavior for t & m follows
from the fact that the walker is trapped at m once it ar-
rives there. Since P(m) is the probability that the initial
string will be of length m,

Note that the probability for a rare configuration depends
on the number of time steps one takes. The number of
configurations JV, needed to obtain power-law behavior
with probability of order 2 is obtained by the require-
ment that the average number of rare configurations is
one out of A„ i.e., P„(t)- I/JV, . Hence, the number of
required configurations A, is

From (8),

&~l ~'&~ g P(rrt)rrt + g P(rrt)r'-r' ~+', (9b)
rn (I m) I

for q
—p+1 & O.

Since (~ I ~~) is bounded from above by t~, it follows that
(

~
I ~~& behaves asymptotically as a power of t, for all

values of p provided that q & q„where

We expect to observe a crossover in the time dependence
of (

~
I ~~) (for q & q, ), from a power-law behavior in t (at

small t) to a power law in Int (at larger t) because in the
finite sample of configurations we expect to find no rare
configurations when the average number of rare con-
figurations is smaller than one. From (13) it follows that
the crossover time t * scales with the number of

q, —1. (10)

We see now that even for the case k 0, i.e., p & 3 as long
as p is finite, Eq. (2) is not valid for all moments.

We checked (9b) numerically for P -2.5. In Fig. 1 we
present simulation results for &

~
I ~~) for several values of

q. For q &q, we find logarithmic behavior (Fig. 1),
whereas for q )q, we find a power-law dependence in
time (Fig. 2).

It is interesting to estimate the number of field
configurations needed in a numerical simulation to see the
power-law behavior predicted by Eq. (9b). The field
configurations contributing to the second term on the
right-hand side of Eq. (9b) are very rare. If we consider
(

~
I ~~) for a typical configuration, "we find

IO
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FIG. 2. Log-log plot of &
~
I ~~1 for q, & q =2 as a function of r.

The straight lines obtained here and in Fig. 1 support the cross-
over from logarithmic to power-law behavior predicted by Eq.
(9b). Note that the slope, 0.75, falls in the predicted range be-
tween q

—P+1( 0.5) and q( 2.0).

&)I (~&,„,-(lnr)" "+".
The rare configurations are those where at time t the

walker is still in the region of the first segment. The prob-
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configurations A' over which we average

r*- [(P- l)~] '"i'-" (14)

Hence, although we expect a power-law behavior of (l )
above q, at large times, this behavior is difficult to observe
for the short-range (P ~ 3) case in computer experiments
because of the large number of configurations necessary.
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